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For policymakers and other users of official statistics, it is crucial to distinguish real
differences underlying statistical outcomes from noise caused by various error sources in the
statistical process. This has become more difficult as official statistics are increasingly based
upon a mix of sources that typically do not involve probability sampling. In this article, we
apply a resampling method to assess the sensitivity of mixed-source statistics to source-
specific classification errors. Classification errors can be seen as coverage errors within a
stratum. The method can be used to compare relative accuracies between strata and releases, it
can assist in deciding how to optimally allocate resources in the statistical process, and it can
be applied in evaluating potential estimators. A case study on short-term business statistics
shows that bias occurs especially for those strata that deviate strongly from the mean value in
other strata. It also suggests that shifting classification resources from small and medium-
sized enterprises to large enterprises has virtually no net effect on accuracy, because the gain
in precision is offset by the creation of bias. The resampling method can be extended to
include other types of nonsampling error.
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bootstrap; resampling.

1. Introduction

Official statistics provide information to policymakers, researchers and the general public on a

country’s social and economic development. Traditionally, the information is collected

through sample surveys. Nowadays, National Statistical Institutes (NSIs) increasingly use

administrative data. Administrative sources provide a population frame from which samples

can be drawn, and auxiliary information that can be used to correct for selective nonresponse

in sample surveys (Bethlehem 2009). Moreover, statistics can be based entirely on

administrative data (UNECE 2007). The main advantages of administrative data are a

reduced response burden and lower costs for the NSI. The costs per inhabitant of censuses

based on administrative data or virtual censuses are one or two orders of magnitude smaller

than those of traditional censuses (Chamberlain and Schulte Nordholt 2004), without any

additional burden on respondents. On the other hand, administrative data are not designed for
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statistical purposes. They may suffer from selective undercoverage, and administrative units

and variables may not match statistical definitions (Bakker and Daas 2012). In other words,

they are prone to nonsampling errors along the lines of the representation side and the

measurement side (Zhang 2012a). The representation side of nonsampling error addresses

units, which can be redundant (out-of-scope), missing, misidentified, misclassified, and so on.

The measurement side of nonsampling error addresses variables, which can be proxy,

unstable, mismeasured, wrongly processed, and so forth.

To benefit from the best of both worlds, survey and administrative data can be combined

at unit level through data integration techniques, such as record linkage, statistical

matching, and microintegration processing. Using the strength of both sources, with the

administrative data covering a large part of the population and the survey data matching

statistical definitions, NSIs tend to publish statistical information at a more detailed level

than with survey data alone.

It is unclear how accurate the estimates based on administrative data or mixed sources

are. Knowledge of the accuracy of those estimates is crucial, both for users of the

statistical output and for NSIs. For users of statistical output, statistical estimates need to

be precise and approximately unbiased to achieve sound decision making. For NSIs,

quantification of the accuracy can be used in the design phase of a new statistical

production process to compare possible estimators and select the ‘best’ one. After the

implementation of the statistical process, knowledge about the effects of various

nonsampling errors on accuracy can be used to improve the production process.

The present article provides an example of the use of mixed-source estimates in business

statistics. In business statistics, an important source of nonsampling errors is the

classification of statistical units into economic activity or industry code. The correct

industry code of a unit is hard to determine because units often perform a mixture of

economic activities and their activities may change over time. For statistical purposes, the

correct code can be determined using operational derivation rules and different sources,

such as internet and chamber of commerce data, but finding the correct code often requires

expert knowledge. NSIs often focus their editing effort on the largest and most complex

units and have neither the time nor the resources to verify the industry codes for the

numerous small units. Consequently, it is to be expected that some units – small units in

particular – are assigned to the wrong economic activity stratum. Such classification errors

can be seen as coverage errors within a stratum; a coverage error occurs when a unit is

unjustly included (overcoverage) or excluded (undercoverage) from the target population.

In Zhang’s (2012a) classification, these errors fall along the line of representation.

A well-developed theory for estimating the accuracy of estimates as a function of

probability sampling exists that has been applied in many practical situations (e.g., Särndal

et al. 1992). Far less advanced is the current theory on how to estimate the accuracy of

outcomes as a function of nonsampling errors, in particular for the case of mixed sources.

This theory needs to be elaborated further before it can be applied easily in practical

situations. Several authors have posited ideas about this topic. Bryant and Graham (2013),

for instance, proposed to estimate the uncertainty caused by nonsampling errors using a

Bayesian approach. Zhang (2012b) used analytical formulas to compare the accuracy of

two estimators, whereas Zhang (2011) used formulas combined with bootstrap resampling

to assess uncertainty due to errors in the grouping of persons into households.

Journal of Official Statistics490



In the present article we apply a bootstrap resampling method. We limit ourselves to

classification errors in business statistics, but the method can be extended to other error

types and is equally applicable to social statistics. We apply the method to a case study on

quarterly turnover for the short-term business statistics (STS), where data for the statistical

units (enterprises) underlying the largest businesses are directly observed through a census

survey and the other units are observed in administrative data. Others have considered

two-phase sampling (Demnati and Rao 2009) and the case of a sample survey overlapping

with a selective register (Kuijvenhoven and Scholtus 2011). We limit the results to a

simple-level estimator, but the methods described can also be applied to complex

estimators or to temporal changes.

The rest of the article is organized as follows. In Section 2 we develop the theory to

estimate the bias and variance due to classification errors. In Section 3 we present a case

study, the results of which are shown in Section 4. We close with a discussion in Section 5.

2. Theory to Estimate the Bias and Variance Due to Classification Errors

Consider a population of N units that are classified into H strata (e.g., based on economic

activity). Let yi denote the turnover – or, more generally, any quantitative variable – of

unit i, and si the (unknown) true stratum to which this unit should be assigned. Suppose we

would like to know the total turnover in each stratum: Yh ¼
PN

i¼1ahiyi, with

ahi ¼ I{si ¼ h} ¼
1 if si ¼ h;

0 if si – h:

(

In this article, we consider the relatively simple case that the true value of turnover is

observed for all units. However, we do not observe the true stratum si but an

approximation thereof, which may be affected by random classification errors. Denote the

stratum to which unit i is actually assigned by ŝi, and let âhi ¼ I{ŝi ¼ h}. Then the

estimated total turnover in stratum h is: Ŷh ¼
PN

i¼1âhiyi.

For simplicity, we suppose that random classification errors occur according to a known

(or previously estimated) transition matrix P ¼ ð pghÞ, with pgh ¼ Prðŝi ¼ hjsi ¼ gÞ, where

it is assumed that each unit in a given true stratum has the same probability of being

misclassified in one of the other strata. (That is to say, each unit has the same transition

matrix P.) Moreover, we assume that classification errors are independent across units.

Finally, we make the technical assumption that phh . maxg–h pgh for all h.

In the application below, we will use a transition matrix of the following particular

form:

P ¼

p
1 2 p

H 2 1
· · ·

1 2 p

H 2 1

1 2 p

H 2 1
p · · ·

1 2 p

H 2 1

..

. ..
. . .

. ..
.

1 2 p

H 2 1

1 2 p

H 2 1
· · · p

2
66666666664

3
77777777775

ð1Þ
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In this special case, each unit is classified correctly with probability p and misclassified

with probability 1 2 p. Moreover, the misclassified units are distributed uniformly over

the other strata. This simple transition matrix is used to help in the exposition of the

methodology, but possible extensions are indicated in the discussion. Note that for

matrices that have the form (1), the above condition phh . maxg–h pgh is equivalent to

p . 1=H.

We would like to assess the bias and variance of Ŷh as an estimator for Yh, that is,

BðŶhÞ ¼ EðŶh 2 YhÞ ¼
XN

i¼1

{EðâhiÞ2 ahi}yi; ð2Þ

VðŶhÞ ¼
XN

i¼1

VðâhiÞy
2
i ; ð3Þ

where in (3) we used the assumption of independent classification errors across units.

In the relatively simple situation considered here, it is not too difficult to derive

analytical expressions for (2) and (3); see the Appendix for more details. Note that the

resulting expressions contain unknown quantities such as Yh that need to be estimated.

Moreover, in future applications we may want to consider situations that are more

complex, where this analytical approach is not possible. Therefore, this article focuses on

an alternative approach to estimate (2) and (3), based on bootstrap resampling, which can

be generalized to more complex situations.

For each unit i, there is an infinite population of possible classification errors, modeled

by the transition probabilities Pr ðŝi ¼ hjsi ¼ gÞ in the matrix P. The ŝi actually observed is

the result of one realization of this model. Under the resampling approach, we consider a

new stratum assignment variable ŝ*
i that is obtained by applying the transition matrix P to

the observed ŝi. That is to say, we consider realisations of the alternative classification

error model given by

Pr ðŝ*
i ¼ hjŝi ¼ gÞ ; Pr ðŝi ¼ hjsi ¼ gÞ ¼ pgh: ð4Þ

We also define: â*
hi ¼ I{ŝ*

i ¼ h}. Finally, we define the so-called bootstrap replication of

the estimated total turnover in stratum h: Ŷ
*

h ¼
PN

i¼1â*
hiyi .

In terms of these bootstrap replications, the bias and variance of Ŷh as an estimator for

Yh may be estimated consistently by, respectively, the bias and variance of Ŷ
*

h as an

estimator for Ŷh (e.g., Efron and Tibshirani 1993). In the particular situation considered

here, it is possible to obtain the latter bias and variance analytically (see the Appendix). In

general, they have to be estimated through Monte Carlo simulation. For this, we generate a

large number (say, R) of random draws from the classification error model (4). Denote

these draws by ŝ*
i1; : : : ; ŝ

*
iR. From these ŝ*

ir, we can compute â*
hir ¼ I{ŝ*

ir ¼ h} and

subsequently Ŷ
*

hr ¼
PN

i¼1 â*
hiryi. The bootstrap bias and variance are then estimated as

follows (Efron and Tibshirani 1993):

B̂
*

RðŶhÞ ¼ mRðŶ
*

h Þ2 Ŷh; ð5Þ

V̂
*

RðŶhÞ ¼
1

R 2 1

XR

r¼1

{Ŷ
*

hr 2 mRðŶ
*

h Þ}
2; ð6Þ

Journal of Official Statistics492



with

mRðŶ
*

h Þ ¼
1

R

XR

r¼1

Ŷ
*

hr;

the average value of the bootstrap replications. For sufficiently large values of R, B̂
*

RðŶhÞ

and V̂
*

RðŶhÞ converge to the true bias and variance of Ŷ
*

h as an estimator for Ŷh and hence to

consistent estimators of the bias and variance of Ŷh.

This is an example of a parametric bootstrap method. Using the observed stratum

assignments as a starting point, we resample the classification errors from an explicit

model, given by the transition matrix P. Technically, resampling model (4) can be justified

as a parametric bootstrap method provided that ŝi is a Maximum Likelihood Estimator

(MLE) for si. Under the condition phh .
g–h
max pgh introduced above, this is indeed the case

(see the Appendix).

As discussed in the Appendix, the above bootstrap estimators B̂
*

RðŶhÞ and V̂
*

RðŶhÞ are

consistent but not unbiased with respect to the true bias and variance of Ŷh. For the special

case that P has the form (1), it is shown in the Appendix that improved, bias-corrected

bootstrap estimators may be computed as follows:

B̂
*

R;BCðŶhÞ ¼ p 2
1 2 p

H 2 1

� �21

B̂
*

RðŶhÞ; ð7Þ

V̂
*

R;BCðŶhÞ ¼ p 2
1 2 p

H 2 1

� �21

V̂
*

RðŶhÞ2
1 2 p
� �2

H 2 1
1þ p 2

1 2 p

H 2 1

� �
K

" #
; ð8Þ

with K ¼
PN

i¼1 y2
i : Note that, under the assumptions made here, all quantities on the right-

hand sides of Expressions (7) and (8) are known. For more complex situations, analytical

bias corrections for the bootstrap estimators are not readily available; we will return to this

point in the discussion.

In the application below, the matrix P will be assumed to be known. In general, it would

have to be estimated. This would require an ‘audit sample’ of units for which both si and ŝi

are observed. Having obtained an estimate P̂ of P, we can apply the above bootstrap

method by resampling from the classification error model (4) with P replaced by P̂.

3. Case Study

3.1. Data

At Statistics Netherlands, quarterly turnover for STS is based on a mix of primary and

administrative data. The turnover estimates are published in four subsequent releases:

30 days, 60 days, 90 days, and one year after the end of the reference period. The turnover

of most businesses is obtained from Value Added Tax (VAT) data, whereas the statistical

units (enterprises) underlying the largest and most complex businesses are directly

observed through a census survey. The rationale behind this design is that for larger and

more complex businesses, it is not possible to make a one-to-one link between
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administrative units and statistical units. Furthermore, early estimates typically need to be

produced before the survey and administrative data are completely available. The missing

data are imputed using ratio imputation, based on data from early respondents and

historical information of the nonresponding units. Because no samples are drawn and

missing data are imputed, no complicated design-based or model-based estimators are

required to make inferences about the target population. The estimator for the total

quarterly turnover in a given industry is simply the sum of observed and imputed values

over all units in both strata. More information about the case study can be found in

van Delden and de Wolf (2013) and the references therein.

The turnover estimates of subsequent quarters are not only used to publish turnover

growth rates – stratified by economic activity – for the STS regulation, but are also used

to compute yearly turnover levels. Those turnover levels are used to calibrate results of the

Structural Business Statistics (SBS), which in turn are used as one of the sources to

determine the gross domestic product. Thus, for both the turnover levels and the growth

rates we would like to have precise and approximately unbiased results.

We will focus on nine industries of economic activity (Figure 1), defined by the Dutch

particularization of NACE Rev. 2 within Division 45: “Wholesale and retail trade and

repair of motor vehicles and motorcycles”. In most of those industries, turnover estimates

are based on a combination of survey and administrative data. In some industries, such as

45111 (“Import of new cars and light motor vehicles”), estimates are based mainly on

survey data. In others, such as 45194 (“Wholesale and retail trade and repair of caravans”)

and 45402 (“Retail trade and repair of motorcycles and related parts and accessories”),

estimates are completely based on administrative data. The proportion of values that are

imputed instead of observed can be substantial for early estimates (30 days after the end of

the reference period) but is almost negligible for final estimates (one year after the end of

the reference period).

3.2. Parameter Values and Scenarios

In this article, we assess the sensitivity of these estimates to classification errors.

According to an internal Service Level Agreement (SLA), the three-digit NACE code

should be correct for at least 95% of large enterprises (survey data) and 65% of small and

medium-sized enterprises (admin data). These values resemble those of an audit held in

2000 and 2003 on the quality of the three-digit NACE code in the Dutch Business

Register, which reported that 97% of the NACE codes are correct for large units

(20 employees or more) in Retail Trade and 69% of the NACE codes are correct for small

units (up to 19 employees) averaged over industries. The proportion of correct NACE

codes is higher for large units than for small units because more resources are invested in

classifying a large unit’s economic activity through profiling.

We applied the SLA figures at industry level to the survey/admin division of units,

which roughly correlates with unit size. We assumed that the first two digits of the NACE

code in our nine industries are correct and that the probability of moving from one industry

to another is the same for all industries. We used this assumption for ease of computation,

which aims to illustrate the procedure of the sensitivity analysis. Whether this assumption

is valid needs to be verified by carrying out a detailed audit on classification errors within
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Division 45. The results of such an audit may lead to extensions, which are mentioned in

the discussion.

We can then define two source-specific 9 £ 9 transition matrices (Scenario 1):

Psurvey ¼

19

20

1

160
· · ·

1

160

1

160

19

20
· · ·

1

160

..

. ..
. . .

. ..
.

1

160

1

160
· · ·

19

20

2
66666666664

3
77777777775

and

0
2
4
6
8

0

1

2
3

0.0
0.5
1.0
1.5
2.0

0.0
0.3
0.6
0.9
1.2

0.0
0.2
0.4
0.6

0.0

0.1

0.2

0.00
0.05
0.10
0.15

0.00
0.04
0.08
0.12

0.00
0.02
0.04
0.06

45112
45111

45310
45191X

45200
45401

45402
45320

45194

t+
30

t+
60

t+
90 t+
y

Release

T
ur

no
ve

r 
(b

ill
io

n 
eu

ro
) Source

Survey Observed

Survey Imputed

Admin Imputed

Admin Observed

Fig. 1. Mixed-source estimates of quarterly turnover at 30 days, 60 days, 90 days and one year after the end of

the reference period (third quarter of 2011) for nine industries within the Dutch particularization of NACE Rev. 2

within Division 45. Industries are ordered from large to small. Note that the y-axes are scaled independently

between industries.
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Padmin ¼

13

20

7

160
· · ·

7

160

7

160

13

20
· · ·

7

160

..

. ..
. . .

. ..
.

7

160

7

160
· · ·

13

20

2
66666666664

3
77777777775

Note that both matrices are special cases of the matrix P in (1).

Although it makes intuitive sense to allocate more resources to large units that have a

large impact on the statistical outcome, one could also argue that many small units may

still have a considerable impact and should not be ignored altogether. In order to study the

relative importance of resource allocation, we introduce a second scenario. By switching

the matrices between sources, we studied what would happen if instead 65% of large

enterprises (survey data) and 95% of small and medium-sized enterprises (admin data)

were correctly classified for economic activity (Scenario 2). In summary, we are

comparing a scenario where classification resources are mainly allocated to large units

receiving a questionnaire with a scenario where classification resources are mainly

allocated to small units whose information is derived from administrative sources.

3.3. Resampling

Using this input, we first drew a new industry code for each unit from these transition

matrices. For instance, a unit that receives a survey and is classified in industry 45111 has a

probability of 19=20 of remaining in 45111 and a probability of 1=160 of ending up in one

of the other eight industries. A unit for which the data come from the admin source and that

is classified in industry 45111 has a probability of 13=20 of remaining in 45111 and a

probability of 7=160 of ending up in one of the other eight industries. We then recalculated

the population parameter per (new) industry. Next, we repeated this a large number of

times: R ¼ 10; 000 simulations per estimate, which seemed sufficient for confidence

intervals to converge (Burger et al. 2013). From these replications, the bias and variance

due to classification errors were estimated using the bias-corrected expressions (7) and (8).

In summary, we assumed a stochastic error process and we used resampling to quantify the

effects of this error process on the turnover estimates.

4. Results

Each turnover estimate is compared with the distribution of bootstrap replications in

Figure 2a. The estimated variance and the square of the bias were added together, resulting

in the mean square error (MSE) as a measure of accuracy. The square root (RMSE) was

taken to revert to the unit of the data (euro), and was normalized (relative root mean

squared error; RRMSE) to the total turnover estimated from observed and imputed data to

make estimates comparable between releases and industries (Figure 2b).

The RRMSE can be alarmingly high: over 900% (Figure 2). We would like to stress,

however, that we have estimated not the true accuracy of the turnover estimates, but their
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Scenario 1 Scenario 2
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8
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Fig. 2. Sensitivity of mixed-source estimates to source-specific classification error. (a) Quarterly turnover per

industry and release estimated from observed and imputed data (black dots and lines), and simulated mean (blue

horizontal dashes) ^ SD (blue thick bars), and 2.5th and 97.5th percentiles (blue thin bars) using 10,000

simulations per estimate. Note that the y-axes are scaled independently between industries. (b) Root mean square

error normalized to the quarterly turnover estimated from observed and imputed data. Classification error is

assumed largest in admin stratum (Scenario 1) or survey stratum (Scenario 2). Industries are ordered from large

to small.
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relative sensitivity to classification errors. In particular, having uniform transition

probabilities between strata may not be a realistic assumption. Moreover, the RRMSE

correlates negatively with the turnover estimates, that is, only small industries (a few

hundred million euros or less) have such a high RRMSE.

Simulations under Scenario 1 show that source-specific misclassification can result in

strongly biased estimates (Figure 2). Our dataset contains one high-turnover industry

(45112). In Figure 2, the simulated total turnover for this industry lies consistently below the

original estimate. According to Expressions (5) and (7), this means that the total turnover of

this industry is underestimated relative to the unknown true value. This bias may be

explained as follows. First, the turnover in 45112 is substantially based on units using the

admin data (Figure 1), which have a fair chance of being misclassified. Second, misclassified

units from other industries that are classified erroneously in 45112 typically have low

turnover. Similarly, the total turnover of low-turnover industries such as 45194 is

overestimated relative to the unknown true value, because many small units are erroneously

replaced by units from higher-turnover industries. This confirms the analytical solution

showing that the absolute bias increases the more the turnover of an industry deviates from

the average turnover of the other industries (see the Appendix). In industry 45401, late

estimates are more accurate than early estimates because they are based on more units with a

likely correct industry code (survey data, see also Figure 1). In the other industries we do not

observe an effect of release on accuracy because the ratio between survey and administrative

data remains fairly constant and the imputed values were held fixed (see the discussion).

When we assume that the economic activity is more reliable for small and medium-

sized enterprises than for large enterprises (Scenario 2), our estimates are indeed less

precise, but also less biased (Figure 2). This suggests that shifting the focus of editing the

industry classification from small and medium-sized enterprises to large enterprises can

result in more biased estimates. Such a shift in resources has virtually no net effect on

accuracy of the level estimates (see Figure 2b), because the gain in precision is offset by

the creation of bias.

For the simple scenarios used here, it is possible to derive analytical expressions for the

bias-corrected bootstrap estimators of bias and variance; see Expressions (17) and (18) in

the Appendix. Note that we can apply these expressions separately to survey and admin

data, as there is no interaction between the two data sources in this study. For Scenario 1,

working out Expressions (17) and (18) with H ¼ 9 and p ¼ 19
20

(survey data) or p ¼ 13
20

(admin data), we find:

B̂
*

1;BCðŶhÞ ¼
8

151
Ŷ

2hð Þ;survey

2 Ŷ
survey

h

� �
þ

56

97
Ŷ

2hð Þ;admin

2 Ŷ
admin

h

� �
;

and

V̂
*

1;BCðŶhÞ ¼
38

755
K̂

survey

h þ
159

24160 g–h

X
K̂

survey

g 2
311

483200
K survey

þ
182

485
K̂

admin

h þ
1071

15520 g–h

X
K̂

admin

g 2
12593

310400
K admin:
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In these expressions, Ŷ
X

h ¼
P

âhiyi, K̂
X

h ¼
P

âhiy
2
i , and K X ¼

P
y2

i where the sums are

over all units in source X, with X [ survey; adminf g; in addition, Ŷ
2hð Þ;X

¼ 1
H21

P
g–hŶ

X

g .

Analogous expressions are obtained for Scenario 2 by interchanging the coefficients for

survey data and admin data.

The numerical solution for the bias and standard deviation closely resembles the

analytical solution derived in the Appendix (Figure 3). The mean difference in bias

between the numerical and analytical solution is zero euro with the maximum absolute

difference being merely twelve million euros (eleven percent of the analytical solution).

The mean relative difference in standard deviation is 0.6% with the maximum relative

absolute difference being 7.4% of the analytical solution. This confirms that 10,000

simulations are sufficient to approximate the analytical solution.

5. Discussion

For policymakers and other users of official statistics, it is crucial to distinguish real

differences between statistical outcomes from noise caused by various error sources in the

statistical process. This has become more difficult as official statistics are now increasingly

based upon a mix of sources that typically do not involve probability sampling. We have

described a case study where statistical units (enterprises) underlying large and complex

businesses are directly observed through a census survey and the turnover of smaller and

less complex enterprises is obtained from tax data.

The resampling method described in the current article provides insight into the

sensitivity of mixed-source statistics to a source-specific nonsampling error. Results can

be used to compare industries and releases, and can assist in deciding where to invest

resources into the statistical process. Our results show that bias occurs especially in those

strata that deviate strongly from the mean value in other strata. The example we have

shown also suggests that shifting classification resources from small and medium-sized

enterprises to large enterprises has virtually no net effect on the accuracy of the level

estimates, because the gain in precision is offset by the creation of bias. On the other hand,

this resource allocation might improve the accuracy of temporal turnover changes,

because the creation of bias in both time points is annihilated, whereas the gain in

precision is not. Results indicate that level estimates will become less biased when NSIs
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find ways to improve the correctness of the industry codes of small enterprises, while

maintaining the industry code quality of large enterprises. Because manual coding will be

too expensive in practice, other approaches are needed. One possible future direction is to

automatically collect data on products and services from business websites combined with

text-mining techniques to translate the results into reliable industry codes.

The resampling method that we have presented can be used not only for sensitivity

analyses but also to estimate the accuracy of outcomes. A major prerequisite to achieving

this is to find cost-effective ways that can be used by NSIs to obtain a sound estimation of

the error distribution. In our case study, we used reasonable parameter values for the

probability that the observed industry code is correct. Nonetheless, we simply assumed

that the probability of moving from one industry to another is the same, whereas in reality

we expect those probabilities to vary, both between pairs of strata and between units. With

our current parameter settings, we found extremely high RRMSEs in some industries.

These results underline that our parameterization needs to be refined before drawing final

conclusions about the data. We encourage other NSIs to run similar simulations with their

own parameter settings of the transition matrix.

We see two steps to improve estimating a transition matrix. First, we need to understand

which variables determine the correctness of an industry code for a specific unit, for

instance its (observed) size class, its three-digit NACE code and the occurrence of an event

(birth, merger, take-over etc.). Second, we need to estimate the error distribution.

Possibilities for estimating the desired input would be to compare different sources, to

derive estimates from the editing process, to apply audit sampling, and/or to model the true

economic activity as a latent class. Note that accuracy estimates can also be extended to

account for uncertainty in knowledge about those parameter values. Zhang (2011) used

bootstrap resampling to account for that issue. In a Bayesian approach, uncertainty about

the parameter values would be modeled by a prior distribution.

NSIs typically develop new estimators as new data sources become available or the

statistical process is redesigned. The resampling method can also be applied to compare

different estimators and to test which estimator is the least sensitive to the error process. It

could also be used to decide about the line of demarcation between the survey and the

admin data.

Note that we have assumed that the imputed turnover values are independent of the

industry code. In reality, the industry code is used as auxiliary information in the

imputation process. It would therefore be more realistic to impute missing values after

resampling instead of assuming fixed imputed values (Shao and Sitter 1996). This would

affect early releases where a substantial proportion of the estimate is based on imputed

values. We expect that, when variation due to imputation is accounted for, classification

errors will affect early releases more than late ones.

A theoretical difficulty that remains to be solved is that the direct bootstrap estimators of

bias and variance may be biased in practice. In the above simplified application, we could

correct this bias analytically. However, we also want to be able to use the bootstrap

method in more realistic situations (as discussed above) where analytical derivations are

no longer feasible, and we have no reason to assume that the bootstrap estimators will be

less biased in these applications. It may be possible to obtain bias corrections to the

bootstrap estimators numerically, for example, by applying a nested version of the
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bootstrap in which the bootstrap resamples are resampled themselves; see Efron and

Tibshirani (1993). Another, computationally more attractive possibility could be to work

with so-called bias-corrected bootstrap confidence intervals (Efron and Tibshirani 1993;

DiCiccio and Efron 1996) instead of bias and variance estimates. This remains to be

investigated.

The resampling method could be adapted to specific situations or needs. First of all, we

could extend the method to account for overcoverage and undercoverage of units in the

population frame. To that end, we could introduce an exclusion stratum, ‘outside the

population’, and for each industry code estimate the overcoverage (true value is ‘outside

the population’) and the undercoverage: the proportion that is unjustly missing.

Furthermore, we could extend the method to study measurement errors, a combination of

(interacting) nonsampling errors or errors due to nonprobability sampling (see for instance

de Munnik et al. 2013). Another extension could be to assess the effect on accuracy of

changes over time rather than of levels.

Appendix

The Observed Industry Code As An MLE for the True Industry Code

Recall from Section 2 that the resampling model (4) can be justified as a parametric

bootstrap method provided that ŝi is a Maximum Likelihood Estimator (MLE) for si.

Below we will prove that this is the case.

Let s ¼ s1; : : : ; sN

� �
0 and ŝ ¼ ðŝ1; : : : ; ŝNÞ

0 denote vectors of true and observed

industry codes, respectively. Since classification errors are assumed to be independent

across units, the joint parametric model for the observed industry codes is given by:

Pr ŝ ¼ ðh1; : : : ; hNÞ
0js ¼ g1; : : : ; gN

� �
0

� �
¼
YN
i¼1

Pr ŝi ¼ hijsi ¼ gi

� �
¼
YN
i¼1

pgihi
:

Consider the log-likelihood function of the unknown parameter vector s, given the

observed industry codes ŝ. By definition, it holds that:

log L s ¼ g1; : : : ; gN

� �
0jŝ ¼ h1; : : : ; hN

� �
0

� �
¼
XN

i¼1

log pgihi
:

Since we assumed independence across units, we can maximize this sum by maximizing

each term separately. Under the condition that phh . maxg–h pgh for all h, it follows that

the i th term is maximized by choosing si ¼ gi ¼ hi ¼ ŝi. We conclude that the MLE of

s is given by ŝ. As noted in Section 2, this justifies the use of resampling model (4) as

an application of the parametric bootstrap. In addition, it follows that Ŷh is a so-called

‘plug-in estimator’ of Yh, which justifies Expression (5) (Efron and Tibshirani 1993).

While ŝi is the MLE of si here, it will be shown below that the direct bootstrap

estimators (5) and (6) are biased with respect to (2) and (3). This may be explained by the

fact that we are using a sample of size N to estimate the N unknown parameters s1; : : : ; sN

of the parametric model. It is well known that MLEs – and, by extension, bootstrap

estimators – are usually biased in situations where the effective sample size is small.
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On the other hand, the bootstrap estimators are asymptotically consistent, because we are

not in a situation where the number of unknown parameters increases with the sample size.

Given our fixed population of N units, we could – in theory – obtain m independently

assigned industry codes ŝi1; : : : ; ŝim for each unit, thereby drawing a sample of size mN

from the parametric model. The bias in the corresponding bootstrap estimators – with

Model (4) applied to the MLE of si based on ŝi1; : : : ; ŝim – would then vanish as m ! 1.

Derivation of Bias and Variance

For the highly simplified situation considered in Section 2, we can derive analytical

expressions for the bias and variance of Ŷh.

Let ai ¼ a1i; : : : ; aHi

� �
0 and âi ¼ ðâ1i; : : : ; âHiÞ

0. Given that classification errors are

described by a transition matrix P ¼ ð pghÞ, we observe that:

E âhið Þ ¼
XH

g¼1

agiE âhijsi ¼ g
� �

¼
XH

g¼1

agi Pr ŝi ¼ hjsi ¼ g
� �

¼
XH

g¼1

agipgh;

and hence that E âið Þ ¼ P 0ai. Here we used that agi ¼ 1 for exactly one g [ {1; : : : ;H}.

Now let y ¼ Y1; : : : ; YH

� �
0 and ŷ ¼ ðŶ1; : : : ; ŶHÞ

0 denote vectors of (estimated) stratum

totals. By definition, y ¼
PN

i¼1 aiyi and ŷ ¼
PN

i¼1 âiyi. Noting that

E ŷ
� �
¼
PN

i¼1 EðâiÞyi ¼ P 0y, we obtain for the bias of ŷ:

B ŷ
� �
¼ E ŷ

� �
2 y ¼ P 02 I

� �
y; ð9Þ

with I denoting the H £ H identity matrix. In particular, this yields the following

expression for the bias of a single stratum total (2):

B Ŷh

� �
¼ phh 2 1
� �

Yh þ
g–h

X
pghYg:

In the special case that P has the Form (1), this expression can be simplified to:

B Ŷh

� �
¼ p 2 1
� �

Yh þ
1 2 p

H 2 1 g–h

X
Yg ¼ 1 2 p

� �
�Y 2hð Þ 2 Yh

� 	
; ð10Þ

where �Y 2hð Þ ¼ 1
H21

P
g–hYg is the average stratum total over all strata except stratum h.

This formula shows that the (absolute) bias decreases with p, as expected. It also shows

that the (absolute) bias increases the further Yh deviates from �Y 2hð Þ. In other words, bias

occurs especially for those strata that deviate strongly from the mean value in other strata.

Next, we consider the variance of ŷ. Since âi contains binary values, it holds that

âiâi
0 ¼ diagðâiÞ, where diagðxÞ denotes the diagonal matrix with x on the main diagonal.

Similarly, aiai
0 ¼ diagðaiÞ. Therefore, the variance-covariance matrix of âi may be

written as follows:

VðâiÞ ¼ Eðâiâi
0Þ2 EðâiÞEðâi

0Þ ¼ diagðEðâiÞÞ2 P 0aiai
0P ¼ diagðP 0aiÞ2 P 0diagðaiÞP;

where we used EðâiÞ ¼ P 0ai as derived above. Now using the fact that the variance-

covariance matrix VðŷÞ can be written as VðŷÞ ¼
PN

i¼1 VðâiÞy
2
i [cf. Expression (3)],
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we obtain:

VðŷÞ ¼
XN

i¼1

diagðP 0aiy
2
i Þ2 P 0diagðaiy

2
i ÞP

� 	
¼ diagðP 0kÞ2 P 0diagðkÞP: ð11Þ

Here, k ¼ K1; : : : ;KH

� �
0, with Kh denoting the sum of squared values for variable yi in

stratum h; that is, Kh ¼
PN

i¼1 ahiy
2
i and k ¼

PN
i¼1 aiy

2
i . In particular, the main diagonal of

V ŷ
� �

contains the following elements:

V Ŷh

� �
¼
XH

g¼1

pghKg 2
XH

g¼1

p2
ghKg ¼

XH

g¼1

pghð1 2 pghÞKg:

In the special case that P has the Form (1), this formula simplifies to:

VðŶhÞ ¼ p 1 2 p
� �

Kh þ
1 2 p

H 2 1
1 2

1 2 p

H 2 1

� �

g–h

X
Kg: ð12Þ

Application to the Bootstrap Estimators and Derivation of (7) and (8)

Since the bootstrap replications Ŷ
*

h are obtained by resampling from the classification error

model (4), analogous analytical expressions to (9) and (11) may be derived for the bias and

variance-covariance matrix of the bootstrap replications: Bðŷ* jŷÞ ¼ ðP 0 2 IÞŷ and

Vðŷ* jŷÞ ¼ diagðP 0k̂Þ2 P 0diagðk̂ÞP. Thus, for the case study in Section 3, it was possible

to obtain bootstrap estimates of the bias and variance of the original estimators without

resorting to Monte Carlo simulations. We denote these analytical estimates by B̂
*

1 Ŷh

� �
and

V̂
*

1 Ŷh

� �
, to indicate that the same estimates would also be obtained by taking the limit

R ! 1 in (5) and (6). In particular, for the special case that P has the Form (1), we obtain

[cf. (10) and (12)]:

B̂
*

1 Ŷh

� �
¼ 1 2 p
� �

Ŷ 2hð Þ 2 Ŷh

n o
; ð13Þ

V̂
*

1 Ŷh

� �
¼ p 1 2 p

� �
K̂h þ

1 2 p

H 2 1
1 2

1 2 p

H 2 1

� �

g–h

X
K̂g; ð14Þ

in obvious notation.

It is not difficult to show that the above bootstrap estimators are biased with respect to

the true bias and variance of Ŷh. In fact, we have:

E{B̂
*

1 ŷ
� �

} ¼ ðP 0 2 IÞEðŷÞ ¼ ðP 0 2 IÞP 0y ¼ P 0ðP 0 2 IÞy ¼ P 0BðŷÞ
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according to Expression (9). Similarly,

E V̂
*

1 ŷ
� �n o

¼ diagðP 0Eðk̂ÞÞ2 P 0diagðEðk̂ÞÞP

¼ diagðP 0Bðk̂ÞÞ þ diagðP 0kÞ2 P 0diagðBðk̂ÞÞP 2 P 0diag kð ÞP

¼ V ŷ
� �
þ diag P 0 P 0 2 I

� �
k

� �
2 P 0diagððP 0 2 IÞkÞP:

In the last line, we used Expression (11). We also used the fact that B k̂

 �

¼ P 0 2 I
� �

k,

by analogy with Expression (9). This shows that, in the presence of classification errors,

E B̂
*

1 ŷ
� �n o

– B ŷ
� �

and E V̂
*

1 ŷ
� �n o

– V ŷ
� �

.

For the special case that P has the Form (1), we can simplify the above expression for

E B̂
*

1 ŷ
� �n o

to:

E B̂
*

1 Ŷh

� �n o
¼ pB Ŷh

� �
þ

1 2 p

H 2 1 g–h

X
B Ŷg

� �
¼ p 2

1 2 p

H 2 1

� �
B Ŷh

� �
: ð15Þ

Here, we used the fact that the overall total turnover Y ¼
PH

h¼1 Yh ¼
PN

i¼1 yi is not

affected by classification errors; hence,
PH

h¼1 Ŷh ¼ Y and
P

g–hBðŶgÞ ¼ 2BðŶhÞ.

A similar, slightly more tedious derivation shows that, in this special case:

E{V̂
*

1ðŶhÞ} ¼ p 2
1 2 p

H 2 1

� �
VðŶhÞ þ

ð1 2 pÞ2

H 2 1
1þ p 2

1 2 p

H 2 1

� �
K; ð16Þ

with K ¼
PH

h¼1 Kh ¼
PN

i¼1 y2
i .

To derive the bias-corrected bootstrap estimators (7) and (8), we rearrange Expressions

(15) and (16) as follows:

BðŶhÞ ¼ p 2
1 2 p

H 2 1

� �21

E{B̂
*

1ðŶhÞ}

and

VðŶhÞ ¼ p 2
1 2 p

H 2 1

� �21

E V̂
*

1ðŶhÞ
n o

2
ð1 2 pÞ2

H 2 1
1þ p 2

1 2 p

H 2 1

� �
K

� 
:

Replacing E{B̂
*

1ðŶhÞ} and E{V̂
*

1ðŶhÞ} in the right-hand sides by their respective

(unbiased) estimators B̂
*

RðŶhÞ and V̂
*

RðŶhÞ, we obtain Expressions (7) and (8). We can also

obtain analytical versions of these bias-corrected bootstrap estimators by using (13)

and (14):
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B̂
*

1;BCðŶhÞ ¼ p 2
1 2 p

H 2 1

� �21

ð1 2 pÞ Ŷ 2hð Þ 2 Ŷh

n o
; ð17Þ

V̂
*

1;BCðŶhÞ ¼ p 2
1 2 p

H 2 1

� �21

pð1 2 pÞK̂h þ
1 2 p

H 2 1
1 2

1 2 p

H 2 1

� �

g–h

X
K̂g

2
4

2
1 2 p
� �2

H 2 1
1þ p 2

1 2 p

H 2 1

� �
K

#
:

ð18Þ
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