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Determining sample sizes in multistage samples requires variance components for each stage
of selection. The relative sizes of the variance components in a cluster sample are dramatically
affected by how much the clusters vary in size, by the type of sample design, and by the form of
estimator used. Measures of the homogeneity of survey variables within clusters are related to
the variance components and affect the numbers of sample units that should be selected at each
stage to achieve the desired precision levels. Measures of homogeneity can be estimated using
standard software for random-effects models but the model-based intracluster correlations may
need to be transformed to be appropriate for use with the sample design. We illustrate these
points and implications for sample size calculation for two-stage sample designs using a
realistic population derived from household surveys and the decennial census in the U.S.
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1. Introduction

Samples from finite populations are often selected in two or more stages for reasons of cost

or operational necessity. For example, household samples in the U.S. may be selected

through geographic areas like counties or groups of counties at the first stage, smaller areas

like blocks at the second, and households at the last stage. Using multiple stages

concentrates the sample in a limited number of areas, which is important when data are

collected by personal interview at the respective households. In a survey of students,

permission to conduct a survey may have to be obtained from school districts. Selecting

districts first, then schools within sample districts, and finally a sample of students within a

certain grade level within the school is operationally convenient and economical. Another

example is a survey of employees in one or more business sectors, such as retail trade or

services. Selecting establishments and then employees within establishments is a natural

way of obtaining the sample.

Designing an efficient sample depends on estimating the contribution to the variance of

an estimator associated with each stage of sampling. This involves estimating variance

components for each stage that depend on the type of estimator and the types of units
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selected for the stage in question. This topic is covered in many standard texts on theoretical

and applied sampling (Cochran 1977; Lohr 2010; Särndal et al. 1992). In the textbooks,

formulae are available for the variance components for general sample designs; these

formulae are usually specialized and simplified to obtain versions that facilitate sample size

calculations. The relative sizes of the variance components are quite sensitive to how large

the sampling units are at the different stages, how much variation there is among the sizes of

the units, and the type of estimator used. Although this is implicit in the general variance-

component formulae, this sensitivity is given little emphasis in most texts but can have a

critical effect on calculated sample sizes and the achieved precision of estimators.

In certain applications, a survey designer has some control over the relative size of the

sampling units. For example, in a household survey, extremely large metropolitan areas in

the U.S., like New York or Chicago, are treated as strata and not as clusters of units. The

first-stage units within such strata are groups of blocks defined by the U.S. Census Bureau

for census taking and other survey data collections. Attempts are usually made to create

groups by combining individual blocks so that the groups have about the same total

population. In other applications, the survey designer has very little control over the units’

sizes. In a school or establishment survey, the number of students or employees in each

school or establishment is given. The survey must work with the existing sizes and

combining these clusters further would not be meaningful.

In this article, we illustrate the effect of varying cluster sizes on design effects and

measures of homogeneity within clusters for two-stage sampling. Section 2 discusses the

variance-component formulae for two-stage sampling when the first-stage units are

selected by either simple random sampling or probability proportional to size sampling.

The effects of variation in cluster size are illustrated using an artificial, but realistic,

population created using decennial census data from one county in the state of Maryland

(Section 3). In Section 4, we describe how variance components from random-effects

models can be used to calculate the measures of homogeneity needed for a two-stage

sample. We summarize our results in the last section.

2. Background: Two-Stage Sampling

In this section, we present some background material for two-stage sampling and

estimators of totals used for such designs. The units in the first stage of selection will be

called primary sampling units (PSUs) or clusters. Units within PSUs are called elements

and are the units for which data are collected. We use the following notation in the

subsequent formulae:

U ¼ universe of PSUs

M ¼ number of PSUs in the universe

Ui ¼ universe of elements in PSU i

Ni ¼ number of elements in the population for PSU i

N ¼
P

i[U Ni, the total number of elements in the population
�N ¼ N=M, the average number of elements per PSU

m ¼ number of sample PSUs

ni ¼ number of sample elements in PSU i
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s ¼ set of sample PSUs

si ¼ set of sample elements in PSU i

pi ¼ selection probability of PSU i

pkji ¼ selection probability of element k given PSU i was selected

yk ¼ value of a variable Y observed for element k

�yU ¼
P

i[U

P
k[Ui

yk=N, the mean per element in the population

�yUi ¼
P

k[Ui
yk=Ni, the mean per element in the population in PSU i

S2
U ¼

P
i[U

P
k[Ui
ðyk 2 �yUÞ

2=ðN 2 1Þ, the population variance of Y

ti ¼
P

k[Ui
yk, the universe total of Y in PSU i

tU ¼
P

i[U ti, the universe total

�tU ¼ tU=M, the average PSU total.

The p-estimator of a population total weights the value for element k inversely by its

selection probability, pk. Särndal et al. (1992, Result 4.3.1) give a formula for the variance

of the p-estimator for a very general two-stage sample design. However, the general

formula is not useful for designing samples because it involves joint selection probabilities

of units at each stage that do not explicitly involve sample sizes. In this section, we present

the variance formulae for different two-stage sample designs where the variance of the

estimated total is simple enough for use in sample size calculation. In the first, PSUs are

selected by simple random sampling; in the second, PSUs are selected with varying

probabilities. For both designs, we assume that elements within PSUs are selected by

simple random sampling. We follow the discussions of the p-estimator and probability

with replacement ( pwr) estimator of a total in Subsections 2.1 and 2.2 with the ratio

estimator of a total in Subsection 2.3.

2.1. Equal-Probability Sampling at Both Stages

Suppose the first stage is a simple random sample selected without replacement (srswor)

of m PSUs from a population of M PSUs, and the second stage is a sample of ni elements

selected by srswor from the population of Ni. As a shorthand, denote this design by srs/srs.

The selection probability of element k in PSU i is pk ¼ pipkji ¼ ðm=MÞðni=NiÞ.

The p-estimator of a population total is

t̂p ¼
M

m i[s

XNi

ni k[si

X
yk ¼

M

m

X

i[s

t̂i ð1Þ

where t̂i ¼ ðNi=niÞ
P

k[si
yk, the estimate of the total for PSU i with a simple random

sample. The design variance, that is, the variance computed with respect to repeated

sampling, of the p-estimator is

Vðt̂pÞ ¼
M 2

m

M 2 m

M
S2

U1 þ
M

m

X

i[U

N2
i

ni

Ni 2 ni

Ni

S2
U2i ð2Þ

where S2
U1 ¼

P
i[U
ðti2�tU Þ

2

M21
, and S2

U2i ¼

P
k[Ui
ð yk2�yUiÞ

2

Ni21
, the unit variance of Y among the

elements in PSU i.

The first component of (2), the “between” term, can also be written as a function of the

variance among means per element within the PSUs. However, expressing the between
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term as a function of PSU totals as shown above allows a more intuitive explanation to be

given for some subsequent results.

The relative variance (relvariance) of t̂p is its variance divided by the square of the

population total, Vðt̂pÞ=t2
U , and is especially useful for sample size calculation since the

relvariance is unaffected by the scale of y. If the same number of sample elements, ni ¼ �n,

is selected from each PSU, and the first-stage sampling fraction, m/M, and the second-

stage sampling fraction, �n=Ni, are both small, the relvariance can be written as

Vðt̂pÞ

t2
U

¼
B2

m
þ

W 2

m�n
ð3Þ

where B2 ¼ S2
U1=�t

2
U is the unit relvariance among PSU totals and

W 2 ¼ M 21
P

i[U

�
Ni
�N

�2 S2
U2i

�y2
U

. A common simplification used in Cochran (1977) and

Hansen et al. (1953a) is to further assume that all PSUs contain the same number of

elements, that is, Ni ; �N, so that W 2 ¼ M 21
P

i[U S2
U2i=�y

2
U . Roughly speaking, W 2 is an

average relvariance per PSU with the per-PSU relvariance expressed as S2
U2i=�y

2
U , that is,

with the overall mean in the denominator. Expression (3) can be rearranged to give

Vðt̂pÞ

t2
U

¼
~V

m�n
k½1þ dð�n 2 1Þ� ð4Þ

where ~V ¼ S2
U=�y

2
U , k ¼ ðB2 þW 2Þ= ~V, and d ¼ B2=ðB2 þW 2Þ, often referred to as a

measure of homogeneity. With single-stage srs sampling of clusters from a population in

which all clusters have the same size �N, d is an intraclass correlation (see Cochran 1977,

ch. 9; Lohr 2010 sec. 5.2.2) that can be computed as a type of Pearson correlation. With

two-stage sampling, however, d is not a correlation but still is related to the degree of

homogeneity of elements within clusters. Note that an fpc, 1 2 m�n=M �N, is sometimes

inserted into Expression (4) if the sampling fractions are not small, but this is an ad hoc

addition that does not follow directly from rewriting (3).

The formula found in most textbooks is Expression (4) with k ¼ 1, which comes from

first writing the population variance of y as

ðM �N 2 1ÞS2
U ¼

X

i[U

Ni

ti

Ni
2

tU

M �N

� �2

þ
X

i[U

ðNi 2 1ÞS2
U2i:

Then, with some algebra (see Hansen et al. 1953a, sec. 6.6; Hansen et al. 1953b, sec. 6.5),

it can be shown that when all clusters have the same size, �N, and both M and �N are large,

S2
U

�y2
U

¼
1 2 M 21

1 2 ðM �NÞ21
B2 þ

1 2 �N21

1 2 ðM �NÞ21
W 2 8 B2 þW 2 ð5Þ

that is, k ¼ 1. In that case, (4) reduces to the relvariance of the estimated total in srs, ~V=m�n,

times a design effect, 1þ d ð�n 2 1Þ. The design-effect concept has been extended to more

complex situations by Gabler et al. (1999), Lynn and Gabler (2005), and Park and Lee (2004).

The assumptions to obtain (5) that the number of population clusters and number of

population elements per cluster are large is often reasonable, but assuming that the clusters

all have the same size (Ni ¼ �N) may not be. Although this special case is emphasized in

texts like Kish (1965) and Lohr (2010), it can be misleading when clusters vary in size.
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An alternative design for the second stage is to select elements at a fixed rate r within

each cluster. The expected sample size in cluster i then is ni ¼ rNi. This design might be

preferred to srs/srs with a fixed-size sample at the second stage because all sample

elements will have the same weight, M=ðmrÞ. There are different ways of selecting such a

sample. Bernoulli sampling is one; systematic sampling from a randomly ordered list is

another. In the latter design, which we use here, the achieved sample size is either the

integer floor or ceiling of rNi. This type of systematic sample can reasonably be treated as

srswor when the list is randomly ordered. Substituting ni ¼ rNi in (2), dividing by t2
U , and

using the equivalent expressions for the population total, tU ¼ M�tU ¼ M �N�yU , gives the

approximate relvariance as
Vðt̂pÞ

t2
U

¼
B2

m
þ

~W2

m�n*
ð6Þ

where B2 is the same quantity as in (3), �n* ¼ r �N, and ~W2 ¼ M 21
P

i[U
Ni
�N

S2
U2i

�y2
U

. There is

some randomness in the achieved second-stage sample size when rNi is not an integer.

Note that �n* is an average cluster sample size in the sense that the average sample size over

all clusters in the universe is
P

i[U ni=M ¼ r �N. The corresponding value of the measure of

homogeneity is ~d ¼ B2=ðB2 þ ~W 2Þ. The relvariance in (6) can also be written as

Vðt̂pÞ

t2
U

¼
~V

m�n*
~k½1þ ~dð�n* 2 1Þ� ð7Þ

where ~k ¼ ðB2 þ ~W 2Þ= ~V. Note that (7) reduces to the usual textbook formula if ~k ¼ 1,

which requires that S2
U=�y

2
U 8 B2 þ ~W 2. Since the design with a fixed sampling rate at the

second stage may be more common in practice than one with a common �n when the design

is srs/srs, we concentrate on it in the numerical illustrations.

Expressions (4) or (7) are useful for sample size calculation since the number of sample

PSUs, m, sample elements per PSU, �n, or the within-PSU rate, r ¼ �n*= �N, are explicit in the

formula. Expressions like (4) and (7) often seem to be treated as if they apply regardless of

how the samples of PSUs and elements within PSUs are selected. If, for example, a

probability proportional to size ( pps) sample of PSUs is selected, (4) and (7) do not reflect

that feature. In Subsection 2.2 we therefore give a relvariance that is similar in form to (4)

and (7) but is appropriate for pps sampling of PSUs.

When designing samples, practitioners sometimes use rough rules of thumb for values

of ~d (or d), say ~d # 0:10, based on how “alike” elements within PSUs are thought to be.

However, the form of S2
U1 and, therefore, B2 implies that the size of ~d (or d) can also be

determined by the relative variability of the cluster totals, ti. As we will illustrate, one way

in which ~d can be large is by having clusters that vary in size.

2.2. Varying Probabilities at the First Stage

Variances of estimators in designs more complicated than simple random sampling at each

stage can also be written as a sum of components. However, the most general of these have

limited value in determining sample sizes (e.g., see Särndal et al. 1992, result 4.3.1).

A more useful formulation is the case where PSUs are selected with varying

probabilities but with replacement ( ppswr), and the sample within each PSU is selected by
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srswor. We refer to this design as ppswr/srs. With-replacement designs may not often be

used in practice but have simple variance formulae, which makes them useful for sample

size calculation. The probability with-replacement ( pwr) estimator of a total is

t̂pwr ¼
1

m

X

i[s

t̂i

pi

where t̂i was defined in Subsection 2.1 and pi is the one-draw selection probability of

PSU i. The variance of t̂pwr is (Cochran 1977, 308-310)

Vðt̂pwrÞ ¼
1

m

X

i[U

pi

ti

pi

2 tU

� �2

þ
X

i[U

Ni
2

mpini

1 2
ni

Ni

� �

S2
U2i: ð8Þ

Making the assumption that �n elements are selected in each PSU and that �n=Ni is

negligible, the variance reduces to

Vðt̂pwrÞ ¼
S2

U1ð pwrÞ

m
þ

1

m�n

X

i[U

N2
i S2

U2i

pi

where, in this case, S2
U1ð pwrÞ ¼

P
i[U pi

ti

pi
2 tU

� �2

and S2
U2i is defined for Expression (2).

Dividing this by t2
U and simplifying, we obtain the relvariance of t̂pwr as, approximately,

Vðt̂pwrÞ

t2
U

8
B2

*

m
þ

W2
*

m�n
¼

~V

m�n
k*½1þ d*ð�n 2 1Þ� ð9Þ

with B2
*
¼

S2
U1ð pwrÞ

t2
U

, W2
*
¼ 1

t2
U

P
i[U N2

i
S2

U2i

pi
, k* ¼ B2

*
þW2

*

� �
= ~V, and d* ¼ B2

*
= B2

*
þW2

*

� �
.

If k* ¼ 1, then (9) has the interpretation of an srs relvariance times a design effect,

1þ d*ð�n 2 1Þ.

The approximation in (9) does depend on the sampling fraction of elements within each

sample cluster being small, and more importantly on using the with-replacement variance

formula for the first stage. On the other hand, it does allow the number of population elements

per cluster to vary, which is an important feature to account for in some populations.

A special case of the design above would be pi ¼ Ni=N, that is, probability proportional

to the size of cluster i. If the weight of cluster i in a with-replacement sample of m clusters

is N=ðmNiÞ and an equal-probability sample of �n elements are selected in each cluster, the

sample is “self-weighting” as the weight of each sample element in the pwr estimator is the

same: ðN=mNiÞðNi=�nÞ ¼ N=ðm�nÞ. This combination of design and weighting method is

common in household surveys where a practical goal is often to have an equal workload in

each cluster and limit variation in weights.

A more general point to note is that the measures of homogeneity in (4), (7), and (9)

depend on both the sample design and the estimator being used. This is because the

decomposition of the variance of an estimator depends on both. A different decomposition

would be needed for, say, the general regression (GREG) estimator of a total or an

estimator of a mean that uses an estimate of N in its denominator.

2.3. Ratio Estimator of a Total

The p-estimator of a total may be inefficient in some designs compared to alternatives like

the ratio estimator or a GREG estimator. In this section, we present the variance-

component formula in the srs/srs design for the ratio estimator defined as
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t̂R ¼ t̂p
N

N̂p

where N̂p is the p-estimator of the number of elements in the population, N, defined as

N̂p ¼ M
P

s Ni=m. (Note that, in probability proportional to Ni sampling with pi ¼ Ni=N,

the estimated total number of elements is N̂pwr ¼ m21
P

i[s t̂i=pi ¼ N, and there is no gain

from ratio estimation.) Assuming that the sample size of clusters m is large and using a

first-order linear approximation,

t̂R 2 tU ¼ t̂p 2 �yUN̂p þ OpðM=mÞ8
M

m

X

s

t̂zi ð10Þ

where t̂zi ¼ Ni

P
k[si

zk=ni with zk ¼ yk 2 �yU . Expression (10) follows from assuming that

M 21ðt̂p 2 tUÞ and M 21ðN̂p 2 NÞ are Opðm
21=2Þ as they would be if m1=2ðt̂p 2 tUÞ=M and

m1=2ðN̂p 2 NÞ=M had asymptotic standard normal distributions. In that case the remainder

in the first-order Taylor series approximation to M 21ðt̂R 2 tUÞ is Opð½m
21=2�2Þ ¼ Opðm

21Þ

(see Wolter 2007, Theorem 6.2.2). Under those conditions, t̂p 2 �yUN̂p ¼ OpðM=m1=2Þ,

that is, a higher order than the remainder term in (10). Approximation (10) has the same

form as the p-estimator in (1). Consequently, a variance-component formula analogous to

(2) and a relvariance formula similar to (3) can be derived. In particular,

Vðt̂RÞ8
M 2

m

M 2 m

M
S2

Uz1 þ
M

m

X

i[U

N2
i

ni

Ni 2 ni

Ni

S2
U2zi

with S2
Uz1 ¼ ðM 2 1Þ21

P
i[Uðtzi 2 �tUzÞ

2, and S2
U2zi ¼ ðNi 2 1Þ21

P
k[Ui
ðzk 2 �zUiÞ

2 where

tzi ¼
P

k[Ui
zk, �tUz ¼

P
i[U tzi=M, and �zUi ¼

P
k[Ui

zk=Ni. Assuming that the fpcs,

ðM 2 mÞ=M and ðNi 2 niÞ=Ni, are approximately 1 and that the sample size in PSU i is

rNi, the relvariance formula is

Vðt̂RÞ8
B2

z

m
þ

~W
2

z

m�n*
¼

~V

m�n*
kz½1þ dzð�n

* 2 1Þ� ð11Þ

where B2
z ¼ S2

Uz1=�t
2
U , ~W

2

z ¼ M 21
P

i[UðNi= �NÞS
2
U2zi=�y

2
U , kz ¼ B2

z þ
~W

2

z

� �
= ~V, and

dz ¼ B2
z= B2

z þ
~W

2

z

� �
. Compared to the (srs/srs, p-estimator) strategy the ratio estimator

can reduce the measure of homogeneity, leading to more precise estimators as illustrated

in Example 4 of Section 3.

3. Examples of Variance Components and Measures of Homogeneity

We created an example population based on U.S. Census counts from the year 2000 for

Anne Arundel County in the state of Maryland and refer to this data set as MDarea.pop.

The population is also included in the R package PracTools (Valliant et al. 2013, 2015).

The population contains three continuous and two binary variables denoted by y1, y2,

y3, ins.cov, and hosp.stay, respectively. The variables are generated using

models, since individual-person data for small geographic areas is suppressed in the actual

census for reasons of confidentiality. The variables in MDarea.pop were created by

fitting models for several variables in the 2001-2002 National Health and Nutrition
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Examination Survey (Center for Disease Control and Prevention 2009) and 2003 National

Health Interview Survey (Center for Disease Control and Prevention 2012) data sets to

obtain regression means that depended on whether a person was Hispanic and on the

person’s gender and age. Person-level values were created using random-effects models

that had error terms for tracts, block groups, and persons. The three continuous variables

(y1, y2, y3) are positively skewed with mean values based on models for body weight,

body mass index, and systolic blood pressure (although the scales of the generated

variables do not match those of these physical measurements). The binary variables,

ins.cov and hosp.stay, are based on the rates of insurance coverage and overnight

hospital stay in a twelve-month period.

The geographic divisions used in this data set are tracts and block groups, which are

geographic areas defined by the Census Bureau (U.S. Census Bureau 2011). Tracts are

constructed to have a desired population size of 4,000 people. Block groups (BGs) are

smaller, with a target size of 1,500 people. However, the sizes of both tracts and BGs vary

because the Census Bureau also attempts to limit the geographic area covered by a BG.

Counts of persons in the data set are the same for most tracts and BGs as in the 2000

Census; exceptions are five BGs that were augmented to have at least 50 persons each.

The example population contains 403,997 persons, 95 tracts, and 307 BGs. The proportion

of persons with insurance coverage is 0.793; the proportion with a hospital stay in the prior

twelve months is 0.072. Descriptive statistics for other variables are given in Table 1.

Because the tracts and BGs in the Maryland population are extremely variable in size,

we created two other variables called PSU and SSU to demonstrate the effect of having

equal-sized units. Each artificial PSU has approximately the same number of persons;

likewise the SSUs were created to have about the same number of persons. The PSUs and

SSUs were formed after sorting the file by tract and BG within tract, thus retaining

geographic proximity of persons grouped together. Each PSU has about 5,050 persons

while an SSU has about 1,010. Although the assumption of equal PSU size made to obtain

(5) or to set ~k ¼ 1 may seem innocuous, it is far from that, as we will illustrate below.

We use the Maryland population to illustrate the effects of using different sizes of

primary and secondary sampling units on the measures of homogeneity for two-stage

sampling. In all of the examples, calculations are made assuming that the entire population

is in hand. This means that the theoretical values in the preceding formulae can be

evaluated rather than estimated from a sample as would be required in practice.

Table 1. Descriptive statistics for the Maryland area population

Tract population BG population y1 y2 y3

Minimum 86 52 262.7 22.9 32.6
1st quartile 2,728 780 18.7 2.3 66.7
Median 4,132 1,240 50.8 5.4 81.4
Mean 4,253 1,316 69.7 7.7 87.5
3rd quartile 5,684 1,732 104.4 10.7 101.2
Maximum 13,579 4,744 1163.7 101.1 479.2
Population CV 0.51 0.58 1.21 1.01 0.34

CV ¼ coefficient of variation.

Journal of Official Statistics770



When examining the effects of varying unit sizes, working with a population is an

advantage as the complication of sampling variability is eliminated.

Example 1. Between- and within-variance components in srs/srs design. Using the

variables in the Maryland population, we computed the unit relvariance of each variable

S2
U=�y

2
U

� �
, B2 þ ~W 2 and ~k for comparison, and ~d ¼ B2=ðB2 þ ~W2Þ for the srs/srs design

and the pwr-estimator. (Note that the p-estimator and pwr-estimator in srs/srs have the

same form when the first stage is selected with replacement. In the examples, we will refer

to the (srs/srs, pwr-strategy).) First, the results are shown in Table 2 using the PSU and

SSU variables as clusters. Values of ~d range from 0.001 to 0.079 when PSUs are clusters.

Deltas are somewhat larger when SSUs are clusters, reflecting the common phenomenon

that smaller geographic areas are somewhat more homogeneous than large ones in

household populations. The third through fifth columns show that the approximation that

S2
U=�y

2
U 8 B2 þW 2 works well in this case.

Next, to illustrate the dramatic effect that varying sizes of clusters can have, in Table 3

we present the same statistics as above using tracts and BGs within tracts as clusters.

Values of d range from 0.023 to 0.730 when tracts are clusters. When BGs are used as

clusters, ~ds range from 0.032 to 0.791. The measures of homogeneity increase

substantially when tracts or BGs are the first-stage clusters. For example, when PSUs are

clusters, d ¼ 0.005 for y1 but is 0.152 when tracts are clusters. This is almost entirely due

to the increase in the between-variance component, B2, when units with highly variable

sizes are used. For example, B2 ¼ 0.0079 for y1 when PSU is a cluster, but is 0.2605

when tract is a cluster. The third through fifth columns in Table 3 show that the

approximation S2
U=�y

2
U 8 B2 þ ~W2 does not work well when either tracts or BGs are

clusters. This again is due to the clusters not all having the same size. This implies that

when making advance estimates of the relvariance of an estimated total, ~k cannot be safely

set to 1 in (7) when PSUs vary in size.

Example 2. Effect of incorrect measures of homogeneity on achieved precision. If

incorrect values of the measure of homogeneity are used to compute sample sizes, the

sample can be much less efficient than anticipated. This example looks at the effect of

Table 2. Variance components and measures of homogeneity in the Maryland population using PSUs and

SSUs as clusters with an srs/srs design, the pwr-estimator, and a fixed sampling rate at the second stage

B2 ~W2 S2
U=�y

2
U B2 þ ~W 2 ~k ~d

PSUs as clusters
y1 0.0079 1.4553 1.4627 1.4631 1.0003 0.005
y2 0.0069 1.0097 1.0163 1.0166 1.0003 0.007
y3 0.0090 0.1048 0.1136 0.1137 1.0012 0.079
ins.cov 0.0012 0.2599 0.2611 0.2611 1.0003 0.005
hosp.stay 0.0175 12.8831 12.8979 12.9006 1.0002 0.001
SSUs as clusters
y1 0.0365 1.4277 1.4627 1.4642 1.0010 0.025
y2 0.0169 1.0004 1.0163 1.0173 1.0010 0.017
y3 0.0184 0.0954 0.1136 0.1137 1.0012 0.161
ins.cov 0.0032 0.2581 0.2611 0.2613 1.0010 0.012
hosp.stay 0.0558 12.8549 12.8979 12.9107 1.0010 0.004
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using ~ds computed as if clusters all had the same size when clusters actually vary. Suppose

that the costs which vary with the number of sample clusters and elements can be written

as C ¼ C1mþ C2m�n where C1 is the cost per cluster and C2 is the cost per sample

element. If the budget for variable costs is fixed at C and the relvariance is given by (7), the

optimal numbers of elements and clusters are (cf. Hansen et al. 1953a sec. 16.6):

�nopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1

C2

1 2 ~d

~d

s

and mopt ¼
C

C1 þ C2 �nopt

: ð12Þ

(The results in (12) hold for both ~k ¼ 1 and a general value of ~k.) In this example, the cost

assumptions are C ¼ $100,000, C1 ¼ $1; 000, and C2 ¼ $100. Suppose that the sample

sizes in (12) are computed using the ~ds in Table 2, assuming that clusters are PSUs or

SSUs (i.e., clusters with the same size). These values of �nopt and mopt are shown in Table 4

using the ~ds and values of ~k from Table 2. The estimated coefficients of variation (CVs),

that is, the square root of the estimated relvariances that would be obtained with the equal-

size cluster ~ds, are in the fourth column, assuming that ~V ¼ 1. Suppose that the correct ~ds

and ~ks are in reality those in Table 3, which account for varying cluster sizes. The actual

CVs that would be obtained with these ~ds are also shown in the sixth column of Table 4,

again assuming that ~V ¼ 1. The ratio of actual CVs with ~ds from Table 3 to the estimated

CVs with ~ds from Table 2 range from 1.5 to 6.3. In other words, the actual CVs range from

50% to 530% higher than estimated because varying cluster sizes increase the measures of

homogeneity and values of ~k. This implies that if the correct ~ds and ~ks were used, more

clusters and fewer elements per cluster should be selected than the mopt and �nopt values in

Table 4.

Example 3. ppswr at first stage, srs at second. This example repeats the calculations in

Example 1 for the variables in the Maryland area population but with a different sample

design. Assume that clusters will be selected proportional to the count of persons Ni in

each cluster and that an srs with a small sampling fraction is selected in each sample

cluster, that is, a particular case of ppswr/srs. Table 5 shows the values of B2
*
, W2

*
, and d*

Table 3. Variance components and measures of homogeneity in the Maryland population using tracts and block

groups as clusters with an srs/srs design, the pwr-estimator, and a fixed sampling rate at the second stage

B2 ~W2 S2
U=�y

2
U B2 þ ~W2 ~k ~d

Tracts as clusters
y1 0.2605 1.4539 1.4627 1.7144 1.1720 0.152
y2 0.2687 1.0058 1.0163 1.2745 1.2540 0.211
y3 0.2707 0.1001 0.1136 0.3707 3.2634 0.730
ins.cov 0.2624 0.2593 0.2611 0.5217 1.9985 0.503
hosp.stay 0.3078 12.8786 12.8979 13.1864 1.0224 0.023
Block groups as clusters
y1 0.3489 1.4478 1.4627 1.7967 1.2283 0.194
y2 0.3485 0.9994 1.0163 1.3479 1.3263 0.259
y3 0.3492 0.0926 0.1136 0.4418 3.8887 0.791
ins.cov 0.3408 0.2574 0.2611 0.5982 2.2916 0.570
hosp.stay 0.4246 12.8567 12.8979 13.2813 1.0297 0.032
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when PSUs and SSUs are clusters. Because each PSU and SSU was formed to have almost

the same number of persons, the values in Table 5 are virtually the same as the srs/srs

results in Table 2.

Table 6 shows the results when tracts and BGs are used as clusters. With the ppswr/srs

design, the between term is much smaller than the within term compared to the results in

Example 1. This is true whether PSU and SSU are used as clusters or tracts and BGs are

used. For example, with y1, d ¼ 0:152 when tracts are clusters in the srs/srs design

(Table 3). However, d* ¼ 0:006 for y1 with tracts as clusters in the ppswr/srs design in

Table 6. The measures of homogeneity for other variables are also substantially less in

Table 6 than in Table 3.

When clusters are selected by srs, S2
U1 is the variance of the cluster totals around the

average cluster total. In contrast, with pps sampling of clusters, S2
U1ð pwrÞ is the variance of

the estimated population totals, ti=pi around the population total, tU . When clusters are

selected with probability proportional to Ni, ti=pi ¼ Ni �yUi=ðNi=NÞ ¼ N �yUi. If these

Table 5. Variance components and measures of homogeneity in the Maryland population using PSUs and

SSUs as clusters with a ppswr/srs design and the pwr-estimator

B2
*

W2
*

k* d*

PSUs as clusters
y1 0.0078 1.4553 1.0002 0.005
y2 0.0068 1.0097 1.0002 0.007
y3 0.0088 0.1048 1.0002 0.078
ins.cov 0.0012 0.2599 1.0002 0.005
hosp.stay 0.0173 12.8831 1.0002 0.001
SSUs as clusters
y1 0.0364 1.4277 1.0010 0.025
y2 0.0169 1.0004 1.0010 0.017
y3 0.0183 0.0954 1.0008 0.161
ins.cov 0.0032 0.2581 1.0010 0.012
hosp.stay 0.0557 12.8549 1.0010 0.004

Table 6. Variance components and measures of homogeneity in the Maryland population using tracts and BGs

as clusters with a ppswr/srs design and the pwr-estimator

B2
*

W2
*

k* d*

Tracts as clusters
y1 0.0092 1.4539 1.0002 0.006
y2 0.0107 1.0058 1.0002 0.011
y3 0.0136 0.1001 1.0002 0.119
ins.cov 0.0018 0.2593 1.0002 0.007
hosp.stay 0.0223 12.8786 1.0002 0.002
Block groups as clusters
y1 0.0160 1.4478 1.0007 0.011
y2 0.0176 0.9994 1.0007 0.017
y3 0.0211 0.0926 1.0006 0.186
ins.cov 0.0039 0.2574 1.0007 0.015
hosp.stay 0.0509 12.8567 1.0008 0.004
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1-cluster estimates of the population total are fairly accurate, as they are here, the B2 term

can be quite small. This leads to much smaller values of the measure of homogeneity in

pps sampling of clusters, implying that the effect of clustering is less important in this

population for a design that selects clusters with probabilities proportional to their

population counts.

Practitioners habitually gravitate toward pps sampling of clusters rather than srs.

This example makes it clear why this choice is often a good one.

Example 4. srs/srs design with ratio estimator of the total. Next, we consider whether

use of the ratio estimator of the total in an srs/srs design reduces the effects of using

clusters with varying sizes. Table 7 displays results for the variance components, B2
z and

~W
2

z , kz, and dz defined in Subsection 2.3 when tracts or block groups are used as clusters.

The values of dz in Table 7 are much lower than those of ~d in Table 3, implying that use of

a ratio estimator in srs/srs substantially reduces the effect of clustering compared to using

the pwr-estimator. The values of dz are very close to those of d* in Table 6 for the ppswr/

srs design combined with the pwr-estimator. However, the values of k* in Table 6 are all

near 1 while kz in Table 7 ranges from about 1.23 to 1.35. Thus, for a given number of

sample clusters m and elements �n in the ppswr/srs case or �n* in the srs/srs fixed rate case,

the ( ppswr/srs, pwr-estimator) strategy will be more efficient than the (srs/srs, ratio

estimator) strategy. For example, suppose that BGs are clusters, the total of y1 is

estimated and �n ¼ �n* ¼ 50. If srs/srs and the pwr-estimator is used, then ~k½1þ ~d ð�n 2 1Þ�

¼ 1:2283½1þ 0:194ð50 2 1Þ� ¼ 12:905 using the figures in Table 3. For the ( ppswr/srs,

pwr-estimator) strategy, k*½1þ d*ð�n 2 1Þ� ¼ 1:007½1þ 0:011ð50 2 1Þ� ¼ 1:550 using

the values in Table 6. For (srs/srs, ratio estimator) the corresponding value is kz½1þ dz

ð�n* 2 1Þ� ¼ 1:3462½1þ 0:010ð50 2 1Þ� ¼ 2:006 using the figures in Table 7. Accord-

ingly, the relvariance for (srs/srs, pwr-estimator) is 8.33 (12.905/1.550) times as large as

that of ( ppswr/srs, pwr-estimator), while the relvariance of (srs/srs, ratio estimator) is 1.29

(2.006/1.55) times as large. Using the ratio estimator in srs/srs is much better than

using the pwr-estimator, but still is considerably less efficient than the ( ppswr/srs,

pwr-estimator) strategy.

Table 7. Variance components and measures of homogeneity in the Maryland population using tracts and block

groups as clusters with an srs/srs design, a fixed rate at the second stage, and a ratio estimator of a total

B2
z ~W

2

z
kz dz

Tracts as clusters
y1 0.0093 1.8390 1.2636 0.005
y2 0.0114 1.2662 1.2571 0.009
y3 0.0143 0.1253 1.2285 0.102
ins.cov 0.0021 0.3260 1.2568 0.007
hosp.stay 0.0265 16.3171 1.2672 0.002
Block groups as clusters
y1 0.0193 1.9499 1.3462 0.010
y2 0.0223 1.3338 1.3344 0.017
y3 0.0271 0.1220 1.3127 0.182
ins.cov 0.0052 0.3426 1.3324 0.015
hosp.stay 0.0681 17.2695 1.3442 0.004
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4. Estimating Variance Components Using Anticipated Variances

In normal circumstances, only a sample is available from a population and variance

components must be estimated. Design-based estimators can be found in Särndal et al.

(1992, sec. 4.3.2) and will not be covered here. As noted earlier, the general formulae for

estimation of variance components are specialized, complex, and difficult to use in

practice. Being able to use the software routines that are available for variance-component

estimation would be a real advantage if they estimate the components properly. The best of

these routines use algorithms designed to handle a variety of numerical problems that are

hard to anticipate in practice. Searle et al. (1992) review the methods available, including

minimum variance quadratic unbiased estimation (MIVQUE0), maximum likelihood, and

restricted maximum likelihood (REML). Note that these estimates are derived through a

specified model and not a particular sample design.

Model variance components can be introduced by using an anticipated variance

(Isaki and Fuller 1982) defined as

AVðt̂Þ ¼ EM½Epðt̂ 2 tUÞ
2�2 ½EMEpðt̂ 2 tUÞ�

2

where EM is the theoretical expectation (or average) with respect to the specified

population model and Ep is the (design-based) expectation under repeated sampling. If the

estimator is design-unbiased or approximately so, then the anticipated variance is AVðt̂Þ ¼

EM½varpðt̂ 2 tUÞ� since Epðt̂Þ ¼ tU . Thus the model expectation of a formula like (3) or (4)

can be computed, resulting in a formula that includes model variance components that can

be estimated using standard software. An additional advantage to this approach is the

clarification of the key role that PSU and SSU sizes play in determining the measures of

homogeneity. Expressions (4), (7), (9), and (11) contain measures of homogeneity, d, ~d,

d*, and dz, respectively, that are critical determinants of sample sizes. However, d, ~d, d*,

and dz are not equal to the model correlation of elements in the same cluster, except in

some special circumstances, as we will illustrate.

Examples in the literature of using model variance-component estimates in survey

design seem limited, even though practitioners often use the technique. A few examples

are Chromy and Myers (2001); Hunter et al. (2005); Judkins and Van de Kerckhove

(2003); and Waksberg et al. (1993). We demonstrate the basic approach using a random-

effects model.

In a clustered population, the simplest model to consider is one with common mean and

random effects for clusters and elements:

yk ¼ mþ ai þ 1ik; k [ Ui; ð13Þ

with ai ~ 0;s2
a

� �
, 1ik ~ 0;s2

1

� �
, and the errors being independent. The model correlation of

any two elements in the same cluster is

corrð yk; yk 0 Þ ¼
s2
a

s2
a þ s2

1

; r: ð14Þ

The model expectation of the design variance can be computed under this model, but for

sample size calculation, only the approximate expectation of the between- and within-

variance components for two-stage sampling are needed. First, take the case of an srs/srs
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design and the pwr-estimator where a common sampling rate r is used in all clusters. The

approximate model expectations are needed for B2 ¼ S2
U1=�t

2
U and ~W 2 ¼ M 21

P
i[U

Ni

�N

S2
U2i

�y2
U

in (6). After some algebra, the model expectations of S2
U1 and S2

U2i defined below (2) are:

EM S2
U1

� �
8 s2

a þ m2
� �

S2
N þ

�N2s2
a þ s2

1

EM S2
U2i

� �
¼ s2

1

where �N ¼
P

i[U Ni=M is the average number of elements per cluster, and S2
N ¼P

i[UðNi 2 �NÞ2=ðM 2 1Þ is the population variance of the PSU sizes, Ni. We also assume

that M is large so that M 2 1 8 M. Assuming that the expectation of a ratio, like S2
U1=�t

2
U , is

approximately the ratio of the expectations, the model expectation of the measure of

homogeneity ~d in (7) is

EMð ~dÞ8
s2
a þ m2

� �
n2

N þ s2
a þ s2

1= �N
2

s2
a þ m2

� �
n2

N þ s2
a þ s2

1ð1þ �N22Þ
ð15Þ

where n2
N ¼ S2

N= �N
2 is the relvariance of the Nis. If Ni ¼ �N, that is, all the clusters are the

same size, then n2
N ¼ 0 and (15) reduces to

EMð ~dÞ8
s2
a þ s2

1= �N
2

s2
a þ s2

1ð1þ �N22Þ
: ð16Þ

If, in addition, �N is sufficiently large for s2
1= �N

2 to be negligible compared to s2
a, then

EMð ~dÞ does equal the model correlation in (14). However, when clusters vary in size, (15)

will be a closer approximation to the measure of homogeneity needed for sample size

calculation.

The result for d in (4) is very similar. The model expectation of d is equal to (15) but

1þ �N22 in the denominator is replaced with 1þ n2
N þ

�N22. Numerically, the model

expectation of ~d will be somewhat larger than that of d. For d* and dz the calculations

would have to be specialized to be appropriate to the forms of B2
*
, W2

*
, B2

z , and ~W
2

z used in

the definitions of those measures of homogeneity. We consider only d* below.

Next, consider the ppswr/srs design where the one-draw probability of cluster i is

proportional to its number of elements, that is, pi ¼ Ni=M �N. The model expectation of

S2
U1ð pwrÞ is

EM S2
U1ð pwrÞ

� �
¼ ðM �NÞ2s2

a 1 2
1

M
2 2

1

�N

� �

n2
N þ 1

� �
	 


þM 2 �Ns2
1:

The model expectation of d* is then approximately

EMðd*Þ8

s2
a 1 2

1

M
2 2

1

�N

� �

n2
N þ 1

� �
	 


þ
s2
1

�N

s2
a 1 2

1

M
2 2

1

�N

� �

n2
N þ 1

� �
	 


þ s2
1 1þ

1

�N

� � ð17Þ

If Ni ; �N, selecting PSUs with probability proportional to the sizes Ni is the same as

equal-probability sampling. In that case, (17) reduces to approximately the same form as
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(16), which is essentially equal to the model correlation in (14) when Ni ; �N and the

average cluster size is large.

Example 5. Anticipated variance components in two-stage sampling from a model.

A number of software routines are available for estimating variance components – the

R package lme4 (Bates et al. 2011), the SASw procedure proc mixed, and the xtmixed

routine in Stataw are examples. We used the function lmer in lme4 to estimate the variance

components for the model in (13) and the corresponding intracluster correlations in (14).

The type of sample design used (srs/srs or ppswr/srs) does not affect these estimates, since

they are based strictly on the model in (13). The results for all variables using PSUs,

SSUs, tracts, and BGs as clusters are shown in Table 8. The estimates for r when PSUs

and SSUs are clusters are almost the same as the values of ~d in Table 2 where srs is used at

each stage. But when tracts and BGs of varying sizes are used as the clusters, the rs in

Table 8 are very different and much smaller than the ~ds in Table 3. As noted above, the

design-based formula for B2=ðB2 þ ~W2Þ will estimate the same thing as the model-based

calculation if the clusters have the same large size, but not otherwise.

Table 9 shows the measures of homogeneity computed from Formula (15) for an srs/srs

design and Formula (17) for a ppswr/srs design, both with the pwr-estimator of a total.

Values of ~d in Table 9 for srs/srs when PSUs and SSUs are clusters are similar to those in

Table 2 and Table 8. For example, ~d ¼ 0:005 in Table 2 for y1 with PSUs as clusters and

Table 8. Intracluster correlations r from (14) under a simple random-effects model

Values of model intracluster correlation r

Unit used for clusters

Variable PSUs SSUs Tracts Block groups

y1 0.005 0.024 0.008 0.012
y2 0.007 0.016 0.013 0.017
y3 0.079 0.161 0.148 0.191
ins.cov 0.004 0.011 0.008 0.014
hosp.stay 0.001 0.003 0.002 0.003

Table 9. Measures of homogeneity EMð ~dÞ and EMðd*Þ estimated from Expression (15) for an (srs/srs, pwr-

estimator) strategy and from Expression (17) for a ( ppswr/srs, pwr-estimator) strategy

PSUs SSUs Tracts Block groups

~ds for srs/srs design using (15)
y1 0.005 0.024 0.159 0.198
y2 0.007 0.016 0.216 0.264
y3 0.079 0.161 0.738 0.797
ins.cov 0.004 0.011 0.503 0.569
hosp.stay 0.001 0.003 0.022 0.029
d*s for ppswr/srs design using (17)
y1 0.005 0.025 0.008 0.012
y2 0.007 0.017 0.013 0.018
y3 0.077 0.161 0.144 0.190
ins.cov 0.005 0.012 0.008 0.015
hosp.stay 0.001 0.004 0.002 0.004
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is 0.005 in both Tables 8 and 9. PSUs and SSUs have almost the same size, and therefore

(15) reduces to the model formula for the correlation in (14). When tracts or BGs are

clusters, the values of r in Table 8 and ~d and d* in Table 9 are substantially different – for

example, when tracts are clusters r ¼ 0.148 for y3 but ~d ¼ 0.738 for srs/srs in Table 9.

However, 0.738 is close to the value of 0.730 for (tracts, srs/srs) in Table 3. That is, using

the correlation estimated from the model in the variance formula for a total in (7) would be

a mistake, as shown in Example 6 below. However, using the model correlation to

calculate a measure of homogeneity in (15) works.

Example 6. Effect of using incorrect measure of homogeneity on sample size

calculation. Suppose that the design is srs/srs with a fixed second-stage sampling rate and

that tracts or BGs are used as PSUs. The cost assumptions are the same as those in Example 2.

Table 10 in its upper bank lists the sample sizes computed from (12), assuming that the

model correlations in (14) can be used for ~d. This would be appropriate if tracts and BGs

were equal sized. The lower tier of Table 10 shows the sample sizes computed when the

measures of homogeneity are the ones proper for tracts and BGs that are computed from

(15). Since the correct ~ds in Table 9 are much larger than the model correlations in Table 8,

the sample sizes of tracts and BGs in the lower tier are larger than in the upper tier of

Table 10. The sample sizes of elements per tract or BG are correspondingly lower when the

appropriate measures of homogeneity are used. All of the allocations in Table 10 respect the

cost constraint of $100,000, but the one in the lower tier will yield smaller CVs (i.e., more

precise estimates), assuming that the values of ~d from (15) are correct.

Results are different for a ppswr/srs design. The values of the model correlation r in

Table 8 and the measures of homogeneity ~d in Table 9 for tracts and BGs are almost

identical. They are also very close to the design-based values in Table 6, resulting in

relatively similar sample sizes for the two stages of the design using either method. As

noted earlier, probability proportional to cluster-size sampling was extremely effective in

reducing the between component of variance in the Maryland population. The upshot of

this is that the measures of homogeneity and thus the sample sizes are quite similar to ones

for a population in which clusters all have the same size.

Table 10. Sample sizes of PSUs and elements computed with incorrect and correct measures of homogeneity

Tracts Block groups

m �n m �n

rs for srs/srs design using (14)
y1 22 35 26 29
y2 27 28 29 24
y3 57 8 61 7
ins.cov 22 35 27 27
hosp.stay 12 71 15 58
ds for srs/srs design using (15)
y1 58 7 61 6
y2 62 6 65 5
y3 84 2 86 2
ins.cov 76 3 78 3
hosp.stay 32 21 35 18
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5. Conclusion

Using variance components and measures of homogeneity are key parts of designing

multistage samples. The relative sizes of the variance components are very sensitive to the

sizes of the first-stage units or clusters themselves. Many textbooks present specialized

variance formulae that assume that all clusters contain the same number of elements.

However, varying cluster sizes can increase the measures of homogeneity that affect the

precision of estimates from a two-stage sample. Having clusters that are more internally

homogeneous will require more clusters and fewer elements per cluster to be sampled to

achieve a desired level of precision. The effect of having variable-sized clusters also

depends on the method of selecting clusters and the type of estimator that is used.

Probability proportional to cluster-size sampling is more efficient than simple random

sampling of clusters. Use of a ratio estimator when clusters are sampled via srs will temper

some of the precision losses when cluster sizes vary, but still will be less efficient than pps

sampling. As a result, recognizing the effects of varying cluster sizes is important for

designing efficient samples and choosing estimators.

The variation of the tract sizes in the Maryland population used in our examples is

considerably more than practitioners would prefer when defining PSUs for a household

survey. For example, the range of the number of persons per tract is 86 to 13,579. Having

such a large variation in PSU sizes leads to large differences in the cluster totals of analysis

variables. This causes the between-cluster variance component to be large, which in turn

leads to high measures of homogeneity and inefficiency if an equal-probability sample of

clusters is selected. Standard practice would be to combine the small tracts or BGs so that

all PSUs have some prescribed minimum number of persons. Although variation in cluster

sizes can have a dramatic effect on the measures of homogeneity needed to design a

sample, this seems to be rarely emphasized in sampling texts.

If the designer has some flexibility in forming the clusters, as would usually be the case

in a household survey, clusters with nearly equal numbers of elements should definitely be

created. In some surveys, however, the clusters are naturally occurring units, like schools,

classrooms, or establishments. In those cases, one may have to live with the predefined

units, but considering the variation in cluster size will be important when determining

sample sizes. This will be true whether clusters are selected with equal probability or with

probabilities proportional to their sizes as measured by counts of elements. Generally

speaking, sampling unequal-sized clusters with probabilities proportional to their sizes

will be more efficient as long as the measure of sizes (MOSs) are accurate and cluster

totals of analysis variables are closely related to MOSs. If clusters are selected with equal

probability, some efficiency can be recovered by using a ratio estimator of a total rather

than a p-estimator; however, in the examples we presented, pps sampling will still be more

efficient.

We have not covered several topics that are important in practice: three-stage sampling

and nonlinear estimators more general than a ratio estimator. Three-stage sampling is used

in many household surveys, but involves more complex variance formulae that we plan to

address in a separate paper. Although we did not cover nonlinear estimators, such as the

poststratification estimator or the general regression estimator, the analyses presented here

will apply after forming a linear approximation to the nonlinear estimator (see, e.g., Binder
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1995). The sizes of design effects for these nonlinear estimators can be quite different from

those for the p-estimator, as pointed out by Park and Lee (2004).

Another important topic that we have omitted is domain estimation. The general

technique of breaking the variance of an estimator into components will apply to

subpopulation estimates. However, using the usual method of coding y to 0 for units not in

the subpopulation will have an effect on the size of between- and within-variance

components, which in turn affects the measures of homogeneity and sample size

calculations. Whether a domain is spread over most clusters or present only in a subset of

them will also affect the efficiency of sampling probability proportional to an MOS

compared to equal-probability sampling of clusters.

Sample size calculation is an important aspect of survey design. Using formulae with

assumptions that are not supported by the population at hand can result in either wasted

project funding, an insufficient sample size with lower precision than desired, or

inconclusive hypothesis tests. We demonstrated techniques not clearly specified in the

literature to properly account for the variance components under two first-stage sample

designs and the implications for assuming equal cluster sizes when in fact this is not the

case. With knowledge in hand, survey statisticians are better equipped to design multistage

surveys, and teachers will be better able to explain some of the nuances of sample design

to students.
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