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Ray Chambers1

1. Introduction

I am very grateful for the opportunity to contribute to this special issue of the Journal of

Official Statistics by commenting on the articles in it. In particular, I have chosen to focus

my comments on the articles by Burger et al., Gerritse et al., Tuoto and Di Consiglio, and

Zhang, because these authors, to a greater or lesser extent, tackle measurement-error issues

that are important emerging features of official statistics methodology.

2. Comments on Burger et al. article

I start with the article by Burger et al. This addresses the important issue of industry

misclassification when records from a survey and an administrative data source are

combined. In particular, the article considers a business survey application where in fact a

census is carried out, in the sense that there a 100% survey of large businesses is

conducted, with data for the remaining medium and small businesses extracted from a tax

register. To quote the authors, “Because no samples are drawn and missing data are

imputed, no complicated design-based or model-based estimators are required to make

inference about the target population.” This of course ignores the whole minefield of

imputation bias and variability, as well as the usual conceptual issues that arise when two

variables ostensibly referring to the same thing are measured in two different ways. But

once one pushes this (huge) elephant out of the living room, then the issue of errors in the

industry classification of the units in the two sources can be considered. The article

introduces a simple model for misclassification errors within a group of industries that is

the same as the simple exchangeable model for linkage errors introduced by Neter et al.

(1965), and used as the basis for bias correction in that context in a series of papers starting

with Chambers (2009). However, the authors of this article are not interested in bias

correction per se, focusing instead on bootstrap simulation of the extent of the bias and the

increase in variability that arise under a multinomial version of this simple model. Here

their results are sobering, indicating quite significant increases in both bias and variability

even when the data meet the quality specifications of an internal Service Level Agreement

(SLA) on classification accuracy. Interestingly, the results in the article show that because

higher levels of accuracy in classifying small to medium businesses lead to reductions in

bias relative to expected levels under the SLA, there is in fact a large bias-variance trade-

off to be made in terms of allocating resources for carrying out the classification. No

information is provided on how this trade-off can be (was?) eventually resolved, but, again

quoting the authors, “the current paper provides insight into the sensitivity of mixed source

statistics to a source-specific nonsampling error.” Much more research needs to be done,
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particularly in terms of developing robust misclassification bias corrections for the outputs

from the application. This is particularly the case since these outputs appear to be an

important component of the information used in determining gross domestic product.

In this context, the work on bias correction for linkage errors may prove useful, see Kim and

Chambers (2012).

3. Comments on Gerritse et al. article

The remaining three articles all focus on a different type of measurement error, introduced

when two or more data sources, each with incomplete coverage of a population of interest,

are linked in order to estimate the total population size. This of course is the classical

census coverage problem, and the so-called dual-system estimation (DSE) methodology

for dealing with it is now well established. The article by Gerritse et al. uses the DSE as a

jumping-off point, providing a nice overview of the main issues that arise when using this

approach, and particularly focusing on the problems that arise when the union of the two

sources is a subset of the population of interest (so undercoverage is the focus) and the key

assumption of independent coverage errors for the two data sources is in fact incorrect.

In this context it helps to introduce some notation, so let A ¼ 1ð0Þ denote the event that a

population unit (of some agreed type) is included (not included) in the first data source,

and let B ¼ 1ð0Þ denote the same two events for the second data source. Put NAðNBÞ equal

to the known counts of population units with A ¼ 1 ðB ¼ 1Þ and put L equal to the set of

linked units, with X11 equal to the linked count, that is the number of units with A ¼ 1 and

B ¼ 1. The DSE for the unknown total population size N is then ðNA £ NBÞ=X11, and can

be easily shown to be the method of moments estimator for N under a number of

assumptions, a crucial one of which is independent ‘capture’ events for the same

population unit relative to the two data sources.

There have been a variety of suggestions in the literature on reducing the bias that

ensues when the two data sources are in fact not independent. However, as the authors

emphasise, “Independence is an unverifiable assumption, that is, it cannot be verified from

the data used for the estimation of the population size.” Consequently, given the available

data, all one can do is carry out numerical exercises based on the data at hand to

demonstrate sensitivity to failure of this assumption, or carry out studies to investigate bias

under simulated conditions. Following Brown et al. (1999, 2006) these authors take the

first approach and investigate the sensitivity of the DSE estimates obtained by linking

records on the Dutch Population Register with records on a police register. Like Brown

et al. (2006), the approach is based on perturbing the odds ratio in a log-linear model for

the complete cross classification of the target population, though the methodology

presented in the article extends this model to one of Poisson counts and also considers the

case where heterogeneous coverage probabilities arise because of covariate information

from one or both of the data sources. As one would expect, the higher the achieved

coverage, the less sensitive are the DSE-based methods to break down in the independence

assumption. This is nicely illustrated in the application described in the article, where a

realistic variation in the odds ratio leads to biases in the range 215% to þ9% for the

estimated counts of people of either gender and with an Afghan, Iraqi, and Iranian

nationality two years previously, compared with biases in the range 242% to þ58% for
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the corresponding estimates of people with Polish nationality. As the authors point out, the

main reason for this difference is the fact that Dutch and EU law ensure that the overall

coverage of the first group by the two data sources is much higher than the corresponding

coverage of the second group. However, the fact that such biases can occur is a salutary

reminder that failure of model assumptions can have a much more dramatic impact when

one is dealing with measurement error than, for example, when one is using regression

models for prediction in a ‘pure’ sample-survey context.

4. Comments on Tuoto and Di Consiglio article

Turning now to the article by Tuoto and Di Consiglio, we see that these authors consider

exactly the same situation as that considered by Gerritse et al. but in this case focus on a

different measurement-error problem, that of linkage errors when the two data sources are

integrated to obtain X11. These authors also use a different nomenclature from that used in

Gerritse et al., referring to the DSE estimator as the Petersen estimator, reflecting its origin

in estimating the sizes of wild animal populations in the late nineteenth century. As in

Gerritse et al., there is an (unspoken) assumption of multinomial sampling throughout,

allowing the straightforward development of estimators from moments of unknown

quantities. In addition to the definition of L and X11, define A 2 L as the set of X10

population units on A but not on B, that is, X10 is the number of records found to be only on

list A. Similarly, define B 2 LðX01Þ to be the set (number) of records found to be only on

list B. Then NA ¼ X11 þ X10 and NB ¼ X11 þ X01. Under independence and perfect

linkage,

EðX11Þ ¼ N Pr ðrecord in AÞ Pr ðrecord in BÞ

while

EðNAÞ ¼ N Pr ðrecord in AÞ ¼ Nt1

EðNBÞ ¼ N Pr ðrecord in BÞ ¼ Nt2

so, using a ‘hat’ to denote an estimate,

cPrPr ðrecord in AÞ ¼ t̂1 ¼ X11=NB

cPrPr ðrecord in BÞ ¼ t̂2 ¼ X11=NA

and therefore, setting M ¼ X11 þ X10 þ X01, we have EðMÞ ¼ Nðt1 þ t2 2 t1t2Þ. The

Petersen estimator of N follows by replacing the unknown parameters in this expression by

their moment estimates, leading to

N̂ ¼ M=ðt̂1 þ t̂2 2 t̂1t̂2Þ

It is straightforward to see that this estimator is identical to the DSE defined earlier.

However, the reality in most cases is that there are errors in linking, in the sense that

records common to both lists are not matched, as well as matched records that are

incorrectly matched. This problem is (partially) addressed by Ding and Fienberg (1994),
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who assume incorrect matching is only from A to B. In this context, one can define

a ¼ Pr ðcorrect matchÞ ¼ Pr ðmatch is a record from LÞ

b ¼ Pr ðincorrect linkjmatchÞ ¼ Pr ðA 2 L record matched to B recordÞ

It follows that

Pr ðL unit linkedÞ ¼ a Pr ðL unitÞ ¼ at1t2

Pr ðA 2 L unit linkedÞ ¼ b Pr ðA 2 L unitÞ ¼ bt1ð1 2 t2Þ

Pr ðB 2 L unit linkedÞ ¼ 0

and so

EðX11Þ ¼ Nðat1t2 þ bt1ð1 2 t2ÞÞ

EðX10Þ ¼ EðNAÞ2 EðX11Þ ¼ Nðt1 2 at1t2 2 bt1ð1 2 t2ÞÞ

EðX01Þ ¼ EðNBÞ2 EðX11Þ ¼ Nðt2 2 at1t2 2 bt1ð1 2 t2ÞÞ

Since a population unit that is not on either data set cannot be matched to one that is, it

follows that M ¼ X11 þ X10 þ X01 is the number of unique population units identified in

the union of the two data sources, with

EðMÞ ¼ Nðt1 þ t2 2 at1t2 2 bt1ð1 2 t2ÞÞ

Assuming estimates of a and b are available from the linking process, the Ding and

Fienberg estimator of N is the method of moments estimator derived from this identity,

with t1 and t2 replaced by their moment-based estimates, which must then satisfy

t̂1 ¼ NA=N̂ ¼ ðNA=MÞðt̂1 þ t̂2 2 ða 2 bÞt̂1t̂2 2 bt̂1Þ

t̂2 ¼ NB=N̂ ¼ ðNB=MÞðt̂1 þ t̂2 2 ða 2 bÞt̂1t̂2 2 bt̂1Þ

Solving for t̂1 and t̂2 based on these identities, we obtain

t̂1 ¼ ðX11 2 NAbÞ=ðNBða 2 bÞÞ

and

t̂2 ¼ ðX11 2 NAbÞ=ðNAða 2 bÞÞ

It is straightforward to see that in the case of no linkage error, that is a ¼ 1 and b ¼ 0, the

Ding and Feinberg estimator defined by EðMÞ above reduces to the Petersen estimator.

The article by Tuoto and Di Consiglio extends this idea to also allow linkage errors from

B to A. In order to do this, these authors assume that the probability of this happening is the

same as the probability of incorrect matching from A to B (i.e., b). Then, following the

same approach as that underpinning the Ding and Fienberg estimator, it can be seen that

EðX11Þ ¼ Nðat1t2 þ bt1ð1 2 t2Þ þ bt2ð1 2 t1ÞÞ

EðX10Þ ¼ EðNAÞ2 EðX11Þ ¼ Nðt1 2 at1t2 2 bt1ð1 2 t2Þ2 bt2ð1 2 t1ÞÞ

EðX01Þ ¼ EðNBÞ2 EðX11Þ ¼ Nðt2 2 at1t2 2 bt1ð1 2 t2Þ2 bt2ð1 2 t1ÞÞ;
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so collecting terms

EðMÞ ¼ Nðt1 þ t2 2 at1t2 2 bt1ð1 2 t2Þ2 bt2ð1 2 t1ÞÞ

The same argument as used by Ding and Fienberg then leads to

t̂1 ¼ NA=N̂ ¼ ðbM þ X11ðb 2 1ÞÞ=ðNAð2b 2 aÞÞ

t̂2 ¼ NB=N̂ ¼ ðbM þ X11ðb 2 1ÞÞ=ðNBð2b 2 aÞÞ:

Substitution of these expressions for t̂1 and t̂2 into the method of moments estimator of

N defined by the preceding expression for E(M) leads to the adjusted estimator for

N defined by Expression (13) in the article.

As noted by Tuoto and Di Consiglio, the main advantage of (13) over the standard Ding

and Fienberg approach is bias reduction when b is non-negligible. However, this assumes

symmetry of incorrect matching between A and B, which is debatable and should be

possible to generalise. Also, the approach depends on having access to good estimates of

linkage-error probabilities, which can require audit samples. In this context it is important

to note that these values of a and b must be such that the estimate N̂ of N defined by (13) in

the article satisfies the consistency restrictions defined by the Fréchet inequalities,

max ðNA;NBÞ # N̂ # min ðNA;NBÞðat̂1t̂2 þ bt̂1ð1 2 t̂2Þ þ bt̂2ð1 2 t̂1ÞÞ
21:

5. Comments on Zhang article

Finally, I turn to the article by Zhang. This considers another possible source of

measurement error when a population size is estimated by linking two or more data

sources. In this case the author tackles the situation where two population lists (or

registers) are linked in order to estimate the size of a population that is partially captured

by each list. The twist is that these lists also include units that are not from the population

of interest. In other words, there is both undercoverage as well as overcoverage when the

two lists are linked. We can characterise this situation using the schematic below. This

shows a target population U of (unknown) size N, partially covered by two linked lists,

denoted as usual by A and B. Without loss of generality we denote membership of AðBÞ by

U ¼ 1

B ¼ 1 B ¼ 0

A ¼ 1 N11 N10 NA

A ¼ 0 N01 N00 N 2 NA

NB N 2 NB N
U ¼ 0

B ¼ 1 B ¼ 0

A ¼ 1 K11 K10 KA

A ¼ 0 K01 0 K 2 KA

KB K 2 KB K
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the binary event A ¼ 1 ðB ¼ 1Þ. Similarly, membership of U is denoted by the binary

event U ¼ 1.

The author refers to the set of N þ K units covered by this schematic as the target-list

universe and assumes an underlying multinomial distribution for the cell counts defining

it. Note the structural zero for the (000) cell, since the target-list universe cannot contain

such units. The author also assumes

. An independent coverage survey with only undercoverage error (all surveyed units

are U ¼ 1) but with unknown target population coverage. That is,

p ¼ Pr unit in U included in sample
� �

is unknown. This will be the case if the framework used to select the sample for the

coverage survey is a subset of U.

. Perfect linking of A and B as well as linking of coverage survey units to A and B.

Consequently, X11 ¼ N11 þ K11, X01 ¼ N01 þ K01 and X10 ¼ N10 þ K10 are known,

as is the corresponding breakdown of the survey counts, which we denote n11, n10, n01

and n00, with the usual interpretation.

Note that there is no assumption of independence between A and B. The aim is to use these

data to estimate N.

Let tjk denote the conditional probability that a randomly sampled unit from the target-

list universe has A ¼ j and B ¼ k given that it is a member of the target population, that is,

has U ¼ 1. Then, under the assumed multinomial model for the target-list universe, the

linked list counts satisfy EðNjkÞ ¼ Xjktjk, and for the corresponding linked sample counts,

EðnjkÞ ¼ Xjktjkp, with

Eðn00Þ ¼ EðNÞp 2 Eðn11Þ2 Eðn10Þ2 Eðn01Þ

Unfortunately, without knowing the value of p, the equation for Eðn00Þ above shows that

the available data are insufficient to identify N given the assumed multinomial model for

the target-list universe. Another identifying assumption is needed. In the article, the author

uses a log-linear model characterisation of the problem to investigate alternative

approaches to resolving this identification problem, with the most promising of these

based on a ‘pseudo-independence’ assumption for the list universe defined by the union of

A and B. This is where the probability of a nontarget population unit in this universe being

linked is the product of the corresponding probabilities of a nontarget population unit

being on either list, see Equation (11) in the article. The author argues that this assumption

is reasonable when the lists are of high quality, that is, there are few target population units

missed by them, and derives the method of moments estimators of these probabilities, see

Equation (13). The corresponding method of moments estimator of N then follows from

standard arguments.

6. Some Concluding Observations

From the perspective of a commentator, all four articles reviewed above have a common

focus. They all consider problems that arise when situations corresponding to nonstandard

measurement error scenarios arise in official statistics. The way they tackle these problems
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is different. The first two articles, by Burger et al. and Gerritse et al., use sensitivity

analysis and simulation to illustrate the extent of the problem when standard statistical

methods (which ignore the measurement error) are used. As we see, their findings are

sobering. The glass is definitely half empty. The articles by Tuoto and Di Consiglio and by

Zhang are more along the lines of the glass being half full. Both focus on remedial action,

extending the models underpinning the standard methods to accommodate the

measurement error. Their results are encouraging, in the sense that they show that these

errors can be dealt with in a systematic way. However, they are far from being the final

word on the matter. Both tackle the estimation problem, but leave the (hard!) inference

problem for later. The reason for this is clear – unlike the well-known sample error

structure that is implicit in conventional official statistics, modern official statistics is

increasingly eschewing sampling or minimising the use of (expensive) samples, instead

using a variety of linking and combining techniques to create what is hopefully something

like a ‘census’ of the population of interest. As these authors clearly demonstrate, this can

be a fool’s paradise. The errors implicit in linking (or even more importantly, nonlinking),

as well as misspecification errors in the implicit models underpinning the estimates

derived from these data, can be considerable. The four articles in this issue that I have

commented on here represent significant steps towards development of a methodological

framework for inference in such situations. It is quite obvious that such a framework will

depend on modelling assumptions, so the classical design-based inference paradigm that

has for so long served so well in official statistics is irrelevant. What we see here is

evidence that the model-based inference paradigm for official statistics that is taking its

place needs to be applied with a strong dose of common sense, and a good knowledge of

the frailties of the models used. The insurance provided by design-controlled

randomisation is no longer available.
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