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The problem of inference about the joint distribution of two categorical variables based on
knowledge or observations of their marginal distributions, to be referred to as categorical data
fusion in this paper, is relevant in statistical matching, ecological inference, market research,
and several other related fields. This article organizes the use of proxy variables, to be
distinguished from other auxiliary variables, both in terms of their effects on the uncertainty of
fusion and the techniques of fusion. A measure of the gains of efficiency is provided, which
incorporates both the identification uncertainty associated with data fusion and the sampling
uncertainty that arises when the theoretical bounds of the uncertainty space are unknown
and need to be estimated. Several existing techniques for generating fusion distributions
(or datasets) are described and some new ones proposed. Analysis of real-life data
demonstrates empirically that proxy variables can make data fusion more precise and the
constructed fusion distribution more plausible.
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distribution; fusion data; proxy variable; relative efficiency.

1. Introduction

Some statistical problems are characterized by a lack of observations of interest. A familiar

example is incomplete data due to survey nonresponse. Examples of other ‘censoring’

mechanisms that have received attention in the social sciences can be found in Manski

(1995). In all these cases, the lack of observations of interest induces an identification

uncertainty about any stipulated model assumptions that is not a question of the sample

size but one of the data structure, such that “inference even from an infinite number of

observations is subject” (Koopmans 1949, 132).

The particular situation to be considered in this article is inference about the joint

distribution of two target categorical variables of interest based on knowledge or observations

of their marginal distributions, to be referred to as categorical data fusion. The setting is

readily recognizable in statistical matching (e.g., D’Orazio et al. 2006b; Rässler 2002),

ecological inference (e.g., Wakefield 2004; King 1997), and several other related fields.

The first topic of interest in data fusion is uncertainty analysis. The identification

problem implies that there exist a set of probability distributions of the target two-way

contingency table, denoted by Q and referred to as the uncertainty space, whose

elements can be constrained by knowledge or observations of the table margins.

q Statistics Sweden

1 University of Southampton, S3RI/Social Statistics and Demography, Highfield Southampton SO17 1BJ, UK and
Statistics Norway, P.O. Box 8131 Dep. 0033 Oslo, Norway. Email: L.Zhang@soton.ac.uk.
Acknowledgment: I would like to thank three anonymous referees for their insightful comments, and an
Associate Editor for helpful suggestions regarding the presentation.

Journal of Official Statistics, Vol. 31, No. 4, 2015, pp. 783–807, http://dx.doi.org/10.1515/JOS-2015-0045

http://dx.doi.org/10.1515/JOS-2015-0045


The conceptualization and measure of uncertainty space for statistical matching have been

considered in Kadane (1978), Moriarity and Scheuren (2001), D’Orazio et al. (2006a),

Rässler and Kiesel (2009) and Conti et al. (2012, 2013).

The second topic of interest is data fusion techniques. Each element of the uncertainty

space corresponds to a specific joint distribution. Identification is only possible by stipulation.

The thus-identified joint distribution will be referred to as the fusion distribution. A fusion

distribution should be regarded as a pseudo estimate of the target distribution, since the

underlying assumption is not empirically verifiable. Sometimes, as is often the case in

statistical matching, the practical interest is to construct a fusion dataset that conforms to the

fusion distribution. It is natural to treat the two as the dual aspects of each data fusion

technique. Indeed, D’Orazio et al. (2006b) refer to the construction of fusion distribution as

statistical matching at the macro level and to fusion data as that at the micro level.

In this article we organize for the first time the use of proxy variables for categorical

data fusion. We define a proxy variable to be similar in concept to the target variable and

have the same support. For example, having a registered job-seeker status or not can be

considered a proxy variable of being unemployed or not in the Labor Force Survey (LFS),

but not whether a person is male or female even though both are binary variables. On the

other hand, having a registered job-seeker status or not is not a proxy variable of the there-

category LFS status (employed, unemployed, not in the labor force), because of the

different support. It is helpful to distinguish between proxy and other auxiliary variables in

data fusion both with regards to uncertainty and technique.

The rest of the article is arranged as follows. In the first place, when available, the proxy

variables are usually the covariates that have the strongest association with the target ones.

To facilitate a precise statement of this, in Section 2 we propose a measure of the relative

efficiency of fusion with and without the proxy (or other auxiliary) variables, which builds

on the measure of uncertainty space proposed by Conti et al. (2012), but here incorporates

additionally the sampling uncertainty when the relevant theoretical uncertainty bounds are

unknown and need to be estimated.

Next, existing methods, including conditional independence model, middle-of-bounds

estimation and iterative proportional fitting, are discussed in Section 3. Note is given

whether a technique can be more readily motivated depending on the availability of proxy

variables. We also introduce some new methods, including a recursive derivation of the

middle-of-bounds estimates, and in particular a flexible technique of distribution

calibration for making use of proxy variables.

Thirdly, using real-life data on education, election turnout, and labor force status, we

demonstrate empirically in Section 4 that proxy variables can potentially yield not only huge

reduction of the identification uncertainty of data fusion, but also more plausible pseudo

estimates of the target joint distribution. Finally, a short summary is given in Section 5.

2. Uncertainty Analysis

2.1. The Identification Problem

There is a general identification problem in data fusion due to the lack of joint

observations of the target data. The problem can be characterized by the breakdown of
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likelihood-based inference of the uncertainty space Q. Binary data can be used to provide

an illustration.

Let Y1 ¼ 0; 1 and Y2 ¼ 0; 1 be the two target variables. Consider first the situation

where Y1 and Y2 are separately observed in two independent and disjoint samples. This is a

typical setting for statistical matching. Let n1 and n2 be the respective sample sizes, and

let y1 and y2 be the respective numbers of Y1 ¼ 1 and Y2 ¼ 1. Let y1 have the Binomial

ðn1;f1Þ distribution where f1 ¼ PðY1 ¼ 1Þ, and let y2 have the Binomial ðn2;f2Þ

distribution where f2 ¼ PðY2 ¼ 1Þ. Note that the two outcomes y1 and y2 are independent

of each other because they are observed in two independent samples of Y1 and Y2,

respectively. The likelihood is then given by

Lðf1;f2; y1; y2Þ / f
y1

1 ð1 2 f1Þ
n12y1f

y2

2 ð1 2 f2Þ
n22y2

¼ ðu10 þ u11Þ
y1 ðu00 þ u01Þ

n12y1 ðu01 þ u11Þ
y2 ðu00 þ u10Þ

n22y2 / Lðu; y1; y2Þ

where u ¼ ðuijÞi;j¼0;1, and uij ¼ PðY1 ¼ i; Y2 ¼ jÞ for i; j ¼ 0; 1. The maximum-likelihood

estimate (MLE) of ðf1;f2Þ is ðf̂1; f̂2Þ ¼ ð y1=n1; y2=n2Þ. However, the MLE û can not be

uniquely identified, but is constrained to a region called the likelihood ridge (D’Orazio

et al. 2006a) defined by

û10 þ û11 ¼ y1=n1 and û01 þ û11 ¼ y2=n2 and
ij

X
ûij ¼ 1

Next, suppose a single sample of the target data of size n, where joint observations of Y1

and Y2 are unavailable due to some censoring mechanism. Instead, only the marginal totals

y1 of Y1 ¼ 1 and y2 of Y2 ¼ 1 are observed. Let nij be the number of units with

ðY1; Y2Þ ¼ ði; jÞ, for i; j ¼ 0; 1, where y1 ¼ n11 þ n10 and y2 ¼ n01 þ n11. Suppose the joint

cell counts follow the multinomial distribution with parameters u as defined above. The

likelihood is then the sum of the probabilities of all possible joint cell counts subjected to

the marginal constraints, that is,

Lðu; y1; y2Þ / Pð y1; y2Þ

¼
XU11

m¼L11

Pðn11 ¼ m; n10 ¼ y1 2 m; n01 ¼ y2 2 m; n00 ¼ n 2 y1 2 y2 þ mÞ

¼
XU11

m¼L11

bmu
m
11u

y12m
10 u

y22m
01 u

n2y12y2þm
00

where L11 ¼ max ð y1 þ y2 2 n; 0Þ, and U11 ¼ min ð y1; y2Þ, and the coefficient bm is

given by

bm ¼
n!

m!ð y1 2 mÞ!ð y2 2 mÞ!ðn 2 y1 2 y2 þ mÞ!

A variation of the setting is when one of the margins is known, as is usual in ecological

inference. Suppose the marginal distribution of Y1, that is f1 ¼ P Y1 ¼ 1ð Þ, is known.

Conditional on y1, n11 and n01 are now modelled as two independent binomial
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distributions, that is Binomial ð y1; u11=f1Þ for n11, and Binomial ðn1 2 y1; u01=ð1 2 f1ÞÞ

for n01. The likelihood is then given by

Lðu; y1; y2Þ / Pð y2jy1Þ ¼
XU11

m¼L11

Pðn11 ¼ m; n01 ¼ y2 2 mjy1Þ

¼
XU11

m¼L11

Pðn11 ¼ mjy1ÞPðn01 ¼ y2 2 mjn 2 y1Þ

This is the same likelihood as above, except that the coefficient bm is replaced by

bc
m ¼

y1!

m!ð y1 2 mÞ!

� �
ðn 2 y1Þ!

ð y2 2 mÞ!ðn 2 y1 2 y2 þ mÞ!

� �
¼ bm=

n!

y1!ðn 2 y1Þ!

� �

that is bc
m / bm for fixed ð y1; y2; nÞ. Plackett (1977) demonstrates that the MLE of the log

odds ratio of this 2 £ 2 table is either 1 or 21. Equivalently, the MLE of either

PðY2 ¼ 1jY1 ¼ 1Þ or PðY2 ¼ 1jY1 ¼ 0Þ is 0 or1, which are all on the boundary of the

likelihood ridge.

The reason for the breakdown of likelihood-based inference above is not the sample

size. The number of observations might as well be infinite in any of the settings, the

problem would still remain. Identification of a particular u is only possible by stipulation,

which is thus associated with an identification uncertainty that is distinct from the

sampling uncertainty. The former is due to the structure of the available data, whereas the

latter is basically a function of the sample size. While the sampling uncertainty will

become negligible as the sample size tends to infinity, the identification uncertainty could

remain fundamentally unchanged. Therefore, for proper inference in data fusion, it is

necessary to quantify the identification uncertainty.

2.2. Measure of Identification Uncertainty

A natural approach is to construct a measure of the uncertainty space Q, in the sense

that larger Q would imply greater identification uncertainty and vice versa. Denote by

Y1 ¼ 1; : : : ;H and Y2 ¼ 1; : : : ; J the target variables of interest. Let fi ¼ P½Y1 ¼ i�

and fj ¼ PðY2 ¼ jÞ, where the simplified notation requires that one observe the notational

correspondence between i and Y1 and between j and Y2. Let uij ¼ P½ðY1; Y2Þ ¼ ði; jÞ� be

the target joint distribution. The Fréchet inequalities for uij are given as

max ðfi þ fj 2 1; 0Þ ¼ Lij # uij # Uij ¼ min ðfi;fjÞ

It should be noted that logical constraints among the variables may invalidate these

bounds. Such situations of incoherence are excluded from the general discussion below

(see e.g., Lindley et al. 1979, Vantaggi 2008 and Brozzi et al. 2012 for discussions).

The Fréchet inequalities can also be given for any subtable as follows. Let R1 #

{1; : : : ;H} be a subset of categories of Y1, and let R2 # {1; : : : ; J} be that of Y2. Let

uR ¼
P

i[R1

P
j[R2

uij be the total measure of the subtable corresponding to R1 £ R2. Let

fRj and fRj be the respective marginal probabilities of the subtable, satisfying
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uR ¼
P

i[R1
fRi ¼

P
j[R2

fRj, given which the Fréchet inequalities for uij, where i [ R1

and j [ R2, are given as

max ðfRi þ fRj 2 uR; 0Þ ¼ LRij # uijjuR # URij ¼ min ðfRi;fRjÞ ð1Þ

The full-table bounds thus correspond to the case of uR ¼ 1, R1 ¼ {1; : : : ;H} and

R2 ¼ {1; : : : ; J}.

Conti et al. (2012) propose using the interval width as a point-wise measure of Q at uij,

that is,

Dij
def
¼Uij 2 Lij ð2Þ

Below we derive two results Lemma 1 and Corollary 1 in the case of categorical ðY1; Y2Þ.

Lemma 1 The point-wise measure Dij given by (2) can be directly calculated as

Dij ¼ min ðfi; 1 2 fi;fj; 1 2 fjÞ ð3Þ

Proof. First, it is only necessary to consider the situation where fi # fj, since one can

handle the situation where fi $ fj by exchanging the generic denotation of Y1 and Y2.

Next, provided fi # fj, one only needs to distinguish between two situations: fi þ fj #

1 or fi þ fj . 1. The result (3) follows then from observing:

fi #fj and fiþfj # 1 ) Dij¼fi and fi # min ðfj;1 2fjÞ# 1=2 # 1 2fi

fi #fj and fiþfj . 1 ) Dij¼ 1 2fj and 1 2fj ,fi #fj and 1 2fj # 1 2fi B

Corollary 1 The identification uncertainty (2) is the same everywhere for binary Y1

and Y2.

Proof. The binary outcome space can be specified as ði; i cÞ and ð j; j cÞ, respectively, such

that fi c ¼ 1 2 fi and fj c ¼ 1 2 fj. It follows from (1) that Dij is the same for any ði; jÞ. B

Next, suppose there are additional categorical auxiliary variables X, and let k ¼ 1;

: : : ;K be the levels arising from cross classifying all the variables in X. The joint

distributions fik ¼ PðY1 ¼ i;X ¼ kÞ and fjk ¼ PðY2 ¼ j;X ¼ kÞ are assumed to be

observable or known, but not the target conditional distribution

lk
ij ¼ PðY1 ¼ i; Y2 ¼ jjX ¼ kÞ. Note that, in this paper, f can designate any unconditional

probability while u will be reserved for that of ðY1; Y2Þ. Note also the special tensor

(or Einstein) notation for conditional probability lk
ij, which facilitates the summation

convention whenever an index appears both as superscript and subscript. An index that

appears only as subscript, or only as superscript, remains constant. Thus, for example, we

have lk
i ¼ PðY1 ¼ ijX ¼ kÞ, and fi ¼ lk

i fk ¼
P

k PðY1 ¼ ijX ¼ kÞPðX ¼ kÞ ¼ EX lk
i

� �
,

where EX denotes expectation over X.

As a measure of the conditional identification uncertainty given X ¼ k, Conti et al.

(2012) use

Dk
ij
def
¼Uk

ij 2 Lk
ij ð4Þ

where Lk
ij ¼ max lk

i þ lk
j 2 1; 0

� �
# lk

ij # min lk
i ; l

k
j

� �
¼ Uk

ij. It follows from

Lemma 1 that

Dk
ij ¼ min lk

i ; 1 2 lk
i ; l

k
j ; 1 2 lk

j

� �
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Note that sharper bounds are available when Y1 and Y2 are ordered categorical variables

(Conti et al., 2012, 2013). Note also that it is sometimes possible to achieve point-wise

identifiability due to logical constraints between the target and auxiliary variables.

For instance, let Y1 be the employment status and let X contain the payroll records at

the tax authority, then the presence of wage payment in X would imply null probability of

Y1 being other than employed.

To assess the contribution of the auxiliary information {fik} and {fjk} on uij, put

�Dij
def
¼EX Dk

ij

� �
¼ fkD

k
ij ð5Þ

�Lij
def
¼fkLk

ij ¼ EX Lk
ij

� �
# uij ¼ EX lk

ij

� �
# EX Uk

ij

� �
¼ fkUk

ij
def
¼ �Uij ð6Þ

One observes that fi ¼ fkl
k
i ¼ EX lk

i

� �
and fj ¼ fkl

k
j ¼ EX lk

j

� �
. It follows from

Jensen’s inequality that Lij # �Lij and �Uij # Uij (Conti et al., 2009), such that

�Dij ¼ �Uij 2 �Lij # Dij ð7Þ

The result (7) means that the bounds ð �Lij; �UijÞ are never wider but can only be narrower

than Lij;Uij

� �
due to the additional information {fik} and {fjk}. A measure of the relative

efficiency (RE) of this additional information for uij can thus be given as

gij ¼ �Dij=Dij ð8Þ

In particular, powerful auxiliary information is often the case when proxy values for the

target ones are available, which can greatly reduce the identification uncertainty, as will be

illustrated in Section 4. Moreover, the scope of data fusion techniques is widened by the

proxy variables (Section 3).

Conti et al. (2012) propose combining the point-wise measure (4) to yield an overall

measure of the identification uncertainty through a set of normalising weights, that is,

�D ¼ w
ij
kD

k
ij where w

ij
k=fk ¼ lk

i l
k
j

and w
ij
k ¼

~fijk ¼ P½ðY1; Y2;XÞ ¼ ði; j; kÞ� when Y1 and Y2 are independent conditional

on X. But other choices may be possible. In particular, setting w
ij
k ¼ wijfk, where

1ijw
ij ¼ 1, yields

D ¼ wijDij and �D ¼ wij �Dij and g ¼ �D=D ¼ �wijgij ð9Þ

where �wij=wij ¼ Dij=D. The choice (9) expresses the overall RE g ¼ �D=D as a weighted

average of the point-wise RE gijs. The weights may be set as wij ¼ fifj. Or they may be

chosen to reflect the relative ‘importance’ of uij, for example, both D ¼ max Dij and

D ¼ min Dij can be accommodated by (9). Note that, in the special case of binary data

without auxiliary data, Dij is a constant of ði; jÞ, so that the overall measure D does not

depend on the choice of the weights.
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2.3. Estimation of Uncertainty Bound

The uncertainty bounds ðLij;UijÞ for the target uij depend on the marginal probabilities

fi and fj. In reality these may be unknown and need to be estimated. Consequently,

in uncertainty analysis one also needs to take into consideration the sampling uncertainty.

Take first the case where observations of Y1 and Y2 are available in separate and

independent samples. Assume asymptotic normal distributions of f̂i and f̂j.

The distribution of the max and min of bivariate normal random variables has been

studied in the literature (e.g., Nadarajah and Kotz 2008; Cain 1994). These results apply

directly to Ûij, but further derivation is needed for L̂ij. An alternative is to directly evaluate

the expectations and variances by Monte Carlo calculation.

Take next the situation with a single sample, where f̂i and f̂j are not independent. Without

losing generality, it suffices to consider L̂11; Û11

� �
for cell ð1; 1Þ in a 2 £ 2 table. Denote the

true cell counts by ðn11; n10; n01; n00Þ where n11 is the cell of concern. Let n ¼
P1

i¼0

P1
j¼0nij.

The estimates L̂11, Û11 and D̂ ¼ D̂11 ¼ Û11 2 L̂11 are, respectively, given as

L̂11 ¼ n21 max ðn11 2 n00; 0Þ

Û11 ¼ n21ðn11 þ min ðn10; n01ÞÞ

D̂ ¼ D̂11 ¼ n21ðmin ðn10; n01Þ þ min ðn11; n00ÞÞ

The expectation and variance of L̂11 can be evaluated via conditioning on m ¼ n11 þ n00, for

m ¼ 1; : : : ; n. For convenience, denote by ‘b;m;c the generic binomial probability function,

that is, ‘b;m;c ¼ PðB ¼ bÞ for B , Binomialðm;cÞ. Then,

EðL̂11Þ ¼ n21
Xn

m¼1

mþm;c‘m;n;j

VðL̂11Þ ¼ n22
Xn

m¼1

tþm;c‘m;n;j 2
Xn

m¼1

mþm;c‘m;n;j

 !2
0
@

1
A

where j ¼ u11 þ u00, and mþm;c ¼
Pm

b¼kþ1 ð2b 2 mÞ‘b;m;c and tþm;c ¼
Pm

b¼kþ1

ð2b 2 mÞ2‘b;m;c, and c ¼ u11=ðu11 þ u00Þ, and k ¼ bm=2c is the largest integer less or

equal to m=2. An alternative, closed expression for mþm;c can be given as

mþm;c ¼ mð2c 2 1ÞPðB $ k þ 1Þ þ 2ðk þ 1Þð1 2 cÞ‘kþ1;m;c, where B , Binomialðm;cÞ,

on noting the following result (Patel et al. 1976, 201):
Xm

b¼k

b
m

b

 !
cbð1 2 cÞm2b ¼ mcPðB $ kÞ þ kð1 2 cÞPðB ¼ kÞ

Similarly for Û11. Let m ¼ n10 þ n01 and j ¼ u10 þ u01. One obtains

EðÛ11Þ ¼ u11 þ n21
Xn

m¼1

mm;c‘m;n;j

VðÛ11Þ ¼ n21u11ð1 2 u11Þ þ n22
Xn

m¼1

tm;c‘m;n;j 2
Xn

m¼1

mm;c‘m;n;j

 !2
0
@

1
A

þ2n22
Xn

m¼1

hmmm;c‘m;n;j 2 nu11

Xn

m¼1

mm;c‘m;n;j

 ! !
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where hm ¼ Eðn11jmÞ ¼ ðn 2 mÞu11=ðu11 þ u00Þ, and

mm;c¼EðminðA;BÞjAþB¼m;B,Binomialðm;cÞÞ¼
Xk

b¼1

b‘b;m;cþ
Xm2k21

b¼1

b‘b;m;12c

tm;c¼E minðA;BÞ2jAþB¼m;B,Binomialðm;cÞ
� �

¼
Xk

b¼1

b2‘b;m;cþ
Xm2k21

b¼1

b2‘b;m;12c

Again, a closed expression can be given for mm;c¼mcPðB#kÞ2ðkþ1Þð12cÞ‘kþ1;

m;cþmð12cÞPðB$kþ1Þ2ðm2kÞc‘k;m;c. Finally, via the same conditioning on

m¼n10þn01, one obtains

EðD̂Þ¼n21
Xn

m¼1

ðmm;c1
þmn2m;c2

Þ‘m;n;j

VðD̂Þ¼n22
Xn

m¼1

tm;c1
‘m;n;j2

Xn

m¼1

mm;c1
‘m;n;j

 !2
0
@

1
A

þn22
Xn

m¼1

tn2m;c2
‘m;n;j2

Xn

m¼1

mn2m;c2
‘m;n;j

 !2
0

@

1

A

þ2n22
Xn

m¼1

mm;c1
mn2m;c2

‘m;n;j2
Xn

m¼1

mm;c1
‘m;n;j

 !
Xn

m¼1

mn2m;c2
‘m;n;j

 ! !

where c1¼u10=ðu10þu01Þ and c2¼u11=ðu11þu00Þ.

Now that the true target distribution u is not identifiable, one needs to stipulate a

particular element in the uncertainty space ~u [ Q, in order to evaluate the expectations

and variances above. Various fusion distributions described in Section 3 can be used. As it

will be illustrated in Section 4, the choice seems to matter little to the results. In other

words, the identification uncertainty of the sampling uncertainty is usually small compared

to the sampling uncertainty itself.

3. Fusion Techniques

Data fusion techniques depend not only on whether auxiliary data are available, but also

the nature of the auxiliary data that are available. Note will be given whether a technique

requires proxy variables or not. To focus on the identification that results from the

underlying assumptions, the techniques will be described in terms of the relevant

theoretical distributions. It is understood that some of these may be known while some

may require estimation in a particular application.

3.1. Conditional Independence Assumption

Denote by {ðX; Y1Þ; ðX; Y2Þ} the setup where each target variable is separately observed

with the auxiliary ones. The conditional independence assumption (CIA) is given by

~l
k

ij ¼ lk
i l

k
j ð10Þ
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The corresponding fusion distribution can be given in several expressions:

~uij ¼ lk
i l

k
j fk ¼ lk

i fjk ¼ lk
j fik ¼ fikfjk=fk

A schematic denotation of data fusion by the CIA is Y1

‘
Y2jX. The auxiliary data may

or may not include proxy variables. However, the possibility of including a good

proxy variable for at least one of the variables can be beneficial (Rässler 2002; D’Orazio

et al. 2006b). The independence assumption (IA), that is, Y1

‘
Y2 or ~uij ¼ fifj, can be

considered as a special case of the CIA in the absence of auxiliary information.

To obtain categorical fusion data, some variant of the hot-deck imputation can be used

(see e.g., Singh et al. 1993). Constraints of hot-deck imputation may easily be imposed

when generating synthetic fusion data. For instance, starting from the dataset

{ðxs; y1sÞ; s ¼ 1; : : : ; n}, synthetic ~y2s can be generated randomly for each s ¼ 1;

: : : ; n from the conditional distribution lk
j given xs ¼ k. However, one may wish to

constrain the synthetic dataset {ðxs; y1s; ~y2sÞ; s ¼ 1; : : : ; n} such that ~njk ¼Pn
s¼1Ixs¼kI ~y2s¼j ¼ nkl

k
j ¼ nkfjk=fk for all ð j; kÞ and nk ¼

Pn
s¼1Ixs¼k

� �
. This can be

accomplished as follows: first, construct a vector of nk components where ~njk of them have

value j, for j ¼ 1; : : : ; J; then, assign any permutation of this vector to the units that have

xs ¼ k. The difference between the unconstrained and constrained hot decks here is an

example of the matching noise (see e.g., Conti et al. 2008 and Marella et al. 2008 for

discussions).

It is convenient to merge separate datasets under the CIA. Okner (1972) is often cited as

an early reference. But the CIA is understandably avoided in ecological inference, where it

would have defeated its own purpose. It is interesting to note that the same assumption

may be popular for generating fusion data, but disreputable when it comes to the

construction of fusion distribution.

3.2. Middle of Bounds

To start with, consider the situation with no auxiliary data. The difference between the true

uij and any admissible ~uij, or the ‘loss’ of ~uij as measured by j ~uij 2 uijj, has an upperbound

Lij ¼ max ð ~uij 2 Lij; Uij 2 ~uijÞ ¼ Dij=2þ j ~uij 2 mijj

where mij ¼ ðLij þ UijÞ=2 and Dij ¼ Uij 2 Lij. In other words, Lij is the upper bound of the

identification error of ~uij. It attains the minimum value Dij=2 at

~uij ¼ mij ¼ ðLij þ UijÞ=2 ð11Þ

which is the middle-of-bounds (MoB) value that minimizes the maximum potential loss.

Note that D’Orazio et al. (2006a, 2006b) define the ‘middle-of-bounds’ as the expectation

of uij with respect to a Bayesian distribution of the parameter. Theirs differs

from the definition (11) and its minimax interpretation, except in the special case of

binary Y1 and Y2.

The MoB fusion distribution ~u should be well defined and preserve all the margins of Y1

and Y2. Take first the binary base, and let Y1 and Y2 take values ði; i cÞ and ð j; j cÞ,

respectively. Then,
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2ðu~ij þ u~ij
c Þ ¼ ðUij þ LijÞ þ ðUij c þ Lij c Þ

¼ uij þ min ðuij c ; ui cjÞ þ max ðuij 2 ui cj c ; 0Þ

þuij c þ min ðuij; ui cj c Þ þ max ðuij c 2 ui cj; 0Þ ¼ 2fi

since min ða; bÞ þ max ða 2 b; 0Þ ; a for any a and b. An MoB fusion distribution in the

nonbinary case can be constructed recursively, by repeatedly referring to the basic binary

case and the subtable bounds (1). Example 1 below suffices to illustrate the idea.

Example 1. Consider the target 3 £ 3 table to the left in Table 1. The marginal fi and fj

are as given, as well as the MoB values directly derived from them. Clearly, since these do

not sum to the total measure uR ¼ 1, they do not yield a well-defined fusion distribution.

However, starting from any of them, which is by definition an admissible value of the

corresponding ~uij, one can construct the corresponding MoB fusion distribution rooted in

the chosen cell. The choice of cell (1,1) is illustrated here. The initial ~u11 ¼ 1=8 partitions

the remaining MoB ~uijs into three groups:

1. Cell (1,2) and (1,3). The implied row margin is fRi ¼ fi 2 ~ui1 ¼ 3=8 for i ¼ 1. The

column margins are fRj ¼ fj ¼ 1=8 for j ¼ 2 and 5=8 for j ¼ 3. The relevant

subtable is given by deleting the initial first column since, whatever the values

ð ~u21; ~u31Þ, they have no effect on ð ~u12; ~u13Þ given fRi and fRj. Thus the total measure

of the relevant subtable is uR ¼ 1 2 1=4 ¼ 3=4. The MoB ð ~u12; ~u13Þ ¼ ð1=16; 5=16Þ

follow from the subtable bounds (1).

2. Similarly for cell (2,1) and (3,1). The implied column and row margins are as given.

The relevant subtable is given by deleting the initial first row, yield the

corresponding subtable total measure uR ¼ 1 2 1=2 ¼ 1=2. The MoB ð ~u21; ~u31Þ

follow from (1).

3. The remaining cells on deleting the initial row and column occupied by the root cell

(1,1). The implied row margins are fRi ¼ fi 2 ui1 and fRj ¼ fj 2 u1j. The implied

subtable total measure is uR ¼ 1 2
P

j
~u1j 2

P
i
~ui1 þ ~u11, which is 3=8 in this case.

Clearly, the initial problem is thus reduced to the smaller, remaining 2 £ 2 table,

which can be solved recursively.

Table 1. Illustration of MoB fusion distribution rooted in cell (1,1).
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The resulting MoB distribution is well defined and preserves all the margins of

Y1 and Y2. B

In the setting {ðX; Y1Þ; ðX; Y2Þ}, the conditional binary MoB fusion distribution is

given by

~l
k

ij ¼ mk
ij ¼

1

2
max lk

i þ lk
j 2 1; 0

� �
þ min lk

i ; l
k
j

� �� �
ð12Þ

such that ~uij ¼ fk
~l
k

ij, denoted by mijjX. The conditional nonbinary MoB fusion distribution

can be constructed recursively as described above, separately for each X ¼ k. Again, the

auxiliary data may or may not include proxy variables, although the plausibility of the

MoB distribution can be quite different with or without the latter.

The use of binary MoB fusion distribution has been considered, for example, by

Chambers and Steel (2001) in the context of ecological inference, but rarely in statistical

matching. The discussion above shows that the MoB fusion distribution is more

complicated to handle than CIA when merging data files containing nonbinary and/or

multiple target variables.

3.3. Structure-Preserving Estimation

Consider the setting {ðX 0; Y1Þ; ðX
0; Y2Þ}, and suppose now the auxiliary data are

X 0 ¼ ðX; Z1Þ, where Z1 is a proxy variable for Y1 and X contains the rest of the nonproxy

variables. Data fusion is yielded by turning Z1 into ~Y1, under certain distributional

constraints derived from the knowledge or observations available. Denote by fijk the joint

distribution of ðY1; Y2;XÞ, and by fhjk that of ðZ1; Y2;XÞ where the proxy Z1 is indexed by

h, and by ~fijk the fusion distribution ð ~Y1; Y2;XÞ where ~Y1 has the same index as Y1 but a

distinction is made between f and ~f.

Structure-preserving estimation (SPREE) operates by raking (or iterative proportional

fitting) of the initial table {fhjk} towards certain sufficient margins that are available.

To identify the constraints that may be imposed, one only needs to inspect, in a

‘descending’ order, the log-linear representation of the fusion distribution, that is,

log ~fijk ¼ ~a0 þ ~ai þ ~aj þ ~ak þ ~aij þ ~aik þ ~ajk þ ~aijk

Take first ~aijk, which corresponds to the sufficient margin ~fijk. Since fijk is unavailable, no

constraint can be imposed on ~aijk. Next, take ~ajk, for which fjk can be derived from

{ðX; Z1; Y2Þ} and imposed through raking. The case similar for ~aik, where fik can be

derived from {ðX; Z1; Y1Þ}, but not ~aij, which requires the knowledge of fij. There is no

need to go through the lower-order terms as these will be fixed through the constraints

already included: {fik} and {fjk}. Note that one needs to ensure that these two

distributions are consistent with each other if they are estimated from separate data

sources. The fusion distribution by SPREE can be characterized by the proxy interactions,

derived from ðZ1;Y2;XÞ, which are preserved by raking

ð ~aij; ~aijkÞ ¼ ðahj;ahjkÞ and ~l
jk

i ¼
~fijk=fjk ð13Þ

A schematic representation of SPREE (13) is ðZ1; Y2;XÞ! ð ~Y1; Y2;XÞjðY2;XÞ&ðY1;XÞ.
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Singh et al. (1993) consider a similar approach of exploring proxy data through log-

linear constraints in the setting of merging three data files. The term SPREE, however, is

taken directly from the small-area estimation literature that dates further back (e.g., Purcell

and Kish 1980).

Two other generic settings for SPREE are worth noting. First, consider

{ðX 0; Y1Þ; ðX
0; Y2Þ} where X 0 ¼ ðX; Z1; Z2Þ, that is, proxy variables are available for both

Y1 and Y2. The SPREE can either turn ðZ1; Z2;X; Y2Þ into ð ~Y1; Z2;X; Y2Þ, or ðZ1; Z2;X; Y1Þ

into ðZ1; ~Y2;X; Y1Þ. Afterwards, the ‘redundant’ proxy variable can be integrated out to

obtain the fusion distribution ~fijk, that is, Z2 out of the distribution of ð ~Y1; Z2;X; Y2Þ or Z1

out of the distribution of ðZ1; ~Y2;X; Y1Þ. For instance, the SPREE turns Z2 (indexed by g)

into ~Y2 by raking of {fhigk} towards {fhik} and {fhjk}, that is,

ðZ1; Z2;X; Y1Þ! ðZ1; ~Y2;X; Y1ÞjðZ1; Y1;XÞ&ðZ1; Y2;XÞ, which is characterized by

ð ~ahij; ~aijk; ~ahijkÞ ¼ ðahig;ahgk;ahigkÞ and ~l
hik

j ¼
~fhijk=fhjk ð14Þ

In the second case, consider {Y1; Y2; ðX; Z1; Z2Þ}, where there are no joint observations of

the target and auxiliary variables of any kind, but there do exist joint proxy variables

among the auxiliaries. The SPREE remains operative by raking of {fhgk} towards {fi},

{fj} and {fk}, that is, ðZ1; Z2;XÞ! ð ~Y1; ~Y2;XÞjY1&Y2&X, under which

ð ~aij; ~aik; ~ajk; ~aijkÞ ¼ ðahg;ahk;agk;ahgkÞ ð15Þ

It is instructive to note that neither the CIA (10) nor the MoB (12) is able to utilize the

auxiliary data ðX; Z1; Z2Þ in this setting.

3.4. Distribution Calibration

To start with, observe the setting {Y1; Z1}, where the target Y1 and proxy Z1 are separately

available. To turn Z1 into ~Y1 that has the same distribution as Y1, one only needs to identify

an H £ H matrix j ¼ {jh
i ; i; h ¼ 1; : : : ;H}, where 1ijh

i ¼ 1, such that

~fi ¼ jh
i fh ¼ fi

Morever, being a gross-flow matrix from Z1 to ~Y1, j tells one how to generate a set of

values { ~Y1s; s ¼ 1; : : : ; n} from the initial proxy values {z1s; s ¼ 1; : : : ; n} by

constrained hot deck. Subjected to rounding, TrðnjÞ initial proxy values will then remain

the same, where n is the diagonal matrix of ðnfhÞh¼1; : : : ;H , while the rest n 2 TrðnjÞ will

be changed. By contrast, with d ¼ {dh
i } where dh

i ¼ 1 if i ¼ h and 0 otherwise, no proxy

values will be changed at all. This suggests as a well defined approach to obtain some

minimum-change
~
j by solving the following optimization problem:

j
min Dðj; dÞ subject to fi ¼ jh

i fh and 1ijh
i ¼ 1 and jh

i $ 0 ð16Þ

where Dðj; dÞ is the distance function of choice. For instance, to minimize the number of

changes of the initial proxy values, one can put D ¼ TrðndÞ2 TrðnjÞ ¼ n 2 TrðnjÞ. Or, a

squared Euclidean distance function between j and d is given by D ¼
P

i;hðj
h
i 2 dh

i Þ
2.

Provided additional nonproxy auxiliary data, distribution calibration (DC)

defined by (16) can be applied conditionally. Suppose the setting {ðX; Y1Þ; ðX; Z1Þ}.
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Conditional distribution calibration (CDC) from Z1 to ~Y1 for each X ¼ k yields
~jk ¼ { ~j

hk

i ; i; h ¼ 1; : : : ;H}, such that

~l
k

i ¼ lk
h
~
j

hk

i ¼ lk
i and ~fi ¼ fk

~l
k

i ¼ fkl
k
i ¼ fi and

~fik ¼ fkðfik=fkÞ ¼ fik

Note that a different distribution ~fik of ð ~Y1;XÞ would be generated by unconditional DC,

that is, fi ¼ ~j
h

i fh, since ~Y1 is then independent of X given Z1, such that
~fik ¼ fhk

~j
h

i – fik.

Given the relevant proxy variables, DC and CDC can be used to generate a fusion

distribution, whether or not there are joint observations of the target and proxy variables.

Consider again the setting {Y1; Y2; ðX; Z1; Z2Þ}. A scheme of DC can be as follows:

Z1
DC
! ~Y1 ) ~fi ¼ fhj

h
i ¼ fi

Z2
DC
! ~Y2 ) ~fj ¼ fgj

g
j ¼ fj

9
=

;)
~fijk ¼ 1gh ~f

Z2Z1
~Y1
~Y2X

ghijk ¼ l
gh
k fghj

h
i j

g
j

where the last expression follows since ~Y1 is independent of the other variables given

Z1 and similarly for ~Y2 given Z2. This is a different fusion distribution than that by

SPREE (15).

It is worth noting that DC and CDC can be useful for generating fusion data prescribed

by another fusion technique. Take the SPREE (15) under the setting {Y1; Y2; ðX;Z1; Z2Þ}.

It is not immediately clear how to generate the fusion data it implies. However, let ~
l

k

p be

the fusion conditional probability of p ¼ ði; jÞ given X ¼ k. Let q ¼ h; g
� �

index Z1; Z2

� �

in accordance. Then, CDC satisfying ~l
k

p ¼ lk
qj

qk
p yields the gross-flowmatrix that can turn

ðZ1; Z2Þ into the SPREE ð ~Y1; ~Y2Þ with minimum changes given X ¼ k. As another

example, consider CDC under the setting {ðX; Y1Þ; ðX; Y2Þ; ðX; Z1; Z2Þ}:

that is, exactly the same fusion distribution as that of the CIA in the setting

{ðX; Y1Þ; ðX; Y2Þ}. But CDC can yield different fusion data. For instance, suppose

{ðX; Y1Þ; ðX; Y2Þ} represent two separate sample datasets, while {ðX; Z1; Z2Þ} is a

population register dataset. On the one hand, a population fusion dataset can be generated

by CDC; on the other hand, a synthetic CIA population fusion dataset can be obtained by

randomly and separately generating ~Y1 and ~Y2 conditional on X in the population. Both

datasets will have the same fusion distribution, but the CDC data will resemble the real

population much more than the CIA data.

4. Two Cases

Two real-life datasets involving education, election turnout, and labor force status

variables are used to illustrate the approach to uncertainty analysis and the fusion
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techniques described above, and to empirically evaluate the relative efficiency of the

available proxy data.

4.1. Education and Election Turnout: Binary Data

Both the highest level of education and election turnout are collected in the Norwegian

Election Survey 2005, to be treated as Y1 and Y2, respectively. A level of education can

also be compiled based on the register information available at Statistics Norway, denoted

as Z1, while the true head count can be obtained from the local electoral offices, denoted

by Z2. Both Z1 and Z2 can be linked to the survey at the individual level, and the observed

four-way table for the respondents in Election Survey 2005 provides all the data for this

illustration. For ease of exposition, only two categories “Low” and “High” are coded for

the education variable.

Various settings of the data are given in Table 2. All the cross counts of Y1 and Y2 are

given in parentheses and assumed to be unobserved. In the top block, the overall

unconditional counts of ðY1; Y2Þ are given to the left, and those of ðZ1;Z2Þ to the right.

Together they provide the setting {Y1; Y2; ðZ1; Z2Þ}. The next block gives the setting

{ðZ1; Y1Þ; ðZ1; Y2Þ}, where Z1 is the only auxiliary data. The case is similar for

{ðZ2; Y1Þ; ðZ2; Y2Þ} in the third block. Lastly, the bottom block provides the setting

{ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ}.

Table 3 illustrates the results of uncertainty analysis for P½ðY1; Y2Þ ¼ ðLow;NoÞ�. The

first row corresponds to the setting {Y1; Y2; ðZ1; Z2Þ}. The estimated lower and upper

bounds are ð0:0; 0:104Þ. The estimated width of the uncertainty space at this point is 0:104.

Since Q measures the same everywhere in the case of binary data, as previously noted

for (2), 0.104 is also the estimated overall measure of the uncertainty space. The relative

efficiency is unity by definition. The associated sampling uncertainty is evaluated as

described in Subsection 2.3, for which it is necessary to stipulate a joint distribution. Three

alternatives are illustrated in Table 3. The first one is the true sample distribution of

ðY1; Y2Þ given in Table 2; the second one is the CIA fusion distribution; and the last one is

the MoB fusion distribution. It is seen that the estimated standard errors (SEs) are virtually

the same using any of the three alternatives.

In a similar manner, the other rows of Table 3 provide the results under different settings

of jointly available auxiliary data. It is seen that with only Z1 available, the identification

uncertainty is reduced by 17% (that is, RE ¼ 0.83), whereas the reduction is 62% (that is,

RE ¼ 0.38) with Z2, so that it is much more informative than Z1. With both proxy

variables available, the estimated uncertainty bounds are ð0:074; 0:095Þ, strictly narrower

than the initial ð0:0; 0:104Þ on both sides. The width of the interval is 0:021, which is about

one fifth of that without ðZ1; Z2Þ. Taking into account the sampling uncertainty, an

approximate 95% confidence interval of the width of the identification uncertainty interval

is ð0:014; 0:028Þ. In comparison, had the joint sample of ðY1; Y2Þ been available, the width

of the approximate 95% confidence interval of P½ðY1;Y2Þ ¼ ðLow;NoÞ� would have

been 0:027. Thus, in this respect, there is at least as much information about P½ðY1; Y2Þ ¼

ðLow;NoÞ� in {ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ} as that in {ðY1; Y2Þ}.

Table 4 illustrates a number of (pseudo) estimates of P½ðY1; Y2Þ ¼ ðLow;NoÞ� together

with their respective identification assumptions. The first one (from the top) is based

on the true data of ðY1; Y2Þ. The next five are derived under the setting
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{ðZ1; Z2; Y1Þ; ðZ1;Z2; Y2Þ}. Note the difference between the two CIAs. The two situations

of single proxy variable follow next. In the last setting where ðZ1;Z2Þ are not jointly

observed with any of the target variables, only SPREE and DC can make use of them.

A few general impressions can be noted.

. All the different SPREE estimates appear reasonable here; the best ones (that is, 0.0877

and 0.0876) yield an estimated cell count 153 after rounding, which is almost identical

to the true observation 154. Adjusting Z1 towards Y1 gives better results than adjusting

Z2 towards Y2. But at this stage of knowledge one is unable to deduce this from the

higher association between Z2 and Y2 compared to that between Z1 and Y1.

Table 2. Education and election turnout data.

Y2 Z2

Y1 No Yes Z1 No Yes

Low (154) (885) 1039 Low 210 920 1130
High (28) (676) 704 High 44 569 613

182 1561 254 1489

Z1 ¼ Low Z1 ¼ High
Y2 Y2

Y1 No Yes Y1 No Yes

Low (149) (854) 1003 Low (5) (31) 36
High (9) (118) 127 High (19) (558) 577

158 972 24 589

Z2 ¼ No Z2 ¼ Yes
Y2 Y2

Y1 No Yes Y1 No Yes

Low (140) (61) 201 Low (14) (824) 838
High (26) (27) 53 High (2) (649) 651

166 88 16 1473

Z1;Z2

� �
¼ (Low, No) Z1; Z2

� �
¼ (Low, Yes)

Y2 Y2

Y1 No Yes Y1 No Yes

Low (136) (59) 195 Low (13) (795) 808
High (8) (7) 15 High (1) (111) 112

144 66 14 906

Z1; Z2

� �
¼ (High, No) ðZ1; Z2Þ ¼ (High, Yes)
Y2 Y2

Y1 No Yes Y1 No Yes

Low (4) (2) 6 Low (1) (29) 30
High (18) (20) 38 High (1) (538) 539

22 22 2 567
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. The CIA results are worse than SPREE in every setting for this dataset. The

advantage of SPREE is particularly useful in cases without any joint observations

between the proxy and target variables, where it makes much better use of the

auxiliary information.

. The MoB estimates are quite reasonable as long as Z2 is available, and Z1 appears to

bring little improvement either on its own or in addition to Z2. The effect of the proxy

data is evident if 0.0846 given ðZ1; Z2Þ is compared to 0.0521 in the absence of

ðZ1; Z2Þ.

. The Euclidean distance is used to generate the DC. The result is worse than the

SPREE, but better than CIA and MOB, which are unable to make use of the proxy

variables in this setting.

Table 3. Estimated lower and upper bounds for P½ðY 1;Y 2Þ ¼ ðLow;NoÞ� and associated standard error (SE)

using true data, CIA or MoB fusion distribution as basis of evaluation, estimated width of uncertainty space and

true SE in parentheses, relative efficiency (RE) of proxy data.

Joint
proxy

Bound
(Lower,

1,000 £ SE of Bound
(Lower, Upper)

variable Upper) True CIA MoB Width RE

- (0.000, 0.104) (0.0, 7.3) (0.0, 7.3) (0.0, 7.3) 0.104 (0.0073) 1
Z1 (0.018, 0.104) (9.1, 7.2) (8.9, 7.2) (7.1, 7.2) 0.086 (0.0065) 0.83
Z2 (0.065, 0.104) (6.2, 4.9) (5.7, 4.9) (6.2, 4.9) 0.039 (0.0044) 0.38
ðZ1; Z2Þ (0.074, 0.095) (4.6, 4.7) (4.4, 4.7) (4.6, 4.7) 0.021 (0.0034) 0.20

Table 4. Illustrated (pseudo) estimates of P ðY 1;Y 2Þ ¼ ðLow;NoÞ
� 	

.

Setting Estimate Identification assumptions

fðZ1; Z2; Y1; Y2Þg 0.0884 True sample

0.0856 CIA: Y1

‘
Y2jðZ1; Z2Þ

fðZ1; Z2; Y1Þ; 0.0761 CIA: Y1

‘
ðY2; Z2ÞjZ1 and Y2

‘
ðY1; Z1ÞjZ2

ðZ1; Z2; Y2Þg 0.0846 MoB: mijjðZ1; Z2Þ
0.0876 SPREE: ðZ1; Y2; Z2Þ! ð ~Y1; Y2; Z2ÞjðY1; Z2Þ&ðY2; Z2Þ
0.0863 SPREE: ðZ1; Y1; Z2Þ! ðZ1; Y1; ~Y2ÞjðY1; Z1Þ&ðY2; Z1Þ

0.0813 CIA: Y1

‘
Y2jZ1

fðZ1; Y1Þ; ðZ1; Y2Þg 0.0592 MoB: mijjZ1

0.0877 SPREE: ðZ1; Y2Þ! ð ~Y1; Y2ÞjY1&Y2

0.0805 CIA: Y1

‘
Y2jZ2

fðZ2; Y1Þ; ðZ2; Y2Þg 0.0845 MoB: mijjZ2

0.0833 SPREE: ðY1; Z2Þ! ðY1; ~Y2ÞjY1&Y2

0.0622 IA: Y1

‘
Y2

fY1; Y2; ðZ1; Z2Þg 0.0521 MoB: mij

0.0833 SPREE: ðZ1; Z2Þ! ð ~Y1; ~Y2ÞjY1&Y2

0.0794 DC: Z1
DC
! ~Y1 and Z2

DC
! ~Y2
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Finally, it may be reiterated that the choice of a particular fusion distribution is empirically

unverifiable within the identification uncertainty bounds. Indeed, under each of the four

settings considered in Table 4, the same uncertainty analysis, as given in Table 3 for the

corresponding datasetting, should be reported for all the different pseudo estimates.

4.2. Labor Force Gross Flows

Labor force gross flows are of concern for both policy makers and researchers. Let the

labor force status be classified as “employed (E)”, “unemployed (U)” and “not in the labor

force (N)” for each eligible person in some given age range. Let Y1 be the status at time

point t1 and Y2 that at t2, then gross flow i; j
� �

refers here to the probability

uij ¼ P½Y1 ¼ i; Y2 ¼ j�. Together these form the 3 £ 3 matrix, where the row margins

fi ¼
P

j uij, for i ¼ 1; 2; 3, form the marginal distribution of Y1 and the column margins

fj ¼
P

i uij, for j ¼ 1; 2; 3, that of Y2. Further classification by region, age, and so on may

be of practical interest, but will not be considered here.

Countries that conduct the LFS typically apply some form of rotating panel design, so

that joint observation (or panel data) of Y1 and Y2 are available for various combinations

of t1 and t2. However, concerns for response burden and cost of following the same person

over time will place a practical limit on the length of LFS participation, so that joint

observations are not available if the difference between t1 and t2 is beyond that limit.

For instance, in the Norwegian LFS (NLFS), each sample person participates in eight

successive quarters, such that panel data are available for any two time points within a

two-year span but not otherwise.

Two questions are considered below. Subsection 4.2.1 studies the efficiency of proxy

data for labor force gross flows. To this end, proxy labor force status, denoted by Z1 and Z2

respectively, are compiled based on the various administrative data available to Statistics

Norway (SN) and linked to the NLFS yearly panel between 2011 and 2012. The sources

include employer/employee and self-employer registration, administration of job seekers,

related health and welfare, payroll tax records, military services, and so on. Essentially

the same proxy labour force status is used for the register-based census 2011. At the same

time, it is acknowledged that at the individual level the proxy values will not always

coincide with those that could be collected in the NLFS.

The second question to be considered is data fusion of ðY1; Y2Þ, for which no joint

observations are available. In particular, there is then an issue of how to make use of the

data that are available for the time period between t1 and t2. For instance, although one

does not have panel data between 2011 and 2013, one does have data between 2011 and

2012 and between 2012 and 2013, respectively. Various fusion methods can be used. For

instance, under the CIA between ðY1; Z1Þ in 2011 and ðY2;Z2Þ in 2013 conditional on

ðYt; ZtÞ in 2012, it becomes possible both to generate the fusion distribution of ðY1; Y2Þ and

to assess the associated sampling uncertainty. However, this would not be appropriate if

the identification uncertainty surrounding the CIA is ignored (Subsection 4.2.2).

4.2.1. Relative Efficiency of Proxy Labor Force Status

The data between 2011 and 2012 are given in Table 5. All joint observations of ðY1; Y2Þ are

given in parentheses and assumed to be unobservable. The proxy register variables
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ðZ1; Z2Þ are jointly available with either of the target status, that is, the generic setting

{ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ}.

The target NLFS sample gross flows of ðY1; Y2Þ and the proxy flows of ðZ1;Z2Þ are

given in Table 6, together with four fusion distributions by the CIA, MoB and two SPREE

methods, respectively. Comparisons between the target and proxy joint distribution show

that the register flow is higher for the stable employed persons (E, E), but lower for the

stable unemployed persons (U, U) and ‘inactive’ ones (N, N). The largest relative

deviations among the off-diagonal flows occur for (U, E) and (N, U). The causes for these

differences are complex. For instance, persons who are on the way back into the labor

force from N may be classified as U or E if interviewed in the NLFS, but they may well

remain as N in the register sources until they first become E (possibly lagging behind the

NLFS), which can be a cause for register underestimation of (N, U).

Focusing on the results of data fusion, it may be noted that all the techniques adjust the

proxy flows (E, E) and (N, N) downwards. The adjustment of the proxy flow (U, U) differs

across the method. In particular, the off-diagonal proxy flows are all adjusted upwards, and

the flows (U, E) and (N, U) are no longer the ones that relatively deviate most from the

target flows. Overall, the CIA results are worse than the others, especially for the diagonal

flows, whereas the MoB results may seem slightly better than the two SPREE. Indeed,

compared to the average of the two SPREE results, the MoB fusion distribution is closer to

the target distribution for five out of nine flows.

Still, regardless of how plausible the fusion distributions may seem compared to the

direct register-based proxy distribution, they can only be treated as potentially useful

pseudo estimates. Proper inference is only facilitated by uncertainty analysis. Table 7

provides the estimated identification uncertainty bounds and the associated SE with and

without the proxy variables as auxiliary data. The SEs are evaluated here on the basis of

the true sample distribution, but any of the fusion distributions would have yielded

virtually the same results. Again, the identification uncertainty matters little to the

assessment of the sampling uncertainty.

It can be seen that the sampling uncertainty is relatively small compared to the

identification uncertainty, especially in terms of the width of the identification uncertainty

interval. The proxy variables are most effective for reducing the identification uncertainty

of the ‘corner’ flows (E, E), (E, N), (N, E) and (N, N). As these four measure over 95% of

the outcome space, the overall measure of the uncertainty space is greatly reduced in the

presence of the proxy variables. Depending on the choice of wij in the calculation of

D̂ ¼ wijD̂ij and �D
^
¼ wij �D

^
ij, one obtains D̂ ¼ 0:266; 0:263 or 0.269 when wij is set to the

true uij, the CIA or MoB ~uij, and �D
^
¼ 0:069; 0:069 or 0.070 in correspondence. The overall

relative efficiency of the proxy variables is 0.26 by all means.

4.2.2. Making Use of Available Data in Data Fusion

Where observations are unavailable for gross flows ðY1;Y2Þ over t1 and t2, various fusion

distributions can be generated based on the intermediate observable target and proxy data.

For instance, the gross flows between 2011 and 2013 can be derived from the observable

flows between 2011 and 2012 and that between 2012 and 2013, under assumption that the

labor force status in 2011 is independent of that in 2013 conditional on the status in 2012.
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However, analysis of the register-based status overtime suggests that such a CIA is

unattainable. Moreover, even if the CIA had seemed reasonable for the proxy gross flows,

it would only have yielded plausible pseudo estimates of the target gross flows, due to the

fact that identification is not verifiable empirically but is only achieved on the strength of

stipulation.

To illustrate data fusion under alternative settings in this situation, a synthetic dataset

has been constructed as follows. Denote by ðY1; Z1Þ ¼ ði; hÞ the data in 2011 and by

ðYt; ZtÞ ¼ ðk; l Þ the data in 2012, with the joint sample distribution fhikl. Assume the

CIA and the same conditional transition probabilities from 2012 to 2013 as from 2011 to

2012, that is, put llk
jg ¼ flkjg=flk equal to the corresponding lhi

kl ¼ fhikl=fhi, for j; g ¼ 0; 1.

The synthetic joint distribution over 2011, 2012, and 2013 is then given by

fhikljg ¼ fhiklflkjg=flk, from which the synthetic joint distribution of ðZ1; Y1; Y2; Z2Þ can

be obtained by integrating out ðYt; ZtÞ, that is, fhijg ¼ 1klfhikljg, and so on.

Consider three settings: (i) ignore ðYt; ZtÞ and assume the setting

{ðZ1; Z2; Y1Þ; ðZ1; Z2; Y2Þ}, that is, with joint auxiliary data ðZ1; Z2Þ, (ii) assume the

setting {ðZ1; Z2; Zt; Yt; Y1Þ; ðZ1; Z2; Zt; Yt; Y2Þ}, that is, with joint auxiliary data

ðZ1; Z2; Zt; YtÞ, and (iii) ignore ðZ1; Z2; ZtÞ and assume the setting {ðYt; Y1Þ; ðYt; Y2Þ},

where Yt may be considered a proxy for Y1 as well as for Y2.

The respective theoretical uncertainty bounds and width of the nine gross flows between

Y1 and Y2 are given in Table 8. It is clear that using all the available joint auxiliary data,

that is ðZ1; Z2; Zt; YtÞ here, provides the narrowest uncertainty bounds. There is more

Table 6. Target, proxy and fusion labor force gross flows by CIA, MoB and SPREE

Target gross flows Proxy gross flows
Y2 Y2

Y1 E U N Y1 E U N

E 0.6736 0.0057 0.0402 E 0.6846 0.0049 0.0410
U 0.0083 0.0030 0.0052 U 0.0030 0.0020 0.0037
N 0.0400 0.0065 0.2176 N 0.0480 0.0020 0.2107

CIA: Y1

‘
Y2jðZ1; Z2Þ MoB: mijjðZ1; Z2Þ

Y2 Y2

Y1 E U N Y1 E U N

E 0.6460 0.0059 0.0675 E 0.6628 0.0075 0.0501
U 0.0078 0.0013 0.0074 U 0.0078 0.0058 0.0076
N 0.0681 0.0080 0.1880 N 0.0510 0.0068 0.2058

SPREE: Z1 ! ~Y1jðY1; Z2Þ&ðY2; Z2Þ SPREE: Z2 ! ~Y2jðY1; Z1Þ&ðY2; Z1Þ
Y2 Y2

Y1 E U N Y1 E U N

E 0.6530 0.0053 0.0612 E 0.6567 0.0084 0.0543
U 0.0081 0.0022 0.0062 U 0.0077 0.0022 0.0065
N 0.0609 0.0077 0.1956 N 0.0575 0.0045 0.2022
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information about the target distribution of ðY1; Y2Þ in the register proxy ðZ1; Z2Þ than in

the survey proxy Yt, as witnessed by the widths of the uncertainty bounds. In other words,

there is more information in the concurrent proxy variables that are of a different definition

than in the proxy variable that has the same definition but is from a different reference time

point. Although the actual figures in Table 3 are obtained on a synthetic dataset, the basic

results appear to reinforce the message that in data fusion one should strive to make use of

all available auxiliary data.

5. Summary

The usefulness of proxy variables for categorical data fusion is considered above.

A measure of the relative efficiency with and without proxy (or other auxiliary) variables

is proposed. In practice, the uncertainty analysis must also take into account the sampling

uncertainty in cases where the identification uncertainty bounds are unknown and need to

be estimated. A flexible technique of distribution calibration is introduced for making use

of proxy variables, which can be useful for constructing the fusion distribution as well as

the fusion dataset. Empirical results demonstrate that proxy variables can play two

beneficial roles at the same time: not only do they provide a general means for reducing the

uncertainty associated with data fusion, they also widen the scope of plausible pseudo

estimates of the target joint distribution.
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