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Register data that originate from administrative or other secondary sources are increasingly
being used to generate statistical outputs directly. The coverage of the input datasets is an
important issue in this respect. Traditionally capture-recapture models have been used to deal
with multiple list enumerations subjected to undercoverage errors. The aim of this article is to
scope possible approaches to modelling capture-recapture data with additional overcoverage
error. Attention is primarily given to model interpretations and conditions under which a
model may provide a plausible basis for estimation and uncertainty evaluation. The setting
with two list enumerations is examined in depth as it is the most common in practice. Models
that can be extended to include more than two lists are identified. An additional independent
coverage survey with only undercoverage error is always needed for estimation. Potential
application to census coverage-error adjustment is discussed.

Key words: List error and catch; log-linear model; pseudoconditional independence.

1. Introduction

More and more often, register data that originate from administrative or other secondary

sources are being used to generate statistical outputs directly, instead of merely supplying

auxiliary information for sample surveys and census. The recent round of census provides

examples of this development in a number of European countries. The coverage of the

input registers has a direct bearing on the population size statistics and, in the next

instance, statistics about the various characteristics of interest (Zhang 2012).

A register has undercoverage of the target population if there exist population units that

are not listed in the register; it has overcoverage if not all the units in the register belong to

the target population. Capture-recapture (CR) models for population size estimation (e.g.,

Fienberg 1972; Cormack 1989; IWGDMF 1995a and 1995b) can be used to deal with the

undercoverage errors that exist in multiple registers. A notable application is census

underenumeration adjustment using an independent U-sample coverage survey to generate

recapture data. See for example Wolter (1986), Hogan (1993), Brown et al. (2011),

Renaud (2007), and Nirel and Glickman (2009). Note that the term list (e.g., Wolter 1986)

is more natural than register in this context, as well as in a number of situations outside

official statistics, such as sizing of wildlife, hard-to-reach or clandestine populations.

The two terms list and register will be used interchangeably in this article.
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When it comes to overcoverage, the standard census adjustment approach is to deploy a

separate O-sample, selected from the census reports, to directly estimate the overcoverage

rate. No explicit statistical model is applied to the O-sample, in contrast to the U-sample.

Moreover, fieldwork for the O-sample can be limited or totally absent – see for example

Renaud (2007) for an account of the Swiss census. On the one hand, this helps to bring

down the cost; on the other hand, spurious coverage errors such as duplicate reports and

misreports of census residence area can to a large extent be assessed based on record

matching and clerical checks without any fieldwork. However, the ability to detect

erroneous enumeration, that is, reports of nonexistent or out-of-scope cases, may be

reduced as a result.

A modelling approach to include both under- and overcoverage errors can thus have

direct relevance to the census methodology. It may potentially provide a means to assess as

well as to adjust for erroneous census enumerations, provided additional register

enumerations from secondary sources. For example, the Office for National Statistics in

the UK is currently investigating the use of administrative data for the future provision of

population statistics (ONS 2013). The same goes for those countries where the traditional

census enumeration has already been replaced by population registers (e.g., Israel,

Switzerland), but the O-sample deploys only limited fieldwork or no fieldwork at all.

Moreover, applications to CR data in a range of situations can be conceived. For

instance, the target population may be clandestine and dynamic, such as active drug users.

Relevant lists may be available from the police, clinics, and various nongovernmental

organisations. Erroneous enumeration can occur in all these lists. Or, consider multiple

screening procedures, each generating a list of the units with a positive test result. Only the

test-positive units are subjected to a comprehensive examination, which may reveal both

erroneous enumerations and underenumerations in each list. A model for predicting the

errors of each test as well as the combined test results may then be of interest.

In the sequels we investigate some possible approaches to modelling two-list CR data in

the presence of both over- and undercoverage errors. Section 2 briefly sets out the CR model

underlying the dual-system estimator (DSE) in use for census undercoverage, as expounded

in Wolter (1986). The modelling approach is extended to include the overcoverage error in

Section 3. All possible standard log-linear modelling alternatives for crossclassified counts

are examined, as well as an approach based on the concept of pseudoconditional

independence. The emphasis is on the modelling strategy, the interpretation and the

conditions under which a model may provide a plausible basis for statistical estimation and

uncertainty evaluation. Models that can readily be generalised to include more than two lists

are identified. In Section 4 the different models are compared to each other, using artificial

CR datasets that seem relevant for the setting of census population size estimation with

additional administrative register data. Discussions will be given in Section 5 regarding the

future work that is needed to establish a viable estimation methodology for the census or

census-like population statistics.

2. Homogeneity Model for Dual-System Estimation

Wolter (1986) discussed several CR models for census undercoverage errors. The

homogeneity model described below underpins the DSE currently in use in a number of
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countries. References to the assumptions as stated by Wolter are cited and given in

parentheses.

Let target population U be of unknown size N. Let A and B be two lists, both of which

aim to enumerate U. Let the probability that a unit in U belongs to a particular list domain

be given as below:

Each unit is assumed to follow independently (“Autonomous Independence”) the

multinomial distribution (“Multinomial”) with probability pab for being included in the list

domain ða; bÞ, for a; b ¼ 1; 0;þ. Note that U00 refers to the units that are neither

enumerated in A nor B. Let the list-domain size Nab be observed except for N00 and

N ¼ Nþþ, that is, the matching of list A and B is error free (“Matching”). All the units in

list A and B can be identified (“Nonresponse”). Neither list A nor B contain overcoverage

errors (“Spurious Events”). Finally, under the assumption that the event of being

enumerated in list A is independent of that in B (“Causal Independence”), the probability

pab is given by

pab ¼ paþpþb ð1Þ

For application to census undercoverage adjustment, let A be the census data and B the

independent coverage-survey data. To avoid additional details, we assume that the

coverage survey aims to enumerate the whole population at the sampled locations, such as

census blocks or postcode areas, so that the missing survey enumerations are not due to

sample selection, and the estimation below may be repeated for the target population at

each sampled location. Because there is a time lag between the two list enumerations in

practice, one needs to assume that the target population remains the same (“Closure”).

A large-sample estimator of N and ð p1þ; pþ1Þ in (1) is given by

ðN̂; p̂1þ; p̂þ1Þ ¼
N1þNþ1

N11

;
N11

Nþ1

;
N11

N1þ

� �

(e.g., Wolter 1986). In particular, N̂ is the so-called Dual-System Estimator (DSE). Among

others this may be motivated as the method-of-moments estimator (MME) based on the set

of moment equations:

EðN11Þ ¼ Np1þpþ1

EðN1þÞ ¼ Np1þ

EðNþ1Þ ¼ Npþ1

EðN00Þ ¼ N 2 EðN1þÞ2 EðNþ1Þ þ EðN11Þ

8>>>>><
>>>>>:

ð2Þ
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Note that the last equation is merely a tautology since N00 is nonobservable, such that there

are in effect only three equations.

3. Model with Additional Overcoverage Errors

3.1. Target-List Universe

Erroneous enumerations in census correspond to reports of nonexistent or out-of-scope

cases, such as newborns after the census reference period that are mistakenly recorded in

the census. Out-of-scope newborns can equally occur in lists originating from

administrative sources, such as when the entry time point of a record is misreported.

More often, though, erroneous register enumerations happen because an individual leaves

the target population without deregistering. For instance, someone may have moved

abroad without notifying their general practitioner and thus becomes an erroneous

enumeration in the Patient Register for the census. Likewise, the same individual may fail

to notify the election office, and become an erroneous enumeration in the Electoral

Register, say, until the next time this person takes part in the general election from abroad.

Generally speaking, therefore, it is unlikely to be the case that overcoverage errors are

independent across multiple registers. Moreover, erroneous enumerations may be more

extensive in the administrative registers than in the census. For example, the Patient

Register enumeration of the population of England and Wales is over four percent higher

than the Census 2011 population estimate (ONS 2013). In other words, if unaccounted for,

erroneous register enumeration is potentially a source of large bias.

The homogeneity model above is defined for the units in the target population alone.

Erroneous list enumeration implies that there are units included in list A or B, or both,

which are not in the target population U. One needs to extend the reference set to the

target-list universe, denoted by U* ¼ U < A < B. Let the probability that a unit in U*

belongs to a particular target-list domain be given as below:

Each unit in U* is assumed to follow independently (“Autonomous Independence”) the

multinomial distribution (“Multinomial”) with probability puab, for u; a; b ¼ 1; 0;þ,

except for ðu; a; bÞ ¼ ð0; 0; 0Þ which is not part of the target-list universe. Let Nuab be the
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size of the corresponding target-list domain, where N000 ; 0, that is a structural zero.

The target population is given by U ¼ U *
1þþ and its size by N ¼ N1þþ in this notation.

Let Nuab be observed for ðu; a; bÞ ¼ ðþ; 1; 1Þ, ðþ; 1; 0Þ or ðþ; 0; 1Þ, that is the matching of

list A and B is errorfree (“Matching”), and let all the list units be identified

(“Nonresponse”).

Thus, all the assumptions of the homogeneity model are retained, except for the three of

“Spurious Events”, “Closure” and “Causal Independence”. This is of course not to say that

the other assumptions are all beyond criticism. But they are not dealt with in this article.

In particular, we modify the assumption of “Spurious Events” to exclude all other

overoverage errors, such as duplicate reports, but allow for erroneous list enumeration.

The “Closure” assumption is no longer necessary, because we now allow for erroneous list

enumerations. What remains to be explored are the possibilities of replacing the

assumption of “Causal Independence” (1).

3.2. Moment Equations Given Additional Survey Enumeration

The seven parameters of the multinomial distribution are not estimable given only three

observed list-domain counts Nþ11, Nþ10 and Nþ01. Assume that there exists an additional

coverage survey, denoted by S, which (I) has only undercoverage error so that all the units

in S belong to U, and (II) can be matched to list A and B without errors.

The following additional notations seem convenient. Let nab be the observed number of

units in S that belong to the list domain ða; bÞ. Assume that the event of being enumerated

in S is independent of the inclusion in the lists, such that

pS ¼ P i [ Sji [ U *
1ab

� �
¼ Pði [ S Þ ð3Þ

It follows that EðnabÞ ¼ EðN1abÞpS. Consider two possible decompositions

EðN1abÞ ¼ EðNÞP i [ U *
1abji [ U

� �
¼ EðNþabÞP i [ Uji [ U *

þab

� �
ð4Þ

for ða; bÞ – ð0; 0Þ. The first conditional probability that unit i [ U is in the list domain

ða; bÞ will be referred to as the corresponding list catch rate, short handed as

pab ¼ p1ab=p1þþ

for a; b ¼ 1; 0;þ. The second conditional probability is given by one minus the

conditional probability that a unit in the list domain ða; bÞ is an erroneous enumeration, for

ða; bÞ – ð0; 0Þ, to be referred to as the corresponding list error rate and short handed as

uab ¼ p0ab=pþab ¼ p0ab=ð p1ab þ p0abÞ

Given that our interest is to see how the erroneous enumerations can be modelled, it will

be useful to observe a set of moment equations, conditional on x ¼ ðx11; x10; x01Þ defined
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by xab ¼ Nþab, given in terms of the list error rates:

Eðn11jxÞ ¼ x11ð1 2 u11ÞpS

Eðn10jxÞ ¼ x10ð1 2 u10ÞpS

Eðn01jxÞ ¼ x01ð1 2 u01ÞpS

Eðn00jxÞ ¼ EðNjxÞ2 x11ð1 2 u11Þ2 x10ð1 2 u10Þ2 x01ð1 2 u01Þ
� �

pS

8>>>>><
>>>>>:

ð5Þ

Notice that, since the unknown quantity EðNjxÞ appears only in the last equation, this last

equation can only be used to derive an estimate of EðNjxÞ given the other parameter

estimates. There are four parameters in the first three equations of (5). At least one

additional assumption is needed from the different models, which can be compared to each

other in terms of how they transform the first three equations. The strategy now is to

examine systematically the possible log-linear models for, respectively, the target universe

U, the target-list universe U* and the list universe, denoted by UL ¼ A < B.

3.3. A Log-Linear Model of U

The list catch rates are defined for the units in U, conditional on which the N1abs form a

two-way contingency table with fixed total N. The saturated log-linear model is

log pab ¼ lþ lA
a þ lB

b þ lAB
ab

(e.g., Agresti 2013). The largest nonsaturated model is given by

lAB
ab ¼ 0, pab ¼ paþpþb , p11p00 ¼ p10p01 ð6Þ

that is the event of being enumerated in List A is independent of that in B. Given that

EðnabjNÞ ¼ NpabpS, Model (6) implies

EðN111jNÞ ¼ EðN11þjNÞEðN1þ1jNÞ=N

Eðn11jNÞEðn00jNÞ ¼ Eðn10jNÞEðn01jNÞ

the latter of which can be checked given the nabs.

As discussed previously, one does not really expect (6) to hold for example between the

census and the Patient Register, or between the Patient and the Electoral Registers, and so

on. Still, to see the implications of (6) on the list error rates, let u1þ ¼ p01þ=pþ1þ be the

probability that a unit in list A is erroneous and uþ1 ¼ p0þ1=pþþ1 that a unit is erroneous in

list B. Combining (6) with decompositions like (4), we have

ð1 2 u11Þ

ð1 2 u1þÞð1 2 uþ1Þ
¼

Eðx1þÞEðxþ1Þ

Eðx11ÞEðNÞ
ð7Þ

On account of (7), we refer to (6) as an incidental model of the list error mechanism, in the

sense that it imposes constraints between the list error rate and the target population

size N. For instance, under (6), we have N ¼ EðN11þjNÞEðN1þ1jNÞ=EðN111jNÞ.
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Since N111 # Nþ11 ¼ x11, and N111 ¼ N11þ 2 N110 $ N11þ 2 Nþ10 ¼ N11þ 2 x10, and

N111 ¼ N1þ1 2 N101 $ N1þ1 2 Nþ01 ¼ N1þ1 2 x01, we must have

EðN11þjNÞEðN1þ1jNÞ

Eðx11jNÞ
# N # min

EðN11þjNÞEðN1þ1jNÞ

EðN11þjNÞ2 Eðx10jNÞ
;

EðN11þjNÞEðN1þ1jNÞ

EðN1þ1jNÞ2 Eðx01jNÞ

� �

Now that each list error rate is a conditional probability within the list universe, such

constraints on the target population size are unwarranted in general.

3.4. Log-Linear Models for Target-List Universe

The saturated log-linear model of puab of the target-list universe U* is given by

log puab ¼ lþ lU
u þ lA

a þ lB
b þ lUA

ua þ lUB
ub þ lAB

ab þ lUAB
uab

Without losing generality, we shall set all the ls to zero except those with all their

subscripts equal to one. The structural zero cell, that is, p000 ¼ 0, can be accommodated

by dropping the parameter l, such that the seven parameters of the saturated model are

lU
1 ; l

A
1 ; l

B
1 ; l

UA
11 ; l

UB
11 ; l

AB
11 ; l

UAB
111

� �
.

The largest nonsaturated hierarchical model is the one with lUAB
111 ¼ 0, denoted by

½UA�½UB�½AB�, where

p100 ¼ exp lU
1

� �

p010 ¼ exp lA
1

� �

p110 ¼ exp lU
1 þ lA

1 þ lUA
11

� �

p001 ¼ exp lB
1

� �

p101 ¼ exp lU
1 þ lB

1 þ lUB
11

� �

p011 ¼ exp lA
1 þ lB

1 þ lAB
11

� �

p111 ¼ exp lU
1 þ lA

1 þ lB
1 þ lUA

11 þ lUB
11 þ lAB

11

� �

It follows that

log
p011

p111

¼ log
p010

p110

þ log
p001

p101

þ log p100

The three log ratios correspond to the log odds of list error in list domain ð1; 1Þ, ð1; 0Þ and

ð0; 1Þ, respectively, denoted by logit u11, logit u10 and logit u01, whereas p100 is the

proportion of target-population units outside of the list universe. In terms of the list error

rates, then, the model amounts to the following assumption

logit u11 ¼ logit u10 þ logit u01 þ ð log EðN100Þ2 log ðNþþþÞÞ ð8Þ

which is an incidental model, just like (6). Since there are no compelling reasons why the

conditional probabilities of erroneous enumeration within the list universe must depend on

the number of target units outside of it, Model (8) cannot be of general use.

It is possible to further reduce the log-linear model. But this would only result in

incidental models based on implausible assumptions. For instance, under model ½UA�½AB�
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with lUB
11 ¼ 0 in addition, we would have

p001

p101

¼
1

p100

and
p010

p110

¼
p011

p111

¼
1

p100exp lUA
11

� �

3.5. Log-Linear Models for List Universe

To separate p100 from the list error mechanism, consider now modelling the list universe

UL ¼ A < B with the conditional probabilities, for ða; bÞ – ð0; 0Þ and u ¼ 0; 1,

quab ¼ puab=ð1 2 p100Þ

The saturated log-linear model of quab is given by

log quab ¼ lþ lU
u þ lA

a þ lB
b þ lUA

ua þ lUB
ub þ lAB

ab þ lUAB
uab

Without losing generality, we shall set all the ls to zero except those with all their

subscripts equal to one. There are two structural-zero cells in UL, namely, q000 ¼ q100 ¼ 0,

which can be accommodated by dropping the parameters l and lU
1 , such that the six

parameters of the saturated model are lA
1 ; l

B
1 ; l

UA
11 ; l

UB
11 ; l

AB
11 ; l

UAB
111

� �
.

The largest nonsaturated hierarchical model is the one with lUAB
uab ¼ 0, where

q010 ¼ exp lA
1

� �

q110 ¼ exp lA
1 þ lUA

11

� �

q001 ¼ exp lB
1

� �

q101 ¼ exp lB
1 þ lUB

11

� �

q011 ¼ exp lA
1 þ lB

1 þ lAB
11

� �

q111 ¼ exp lA
1 þ lB

1 þ lUA
11 þ lUB

11 þ lAB
11

� �

In terms of the log odds of erroneous enumeration, that is, logit u11, logit u10 and logit u01,

this amounts to the following assumption, for ða; bÞ – ð0; 0Þ,

logit uab ¼ agA þ bgB , logit u11 ¼ logit u10 þ logit u01 ð9Þ

This is a ‘standard’ null second-order interaction assumption, that is, lUAB
uab ¼ 0, of the

three-way classification of the list units. It is not an incidental model. Whether or not

plausible for the particular data of concern, it is a model that can not be disregarded

a priori, and it can readily be extended to situations involving more than two lists, where

the log-linear model of the extended list universe can be put down similarly.

We note that further reduction of Model (9) would only result in less plausible

assumptions. For instance, under model ½UA�½AB� with lUB
11 ¼ 0 in addition, we have

q001

q101

¼ 1 and
q010

q110

¼
q011

q111

¼ exp 2lUA
11

� �

that is, the error rate is simply 0.5 for the units in B but not A, and it is the same for all the

units in A whether they belong to list B or not, which seems unwarranted in general.
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3.6. Two Alternative Log-Linear Models for List Universe

So far (9) is the only model of list erroneous enumeration that (i) does not involve

incidental assumptions about the target population size, and (ii) can be extended to

include more than two lists. When a list error rate is low, its logit does not differ much

from its log. For instance, for a ten percent error rate, we have logit 0:1 ¼ 22:2

compared to log 0:1 ¼ 22:3. Replacing logit in (9) with log leads to the following log-

linear model

log uab ¼ aaA þ baB , log u11 ¼ log u10 þ log u01 , u11 ¼ u10u01 ð10Þ

for ða; bÞ ¼ ð1; 1Þ; ð1; 0Þ; 0; 1Þ, that is, the error rate of the units in both A and B is the

product of the error rate of the units in only A (but not B) and that of the units in only

B (but not A). That is, for i [ UL,

Pði � Uji [ A > BÞ ¼ Pði � Uji [ A w BÞPði � Uji [ B w AÞ

Clearly, every extension of (9) to the situation with more than two lists gives rise to a

corresponding model (10), as the two differ only in the choice of the link function.

Provided low error rates, the two are expected to yield nearly the same fit to the data.

But the difference can become greater if some or all of the error rates are appreciable.

Now, consider the scenario where list A and B have high quality so that both have low

erroneous enumerations, that is, both u1þ ¼ p01þ=pþ1þ and uþ1 ¼ p0þ1=pþþ1 are small,

and both have high catch rates, so that the list domain ð1; 1Þ is much larger than domain

ð1; 0Þ or ð0; 1Þ. It then seems natural to expect the error rate to be even lower among the

units in both A and B, that is, u11 , u1þ and u11 , uþ1, while the error rates among the

units that belong to only one list are comparatively high, that is, u10 . u1þ and u01 . uþ1.

It is thus worth considering u11 ¼ u1þuþ1 as an alternative to u11 ¼ u10u01 above, that is,

log u11 ¼ log u1þ þ log uþ1 , u11 ¼ u1þuþ1 ð11Þ

The main difference is that u11 can be much lower under (11) than under (10).

It should be noted that Model (11) does not belong to the standard log-linear models for

cross classified counts based on the concept of conditional independence. The examination

of the possible standard log-linear models above empirically verifies this for the two-list

setting. Generically speaking, denote by X, Y and Z any three random events. A conditional

independence assumption among them must be of the form

PðX > YjZÞ ¼ PðXjZÞPðYjZÞ

that is, the conditional joint probability is the product of the conditional marginal

probabilities. If we put X as erroneous enumeration for i [ UL, and Y as its inclusion in list

A and Z as its inclusion in B, then (11) has the form

PðXjY > ZÞ ¼ PðXjYÞPðXjZÞ

that is, the joint conditional probability is the product of the marginal conditional

probabilities. We refer to this as an assumption of pseudoconditional independence (PCI).

It is possible to develop classes of log-linear models that extend (11) to list CR data

involving more than two lists. But we shall not go into the details here. Instead, let us look
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at a heuristic example of why Model (11) may be more suitable than (10) when the quality

of the list enumerations is high. Assume two lists that have no erroneous enumerations at

all and Nþ11 ¼ Nþ1þ ¼ Nþþ1, in which case we have u11 ¼ u1þ ¼ uþ1 ¼ 0 while

ðu10; u01Þ do not exist. In other words, Model (11) holds but (10) is not applicable. Suppose

now two units leave the population. First, in the ideal case, the two events are registered in

both lists so that ðNþ11;Nþ1þ;Nþþ1Þ are all reduced by two. Then, Model (11) still holds

and (10) remains inapplicable. Next, suppose some lack of updating, such that the one

event is registered in list A but not B, and the other is registered in B but not A. Then, we

still have u11 ¼ 0, but u10 ¼ u10 ¼ 1, and u1þ ¼ 1=ðNþ1þ 2 1Þ and uþ1 ¼ 1=ðNþþ1 2 1Þ.

Model (10) errs much more than (11), because the difference between u11 ¼ 0 and

u10u01 ¼ 1 is much larger than the difference between u11 ¼ 0 and

u1þuþ1 ¼ 1=½ðNþ1þ 2 1ÞðNþþ1 2 1Þ�. One can go through the other possibilities of

imperfect updating, and one will find that the Model (11) either holds or errs only little.

Both Model (10) and (11) can be fitted given survey data S. For the two-list setting, it is

convenient to derive the MME from (5) directly (Appendix). We have

û10 ¼
x01

n01

n11

x11

2
n10

x10

� �
and û01 ¼

x10

n10

n11

x11

2
n01

x01

� �
ð12Þ

for Model (10), and

û1þ ¼
xþ1

nþ1

n11

x11

2
n1þ

x1þ

� �
and ûþ1 ¼

x1þ

n1þ

n11

x11

2
nþ1

xþ1

� �
ð13Þ

for Model (11). Any estimated error rate that is negative will be replaced by 0.

4. Simulations

4.1. Range of Fitting

First we explore numerically the differences between the models outlined above, in order

to better appreciate the conditions under which a good fit can be achieved for list CR data.

Consider the two-list CR data in Table 1. In Example (I), the number of units is 1,000 in

list A and 1,200 in B and 900 in both A and B. The number of erroneous units is 50 in list A

and 80 in B. The number of erroneous units among those in both A and B is left to vary,

denoted by r11. The number of erroneous units among those in A but not B is then 50 2 r11,

Table 1. Two numerical examples of two-list CR data with under- and overcoverage

A B A and B A but not B B but not A

(I) List enumeration 1,000 1,200 900 100 300
No. erroneous units 50 80 r11 50 2 r11 80 2 r11

A B A and B A but not B B but not A

(II) List enumeration 1,200 1,350 900 300 450
No. erroneous units 250 400 r11 250 2 r11 400 2 r11
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and it is 80 2 r11 among those in B but not A. By varying r11, the idea is to see when the

Models (9), (10) and (11) appear most plausible. The case is similar for Example (II).

More specifically, for Example (I), Model (9) fits the CR data perfectly when, for some

1 # r11 # 49, we have logitðr11=900Þ ¼ logitðð50 2 r11Þ=100Þ þ logitðð80 2 r11Þ=300Þ,

which occurs at r11 ¼ 33. Model (10) fits perfectly at r11 ¼ 30, where

log ðr11=900Þ ¼ log ðð50 2 r11Þ=100Þ þ log ðð80 2 r11Þ=300Þ, whereas Model (11) fits

perfectly at r11 ¼ 3, where log ðr11=900Þ ¼ log ð50=900Þ þ log ð80=1200Þ. The

corresponding errors rates are summarized in Table 2. Similarly for Example (II).

The situations that are favorable to Models (9) and (10) are seen to be fairly similar for

relatively low error rates such as in Example (I). The one fits best at r11 ¼ 33 and the other

at 30. However, the difference between the two becomes larger as the error rates increase.

In Example (II), the one fits best at r11 ¼ 184 and the other at 155. Also the corresponding

error rates are seen to differ more in this case.

Next, Model (11) is more suitable in situations where relatively more erroneous

enumerations occur among the units that belong to only one list, while erroneous

enumeration is much less probable for units in both lists. In Example (I), the PCI

assumption (11) fits best when r11 ¼ 3 and u11 ¼ 0:0033, the latter of which is much lower

than the marginal error rates u1þ ¼ 0:050 and uþ1 ¼ 0:067. The contrast between u11 on

the one hand and ðu10; u01Þ on the other is much larger than under model (9) or (10). The

contrast is reduced as the error rates increase in Example (II). But the situation where

Model (11) would be plausible is still quite different from those for the other two models.

In conclusion, both Models (10) and (11) are additions to the standard log-linear model

(9) rooted in the concept of conditional independence. In particular, Model (11) provides

an alternative in situations where there is a large contrast between the overcoverage error

among the units in both lists and that among the units in only one list. The aim of the

discussion above is to illustrate when the different models might be applicable and how

they relate to each other.

4.2. Adjustment of Census Erroneous Enumeration

As mentioned earlier, adjustment of census erroneous enumeration traditionally requires

a separate O-sample in addition to the independent U-sample for undercoverage

adjustment. In theory, an O-sample selected from the list enumerations can be used to

estimate the error rates ðu11; u01; u10Þ. This requires making a strong assumption that

fieldwork is able to identify all the erroneous list enumerations in the O-sample. It

would also imply extra cost, although to some extent this can be controlled by the

choice of the O-sample size. On both accounts, it seems of interest if the modelling

Table 2. Values of r11 at which models fit perfectly for data in Table 1

Example (I) Example (II)

Model r11 ðu10; u01; u11Þ r11 ðu10; u01; u11Þ

(9) 33 (0.170, 0.157, 0.0367) 184 (0.220, 0.480, 0.207)
(10) 30 (0.200, 0.167, 0.0333) 155 (0.317, 0.544, 0.172)
(11) 3 (0.470, 0.257, 0.0033) 56 (0.208, 0.296, 0.062)
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approach considered in this article can potentially provide useful adjustment of census

erroneous enumeration without the need for conducting the fieldwork. The possibility is

explored here.

Assume three datasets: census, denoted by A, register enumeration processed from

administrative sources, denoted by B, and an independent undercoverage survey, denoted

by S. Without losing generality, we shall suppose that the survey S attempts to enumerate

everyone in the selected areas. This yields the two-list one-survey setting in each surveyed

area. The following assumptions and observations are worth noting:

. The census erroneous enumeration rate is expected to be relatively low. We assume

that the range of the marginal error rate u1þ of the census (i.e., List A) is reasonably

covered by the following set of values: u1þ ¼ 0:2%; 0:5%; 1%.

. The register enumeration can have a higher, even much higher, marginal error rate

uþ1. We shall explore the following set of values: uþ1 ¼ 1%; 5%; 10%; 20%.

. Provided independent survey (Equation 3), we have EðnÞ ¼ EðNÞpS ¼ EðN1þþÞpS

where n is the total survey enumeration, and Eðn 2 n00Þ ¼ EðN1þþ 2 N100ÞpS

where n00 is the number of individuals enumerated in S that do not belong to list

A nor B. Thus, the overall list catch rate can be given by

EðN 2 N100Þ

EðNÞ
¼

EðN1þþ 2 N100Þ

EðN1þþÞ
¼

Eðn 2 n00Þ

EðnÞ

and estimated by 1 2 n00=n, irrespective of the error rates. An important implication

is that the relative bias induced by the misspecification of a nonincidental erroneous

enumeration model is unrelated to the target population size N:

. Provided the theoretical value of u11 in addition to u1þ and uþ1, a straightforward

simulation approach to evaluate the potential bias of an error model is to repeatedly

generate n ¼ ðn11; n10; n01; n00Þ under some given value of pS, conditional on the

target-list universe, and calculate the average of N̂ over all the repetitions. More

convenient, however, is to fit the moment Equations (5) just once to the expected

values of n, denoted by _n, and use the difference between the corresponding N̂ð _nÞ and

N as an approximation to the model bias. This has two advantages: firstly, it makes it

clear that the result is invariant to the arbitrary choice of pS, which cancels out on

both sides of the equations in (5) at _n ¼ EðnjU* Þ; secondly, the result is not subjected

to the Monte Carlo errors of the repeated sampling approach.

For comparison to the equally cost-efficient approach without extra fieldwork associated

with the O-sample, we consider the DSE based on census A and undercoverage survey S,

that is ignoring the potential erroneous census enumerations. Corresponding to the

expected survey enumeration _n, this is given by

_NDSE ¼ _nx1þ=_n1þ < EðN̂DSEjU* Þ

Clearly, the relative bias of this unadjusted DSE is simply u1þ, because the hypothetical

unbiased DSE is then given by _nx1þð1 2 u1þÞ=_n1þ.
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Table 3 gives the range of relative bias under the Model (10) and (11), respectively. For

each combination of ðu1þ; uþ1Þ, the number of erroneous enumeration N011 among the

units in both A and B (i.e., the census-register enumeration) is bounded upwards by

min ðNþ1þu1þ;Nþþ1uþ1Þ for the given target-list universe. In the simulation setting here,

this is always equal to the integer Nþ1þu1þ ¼ x1þu1þ. Each possible N011 yields a

different target population size N ¼ N1þþ, a corresponding ‘joint’ error rate

u11 ¼ N011=x11 ¼ N011=Nþ11, and a set of expected survey enumerations _n. The relative

bias of a model is given by N̂ð _nÞ=N 2 1, where N̂ is derived from (12) under Model (10)

and (13) under Model (11). As explained above, this relative bias is invariant towards

any arbitrary but admissible choice of the survey catch rate pS and the overall list catch

rate adopted in the simulation. The relative biases corresponding to N011 ¼ 1 and

N011 ¼ x1þu1þ 2 1, respectively, yield the range of relative bias reported in Table 3.

Take first the results for Model (10) in the upper half of Table 3. At u1þ ¼ 0:2% and

with census enumeration being 1,000, there are only two erroneous census enumerations,

and the DSE has a relative bias of 0:2%. Only N011 ¼ 1 is in the range to be examined,

so that the lower and upper ends of the relative bias range coincide in this case. As the

register error rate uþ1 increases, the estimate of N011 increases under Model (10), to the

extent that it is 31.6 when the register error rate is 20%, leading to a large negative bias

23:4% due to model misspecification. Next, at u1þ ¼ 0:5%, the two end points

correspond to N011 ¼ 1 and N011 ¼ 4. Model (10) is most misleading at the lower end, as

the exploration in Subsection 4.1 has indicated, where the estimate of N011 is 142.6,

leading to a disastrous negative relative bias for N. The performance becomes even

worse at u1þ ¼ 1%, where large negative bias already occurs somewhere between uþ1 ¼

1% and 5%. At the upper end, where N011 ¼ 9, the MME (12) is initially negative and

needs to be truncated to 0, that is, no census erroneous enumeration at all. The model

estimate N̂ then becomes the same as the DSE, and has the same relative bias which is

equal to u1þ.

Table 3. Range of relative bias under Model (10) and (11) for census enumeration error adjustment. Census

enumeration ¼ 1,000, register enumeration ¼ 1,200, census-register enumeration ¼ 900. Error rate of census

errra ðu1þÞ, register enumeration ðuþ1Þ, census-register enumeration ðu11Þ, where 0 , u11 , u1þ. All numbers

in %.

Model (10) Register error rate

Census error rate 1 5 10 20

0.2 (0.078, 0.078) (20.11, 20.11) (20.48, 20.48) (23.4, 23.4)
0.5 (20.038, 0.43) (20.88, 0.32) (22.5, 0.095) (216, 21.6)
1 (20.25, 1) (22.3, 1) (26.3, 1) (238, 1)

Model (11) Register error rate

Census error rate 1 5 10 20

0.2 (0.11, 0.11) (0.11, 0.11) (0.1, 0.1) (0.089, 0.089)
0.5 (0.11, 0.45) (0.091, 0.44) (0.068, 0.44) (0.014, 0.43)
1 (0.1, 1) (0.065, 1) (0.012, 1) (20.11, 1)
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In short, when misspecified, Model (10) can lead to grave negative bias in situations

where both the census and the register have non-negligible error rates but the error rate is

much lower among the census-register enumeration. For example, at

ðu1þ; uþ1Þ ¼ ð1%; 5%Þ, the negative bias of Model (10) would be larger in absolute

value than the bias of the DSE for all u11 , 0:4%.

Turning now to Model (11), we notice immediately that its bias is in no case larger than

that of the DSE. At u1þ ¼ 0:2% and N011 ¼ 1, the estimate of N011 increases from 0:007 at

uþ1 ¼ 1% to 0:2 at uþ1 ¼ 20%. In absolute terms, however, such differences have

essentially no bearing on the resulting bias, which is about half of that of the DSE across

the range of uþ1. Next, at u1þ ¼ 0:5%, the model predicted value of N011 would be

somewhere between 0 and 1 for all the values of uþ1 here. As N011 increases from 1 and 4,

the fitted N011 (and N01þ) decreases steadily towards 0, resulting in the bias to increase

towards that of the DSE. The case is similar at u1þ ¼ 1%, where Model (11) removes

almost all the bias of the DSE as N011 ! 1, while tending towards the DSE as N011 ! 9.

Thus, it looks like Model (11) is a more robust choice than (10) for potential adjustment

of census erroneous enumeration using an additional list enumeration derived from

administrative sources. Within the plausible range of marginal error rates of the census and

register enumerations (e.g., in Table 3), the PCI assumption (11) removes essentially all

the bias of the census-survey DSE as the number of erroneous enumerations among the

units in both the census and the register (i.e., N011) tends to zero. At the other other end, as

the latter tends towards its upper bound, that is, N011 ! min ðN01þ;N0þ1Þ, the bias of the

model estimate increases towards that of the DSE.

5. Summary and Discussion

Above we have considered some approaches to modelling erroneous enumeration as a type

of overcoverage error. Two types of nonincidental models of the list universe are

identified. The first of these consists of standard log-linear models, such as (9), and the

associated models using alternative link functions, such as (10). The second of these refers

to a class of log-linear models that build on the concept of pseudoconditional

independence. The two types of models are suitable for different error mechanisms of the

data, and are therefore complementary to each other in practice.

One possible application is the adjustment of census erroneous enumeration based on an

independent coverage survey and an additional register enumeration processed from

administrative sources. Simulations under what seems to be the plausible range of the

census and register error rates suggest that Model (11) is robust towards misspecification of

the error rate among the ones enumerated in both the census and the register. The potential

bias is bounded upwards by the bias of the DSE that ignores erroneous enumeration.

Of course, further investigation should also take into account the variance of the DSE

compared to that of the adjusted model estimator. Simulation on the historic census and

register data will be necessary. Moreover, it is important to consider the over and

undercoverage adjustments hand in hand. Various authors have considered the so-called

triple-system estimator (TSE) based on census, register and coverage survey for

adjusting under-coverage. See Griffin (2014) for a recent update. A traditional motivation

for the TSE is the possibility to relax the “Causal Independence” assumption (1).
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An independent survey, however, is needed in the two-list setting that allows for

overcoverage errors. There is simply not enough degree of freedom otherwise. The

tension needs to be resolved.

An approach to census-like population statistics without the census is a more ambitious

goal. To start with, the census may be replaced by an “improved administrative file” (i.e.,

register), as some countries have done already. A modelling approach can be used to assess

and potentially adjust the erroneous register enumeration, provided very little or no

fieldwork associated with the O-sample. It also opens up the possibility for using several

input registers instead of one combined register.

Appendix

Method-of-Moment Estimator (MME)

Dividing the first equation in (5) by the second and third, respectively, we obtain

n11ðx1 2 r1Þ ¼ n1ðx11 2 r11Þ ¼ n1x11ð1 2 ðr1r2Þ=ðx1x2ÞÞ

n11ðx2 2 r2Þ ¼ n2ðx11 2 r11Þ ¼ n2x11ð1 2 ðr1r2Þ=ðx1x2ÞÞ

(

where ðn1; n2Þ ¼ ðn10; n01Þ, ðx1; x2Þ ¼ ðx10; x01Þ and ðr1; r2Þ ¼ x10û10; x01û01

� �
under

Model (10), and ðn1; n2Þ ¼ ðn1þ; nþ1Þ, ðx1; x2Þ ¼ ðx1þ; xþ1Þ and ðr1; r2Þ ¼

x1þû1þ; xþ1ûþ1

� �
under Model (11). Note the symmetry between r1 and r2. We have

ar2
1 2 br1 þ c ¼ 0 where a; b; c

� �
¼

n2

n1x1x2

;
n11

x11n1

þ
n2

n1x2

2
1

x1

;
n11x1

x11n1

2 1

� �

After some algebra we obtain

D ¼ b2 2 4ac ¼ 2
n11

x11n1

þ
n2

n1x2

þ
1

x1

� �2

so that
bþ

ffiffiffiffi
D
p

2a
; x1

It follows that the admissible r1 and, by symmetry, r2 are given by

r1 ¼
x2

n2

n11

x11

x1 2 n1

� �
and r2 ¼

x1

n1

n11

x11

x2 2 n2

� �

We obtain r1=x1 as û10 under (10) or û1þ under (11). The case is similar for r2. We obtain

û11 according to either Model (10) or (11). Next, we obtain

p̂S ¼ ðx1 2 r1Þ=n1 ¼ ðx2 2 r2Þ=n2, and N̂ on substituting these parameter estimates into

the last equation of (5). Linear approximation yields the variance of the MME.
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