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Statistical agencies are making increased use of the internet to disseminate census tabular
outputs through web-based flexible table-generating servers that allow users to define and
generate their own tables. The key questions in the development of these servers are: (1) what
data should be used to generate the tables, and (2) what statistical disclosure control (SDC)
method should be applied. To generate flexible tables, the server has to be able to measure the
disclosure risk in the final output table, apply the SDC method and then iteratively reassess the
disclosure risk. SDC methods may be applied either to the underlying data used to generate
the tables and/or to the final output table that is generated from original data. Besides
assessing disclosure risk, the server should provide a measure of data utility by comparing the
perturbed table to the original table. In this article, we examine aspects of the design and
development of a flexible table-generating server for census tables and demonstrate a
disclosure risk-data utility analysis for comparing SDC methods. We propose measures for
disclosure risk and data utility that are based on information theory.
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1. Introduction

Driven by demand from policy makers and researchers for specialized and tailored census

frequency tables, many statistical agencies are considering the development of a web-

based software platform where users can generate tables of interest from underlying

census microdata through a user-friendly interface. This platform is called a “flexible

table-generating server”. Users access the server via the internet and generate their

preferred set of tables from predefined variables or categories using drop-down lists. These

tables can then be downloaded to the personal computers of the users. The United States

Census Bureau and the Australian Bureau of Statistics have developed such servers on

their websites to disseminate census frequency tables.

When generating flexible tables, the server should be able to provide a measure of

disclosure risk for the original table, apply a statistical disclosure control (SDC) method

and then reassess disclosure risk and the impact on data utility following the SDC method.

These steps must be carried out “on the fly” within the server for each generated output

table. SDC is a set of statistical practices which aim to ensure that no individual population
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unit can be reidentified from anonymised data nor any new information learnt about any

specific individual (with certainty). SDC is an active research area. For reviews of this

area, see Willenborg and de Waal (2001), Doyle et al. (2001), Duncan et al. (2011) and

Hundepool et al. (2012).

There are two main types of disclosure risks in census frequency tables: identity

disclosure, where small cell counts may lead to the identification of an individual in the

population, and attribute disclosure, where new information may be learnt about an

individual or group of individuals. Attribute disclosure in frequency tables occurs when

rows or columns of a table contain (real) zeroes and only one or two cells are nonzero. This

enables an “intruder” to first make an identification based on a margin total and

subsequently reveal new information according to other variables spanning the table.

Another type of disclosure risk that needs to be guarded against is disclosure by

differencing. The differencing of tables generated through the server can lead to residual

tables that are more susceptible to the above disclosure risks and even to the reconstruction

of individual records. This is typically dealt with by applying perturbative methods of

SDC, which raises the level of uncertainty of true counts in the tables and hence of the

difference between counts across tables. After the table is protected, a data utility measure

must also be calculated by comparing the perturbed table to the original table.

The need to measure disclosure risk “on the fly” for census frequency tables produced

via a flexible table-generating server motivated the research and development of a new

global disclosure risk measure. Until now, disclosure risk measures for tabular data have

been defined at the cell level and not for the entire table. We propose a new disclosure risk

measure based on information theory as shown in Antal et al. (2014) and also relate this

theory to a data utility measure.

The key issues when developing a web-based flexible table generating server addressed

in this article are: (1) what underlying data should be used in the background for

generating the output tables, and (2) at what stage should the SDC method be applied. In

addition, the article provides a comparison study of some common SDC methods which

may be used to protect census tables within a flexible table-generating server and

demonstrates how statistical agencies should undertake a disclosure risk-data utility

analysis to inform decisions about SDC methods and their parameterization. In general,

SDC methods employed by statistical agencies are often motivated by country-specific

agendas and policy sensitivities and it is difficult to develop a universal best practice.

However, one important distinction when considering SDC methods for flexible table-

generating servers is that the outputs are defined by users and the amount of disclosure risk

may vary in each output.

Section 2 presents aspects to consider in the design of a flexible-table generating server,

including the underlying data for generating output tables and the stage when SDC

methods may be applied. In Section 3, some common SDC methods for census frequency

tables are described. Section 4 introduces a new global disclosure risk measure based on

information theory and a related data utility measure that can be calculated “on the fly”

for each output table generated in the server. In Section 5, a comparison study is

carried out on generated census output tables from a flexible table-generating server.

The comparison study will be informed by a disclosure risk-data utility analysis on the

generated tables perturbed by the SDC methods described in Section 3 based on the
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measures outlined in Section 4. A discussion and concluding remarks are presented

in Section 6.

2. Designing a Flexible Table-Generating Server

In this section, we describe the design of an online flexible table-generating server and

discuss the following issues: the underlying data that may be used as input to the server,

the stage at which SDC methods can be applied, and preliminary SDC rules to determine

a priori whether the requested table can be generated or not.

2.1. Underlying Input Data to the Server

The underlying data to use as input for a web-based flexible table-generating server can be

based on the original microdata or disclosure-controlled microdata. The input data is

largely determined by the source and content of the data as well as the SDC method that

will be applied to the final output tables (if any). Microdata arising from social surveys

with small sampling fractions have a lower disclosure risk than microdata arising from

censuses containing whole population counts, and therefore are more appropriate for use

in their original form. Output tables generated from survey microdata where only weighted

counts are released are generally considered to be of low disclosure risk with no further

need for an application of SDC methods. Census (and administrative data) containing

whole populations and particularly those containing sensitive data, such as health statistics

or business microdata, are more problematic. In microdata containing the whole

population, individuals (or businesses) can easily be identified leading to the disclosure of

attributes. In this case, the underlying input data should be protected prior to the generation

of tables.

For a flexible table-generating server of census tables, one method for producing the

underlying input data is to aggregate the microdata into a very large multi-dimensional

frequency table, called a hypercube, where no data of individuals can be disseminated

below the level of a cell value in the hypercube. For example, users may only be able

to disseminate frequency counts of age in 5-year age bands and not counts for single

years. This approach was taken by Eurostat for the dissemination of census tables from

European Member States. A flexible table-generating server for European census tables

is being developed through the European Census Hub Project. Each Member State is

required to produce a set of predefined hypercubes containing their country’s census

counts: 19 hypercubes at the geography level of LAU2 and over 100 hypercubes at the

geography level of NUTS2, cross-classified with as many as six other census variables

in each hypercube. NUTS2 is a European subregional geography and LAU2 are small

municipalities or equivalent. Researchers are able to use the considerable number of

multidimensional hypercubes and their wealth of census data made available through

the European Census Hub to generate tables of interest beyond what would have

been available previously using standard table-extraction software. The flexible

table-generating server will allow comparative tables across Member States and the

combining of census data from multiple Member States. The hypercubes have the

additional advantage that they provide some limited protection against disclosure risk

since no data below the level of the cell values of the hypercube can be disseminated.
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However, the hypercubes themselves still have considerable disclosure risk since they

are very large and sparse with many zero and small cell counts. Therefore, there will

still be the need to apply an SDC method to protect output tables generated from the

flexible table-generating server.

2.2. Application of SDC Methods

SDC methods for protecting output tables generated from a flexible table-generating

server can be applied either on the underlying input data so that all tables generated are

deemed safe for dissemination (the pretabular SDC approach), or applied directly to the

final output table generated from the original data (the post-tabular SDC approach) or

a combination of both. Although sometimes neater and less resource intensive when

data is from a single source, the pretabular SDC approach is problematic for the

dissemination of European Census data for two reasons. Firstly, all Member States

would have to agree on a common SDC method in order to provide consistent

hypercubes across all Member States. For example, if one Member State employs a

rounding method whilst another Member State employs cell suppression, there will be

significant quality issues in a table that is generated based on both Member States’

data. Secondly, when aggregating data which have been separately disclosure

controlled, the effects of the SDC methods are compounded and the data may be

overprotected. For example, aggregating cells that have already been rounded not only

overprotects the data but also exacerbates the data utility impact by providing counts

that are no longer rounded to the nearest base. With the second approach of protecting

only the final tabular output, SDC methods are not compounded in this way. We

investigate the pretabular and post-tabular approaches in the comparison study

presented in Section 5.

2.3. Preliminary SDC Rules

The design of a web-based flexible table-generating server typically involves many ad hoc

preliminary SDC rules which determine a priori if generated tables can be released or not.

These SDC rules may include:

. Limiting the number of dimensions in the output tables.

. Ensuring consistent and nested categories of variables to avoid disclosure by

differencing.

. Ensuring minimum population thresholds.

. Ensuring that the percentage of small cells is below a maximum threshold.

. Ensuring average cell size above a minimum threshold.

The steps in a flexible table-generating server are:

(1) Determine whether the table can be released according to the preliminary SDC rules.

(2) Calculate a disclosure risk measure to determine if an SDC method should be applied

to the final output table.

(3) Apply the SDC method.
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(4) Recalculate the disclosure risk measure to determine if the table is safe to generate;

if yes proceed to Step 5, otherwise do not release the table.

(5) Output the final table with a measure of data utility.

According to the steps of a flexible table-generating server, it is clear that analytical

expressions of disclosure risk and data utility that can be calculated “on the fly” within the

server are necessary.

3. Statistical Disclosure Control Methods

In this section, we describe some common SDC methods which have been used to protect

census frequency tables: a pretabular SDC method of record swapping is used in the

United States and the United Kingdom, a post-tabular method of random rounding is used

in New Zealand and Canada, and a post-tabular probabilistic perturbation mechanism has

recently been implemented in Australia.

3.1. Record Swapping

Record swapping is based on the exchange of values of variable(s) between similar pairs of

population units (often households). In order to minimize bias, pairs of population units are

determined within strata defined by control variables. For example, when swapping

households, control variables may include: a large geographical area, household size, and the

age-sex distribution of individuals in the households. In addition, record swapping can be

targeted to high-risk population units found in small cells of census tables. In a census context,

geographical variables related to place of residence are often swapped. Swapping place of

residence has the following properties: (1) it minimizes bias based on the assumption that

place of residence is independent of other census target variables conditional on the control

variables; (2) it provides more protection for census tables since place of residence is a highly

visible variable which can be used to identify individuals; (3) it preserves marginal

distributions within a larger geographical area. For more information on record swapping, see

Dalenius and Reiss (1982), Fienberg and McIntyre (2005), and Shlomo (2007).

3.2. Semi-Controlled Random Rounding

A post-tabular method of SDC for census frequency tables is unbiased random rounding.

Let Floor(x) be the largest multiple bk of the base b such that bk , x for any value of x.

In this case, res(x) ¼ x-Floor(x). For an unbiased rounding procedure, x is rounded up to

Floor(x) þ b with probability resðxÞ=b and rounded down to Floor(x) with probability

ð1 2 ðresðxÞ=bÞÞ. If x is already a multiple of b, it remains unchanged.

In general, each cell is rounded independently in the table, that is, a random uniform

number u between 0 and 1 is generated for each cell. If u # ðresðxÞ=bÞ then the entry is

rounded up, otherwise it is rounded down. This ensures an unbiased rounding scheme, that

is, the expectation of the rounding perturbation is zero. However, the realization of this

stochastic process on a finite number of cells in a table will not ensure that the sum of the

perturbations will exactly equal zero. To place some control in the random rounding

procedure, we use a semi-controlled random rounding algorithm for selecting entries to

round up or down as follows: first the expected number of entries of a given res(x) that are

Shlomo et al.: Flexible Table Generators 309



to be rounded up is predetermined (for the entire table or for each row/column of the

table). The expected number is rounded to the nearest integer. Based on this expected

number, a random sample of entries is selected (without replacement) and rounded up.

The other entries are rounded down. This procedure ensures that rounded internal cells

aggregate to the controlled rounded total.

Due to the large number of perturbations under random rounding, margins are typically

rounded separately from internal cells and tables are not additive. When using semicontrolled

random rounding this alleviates some of the problems of nonadditivity since one of

the margins and the overall total will be preserved. Another problem with random rounding

is the consistency of the rounding across same cells that are generated in different tables. It is

important to ensure that the cell value is rounded consistently, otherwise the true cell count

can be learnt by generating many tables containing the same cell and observing the

perturbation patterns. Fraser and Wooton (2005) propose the use of microdata keys which can

solve the consistency problem. First, a random number (which they call a key) is defined for

each record in the microdata. When building a census frequency table, records in the

microdata are combined to form a cell defined by the spanning variables of the table. When

these records are combined to a cell, their keys are also aggregated. This aggregated key

serves as the seed for the rounding and therefore same cells will always have the same seed

and result in consistent rounding.

Further research is needed to ensure both the additivity and consistency properties

for random rounding. For simple tables of the type that would be generated in a flexible

table-generating server, controlled rounding algorithms can be applied to ensure additivity

on remaining totals without distorting the unbiasedness of the rounding (see Willenborg

and De Waal 2001).

3.3. Stochastic Perturbation

A more general method than random rounding is stochastic perturbation, which

involves perturbing the internal cells of a table using a probability transition matrix and

is similar to the postrandomisation method that is used to perturb categorical variables

in microdata (see Gouweleeuw et al. 1998). In this case, it is the cell counts in a table

that are perturbed. More details can be found in Fraser and Wooton (2005) and Shlomo

and Young (2008).

Let P be a ðLþ 1Þ £ ðLþ 1Þ transition matrix containing conditional probabilities:

pij ¼ Pð perturbed cell value is j j original cell value is i Þ for cell values from 0 to L,

where L is a cap on the cell values and any cell value above the cap will have the same

perturbation probabilities. Let t be the vector of frequencies of the cell values where the

last component would contain the number of cells above cap L and let v be the vector of

relative frequencies: v ¼ t/K where K is the number of cells in the table. In each cell of the

table, the cell value i is changed or not changed according to the prescribed transition

probabilities in matrix P and the result of a draw of a random multinomial variate u with

parameters pij j ¼ 0; 1; : : : ; L. If the jth value is selected, value i is moved to value j.

When i ¼ j, no change occurs.

Placing the condition of invariance on the probability transition matrix P (i.e., tP 5 t)

means that the marginal distribution of the cell values are approximately preserved under
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the perturbation. As described in the random rounding procedure in Subsection 3.2, in

order to obtain the exact marginal distribution a similar strategy for selecting cell values to

change can be carried out. For each cell value i, the expected number of cells that need to

be changed to a different value j is calculated according to the probabilities in the

transition matrix. We then randomly select (without replacement) the expected number

of cells i and carry out the change to j.

To preserve exact additivity in the table, an iterative proportional fitting algorithm

can be used to fit the margins of the table after the perturbation according to the

original margins. This results in cell values that are not integers. Exact additivity with

integer counts can be achieved for simple tables by controlled rounding to base 1 using

Tau-Argus, for example (Salazar-Gonzalez et al. 2005). Cell values can also be rounded

to their nearest integers resulting in “close” additivity because of the invariance property

of the transition matrix. Finally, the use of microdata keys as described in Subsection 3.2

can also be adapted to this SDC method to ensure the consistent perturbation of same

cells across different tables by fixing the seed for the perturbation.

4. Information Theory-Based Disclosure Risk and Data Utility Measures

For each output table generated, the flexible table-generating server must provide analytical

expressions of disclosure risk and data utility that can be calculated “on the fly” within the

server. As mentioned in Section 1, one of the major causes of disclosure risk in census

frequency tables is attribute disclosure caused by rows/columns that have many zero

cells and only one or two populated cells. A row/column with a uniform distribution of cell

counts would have little attribute disclosure risk, whilst a degenerate distribution

of cell counts would have high attribute disclosure risk. Moreover, a row/column with large

counts would have less risk of reidentification compared to a row/column with small counts.

There is no single global-level disclosure risk measure for census frequency tables that

measures attribute disclosure and identity disclosure. In planning for the 2011 UK Census,

the Office for National Statistics assessed attribute disclosure by producing many census

tables and calculating the proportion of those columns/rows where only one or two cells

were populated and the rest of the cells were zero. They also provided a measure based on

the proportion of small cells across the tables. These measures do not provide an accurate

quantification of the disclosure risk for a specific table. To obtain an analytical expression

of disclosure risk for the entire table (or row/columns), it is natural to use information

theory, specifically the entropy.

4.1. An Information Theory Disclosure Risk Measure

As described in Antal et al. (2014), a disclosure risk measure for a census frequency table

should have the following properties: (a) small cell values have higher disclosure risk than

large values; (b) uniformly distributed frequencies imply low disclosure risk; (c) the more

zero cells in the census table, the higher the disclosure risk; (d) the risk measure should be

bounded by 0 and 1. Using information theory, we develop an analytical expression of

disclosure risk that meets these properties.

Information theory is covered comprehensively in Cover and Thomas (2006). One of

the most important measures is the entropy. Let X be a discrete random variable having a
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distribution P ¼ ð p1; p2; : : : ; pKÞ. The entropy is defined as:

HðXÞ ¼ HðPÞ ¼ 2
XK

i¼1

pi� log pi

If pi ¼ 0 for a category i, the respective term in the sum will be considered 0, since

lim x!0 xlog x ¼ 0. It follows that HðPÞ $ 0, since 2pi� log pi $ 0 with HðPÞ ¼ 0 iff the

probability mass is concentrated on one point. Therefore, the smaller the entropy H(P),

the more likely that attribute disclosure can occur. Under the uniform distribution

UK ¼ ðð1=KÞ; ð1=KÞ; : : : ; ð1=KÞÞ, we obtain the maximum entropy: HðUKÞ ¼ log K and

minimum attribute disclosure risk.

The entropy of the frequency vector in a table of size K, F ¼ ðF1;F2; : : : ;FKÞ wherePK
i¼1 Fi ¼ N is:

HðPÞ ¼ H
F

N

� �
¼ 2

XK

i¼1

Fi

N
� log

Fi

N
¼

N� log N 2
XK

i¼1
Fi� log Fi

N
ð1Þ

To produce a disclosure risk measure between 0 and 1, we define the risk measure as:

1 2

H
F

N

� �

log K
: ð2Þ

The disclosure risk measure in (2) ensures property (b) since the term will tend to zero as

the frequency distribution is more uniform, and ensures property (d) since the measure is

bounded between 0 and 1. However, the disclosure risk measure does not take into account

the magnitude of the cells counts or the number of zero cells in the table (or row/column of

the table) and does not preserve properties (a) and (c). Therefore, an extended disclosure

risk measure is proposed in (3) and is defined as a weighted average of three different

terms, each term being a measure between 0 and 1.

RðF;w1;w2Þ ¼ w1�
jAj

K

� �
þ w2� 1 2

N� log N 2
XK

i¼1
Fi� log Fi

N� log K

2

4

3

5

2 ð1 2 w1 2 w2Þ�
1ffiffiffiffi
N
p � log

1

e
ffiffiffiffi
N
p

� �
ð3Þ

where A is the set of zeroes in the table and jAj the number of zeros in the set, K, N and F as

defined above and w1, w2 are arbitrary weights: 0 # w1 þ w2 # 1.

The first measure in (3) is the proportion of zeros which is relevant for attribute

disclosure and property (c). The third measure in (3) allows us to differentiate between

tables with different magnitudes and accounts for property (a). As the population size

N gets larger in the table, the third measure tends to zero. The weights w1 and w2 should be

chosen depending on the data protector’s choice of how important each of the terms are in

contributing to disclosure risk. Alternatively, one can avoid weights altogether by taking

the L2- norm (see Subsection 4.3) of the three terms of the risk measure in (3) as follows:
P3

i¼1 jxij
2

� �1=2
� �

= ffiffiffi
3
p

� �
where xi represents term i, i ¼ 1; 2; 3 in (3).
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Figure 1 provides a graphical interpretation of each of the three terms of the proposed

disclosure risk measure in (3). The figure on the left shows the first term of the disclosure

risk measure as a function of the proportion of zero cells (although a table of all zeros would

not be permissible in a flexible table-generating server). The figure in the middle shows the

second term based on the entropy in (2) where we demonstrate with a table of ten cells and

move from a uniform distribution to a degenerate distribution by accumulating zero cells

and spreading the total to the remaining cells. The figure on the right shows the third term of

the disclosure risk measure as the size of the population of the table increases.

The final disclosure risk measure (3) is an analytical expression and can be calculated

“on the fly” in the flexible table-generating server without the need to see the generated

table beforehand. In order to emphasize the risk of identity disclosure arising from small

counts (ones and twos), we split the entropy measure as shown in (2) into two parts,

small counts up to six and larger counts of seven and more, and provide different weights

for each part. For the comparison study in Section 5, the following weights were

chosen: w1 ¼ 0:1; w2Part1 ¼ 0:7; w2Part2 ¼ 0:1 and w3 ¼ 0:1 where the largest weight

is attributed to the entropy term based on small counts. These weights were motivated

by the empirical work carried out at the Office for National Statistics on SDC methods

for the 2011 UK census tabular outputs, where attribute disclosure and small counts were

of the highest concern.

4.2. Modifying the Disclosure Risk Measure After Perturbation

The disclosure risk measure in (3) does not take into account the application of SDC

methods and therefore needs to be modified to reflect the uncertainty that is introduced into

the counts of the table. Random rounding, for example, eliminates cells of size one and

two by introducing more cells of size zero and three in the table, and seemingly increases

the risk of attribute disclosure. However, these additional cells of size zero and three are

not true counts and the risk of attribute disclosure should decrease. The disclosure risk as

measured by the entropy in (2) (and the second term in (3)) does not reflect this uncertainty

on whether the cell count is a true value or not. Therefore, we introduce an additional

property for the disclosure risk measure following on from those defined in Subsection 4.1:

(e) the disclosure risk measure following the application of an SDC method must be

less than the original disclosure risk measure. In order to ensure property (e), we propose

to modify the first two terms of the disclosure risk measure in (3) after the application

of an SDC method as follows:
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Fig. 1. The three components of the proposed disclosure risk measure in (3)
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Modifying the First Term in (3):

The first term in (3) based on the proportion of zero cells can be generalized to

compare the number of zero cells in the original and perturbed table. From (3), A is the

set of zero cells in the original table and jAj is the number of zero cells in the set.

Similarly, let B be the set of zero cells in the perturbed table and jBj the number of

zero cells in the set. Denote A < B as the union of the sets of zero cells and A > B as

the intersection of the sets of zero cells in the original and perturbed table. The revised

first term in (3), which takes into account that nonzero cells may have been perturbed

into zero cells and vice versa, is defined as: ðjAj=KÞjA<Bj=jA>Bj. If there are no zero

cells in the original table and hence A > B ¼ 0, then the first term in (3) will remain

equal to 0 following perturbation. For example, assume in a table there is a fraction

of 0.10 zero cells and following perturbation a fraction of 0.20 zero cells and all

original zero cells remain as zero in the perturbed table. In this case, the power term

will be 2 and the risk measure following perturbation is reduced to 0.01 from the

original 0.10. The modification of the first term in (3) is always less than the original

term if nonzero cells are perturbed to zero cells and vice versa, and thus property (e)

is ensured.

Modifying the Second Term in (3):

Assume that the possible values in the table are: 0; 1; 2; : : : ; L and the frequency of

frequencies of these values is denoted by: ðn0; n1; n2; : : : ; nLÞ. The table is perturbed

according to a probability transition matrix (for example, the probability transition

matrix P defined in Subsection 3.3). Let the frequency of frequencies of the perturbed

values be denoted by: ðn00; n
0
1; n

0
2; : : : ; n

0
LÞ. For an observed perturbed value j,

j ¼ 0; 1; : : : ; L, the expected total from the cells of value j can be estimated by the

proportion of the original values of j that are not changed: ð j�njÞ�pjj and the proportion

of other values i, i – j that are changed to value j:
P

i–jði�niÞ�pij, so the expected total

from cells of value j after perturbation is:
PL

i¼0 ði�niÞ�pij.

To reflect the uncertainty of the counts in the perturbed table, we replace the

observed perturbed cells of value j by the expected total from cells of value j distributed

evenly across all cells having the perturbed value j:
PL

i¼0 ði�niÞ�pij

	 

=ðn 0jÞ

� �
. As an

example, assume the SDC method of random rounding to base 3. We replace the

zero cells in the perturbed table with: ½0�n0 þ 1�n1�ð2=3Þ þ 2�n2�ð1=3Þ�=n 00. This

reflects the fact that zero cells in the perturbed table are not true zeroes; rather,

a proportion of them arise from the perturbation of cells of values one and two

to zero cells under the probability mechanism, and it is unknown which zero cells

are true zero cells and which zero cells are a result of the perturbation. Similarly,

for the perturbed cell values of size three, we replace these with the term:

½1�n1�ð1=3Þ þ 2�n2�ð2=3Þ þ 3�n3 þ 4�n4�ð2=3Þ þ 5�n5�ð1=3Þ�=n 03.

For the pretabular method of record swapping, we use a probability transition matrix

applied at the cell level of the table for calculating the expectations as explained above,

although it is possible that a perturbed table will be equal to the original table if the

swapping variable is not involved in generating the table. The expected total from cells of

value j in the table after record swapping is:
PL

i¼0 ði�niÞ�pij, where pij is a probability
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transition matrix with the swap rate on the diagonal and all off-diagonals have equal

probability constrained to the sum of the row probabilities being equal to 1. This means

that we assume that every cell in the table can be perturbed according to the swap rate and

reflects the assumption that an intruder would not know which variables were swapped.

The modification of the entropy term in (2) replaces observed perturbed counts with

their expectations according to the probability transition matrix. In particular, true zero

cells which did not contribute to the entropy in the original table are now replaced by their

expected values. This should lead to a more even distribution of cell counts in the

calculation of the entropy and to a general reduction in the disclosure risk measure

in (2) following perturbation. As a final adjustment and to further guarantee property (e),

we multiply the resulting entropy-based disclosure risk measures in (2) by a multiplier

based on the average of the diagonal probabilities of the probability transition matrix. This

multiplier reflects a global level of uncertainty introduced into the perturbed cell counts.

4.3. An Information Theory Data Utility Measure

To assess the distance between two distributions, we use the L2-norm which, when applied

to the difference of two vectors, preserves the properties of a distance metric (non-

negativity, coincidence axiom, symmetry and triangle inequality). Measuring the distance

infers that the smaller the distance, the more information is left in the table. For an

arbitrary vector x ¼ ðx1; x2; : : : ; xKÞ the L2-norm of x is defined as:

k x k2 ¼
XK

i¼1

jxij
2

 !1=2

:

Let P ¼ ð p1; p2; : : : ; pKÞ be the original probability distribution of cell counts and

Q ¼ ðq1; q2; : : : ; qKÞ the perturbed probability distribution of cell counts. Define:ffiffiffi
P
p
¼ ð

ffiffiffiffiffi
p1
p

;
ffiffiffiffiffi
p2
p

; : : : ;
ffiffiffiffiffiffi
pK
p
Þ and

ffiffiffiffi
Q
p
¼ ð

ffiffiffiffiffi
q1
p

;
ffiffiffiffiffi
q2
p

; : : : ;
ffiffiffiffiffiffi
qK
p
Þ. These are not (necessarily)

probability distributions but have the property that as vectors, their L2- norms are 1.

The Hellinger Distance is defined as the L2 -norm:

HDðP;QÞ ¼
1ffiffiffi
2
p �k

ffiffiffi
P
p

2
ffiffiffiffi
Q

p
k2

and is bounded by 0 and 1.

In the case of frequency distributions from census tables, where F ¼ ðF1;F2; : : : ;FKÞ

is the vector of original counts and G ¼ ðG1;G2; : : : ;GKÞ is the vector of perturbed

counts, and
PK

i¼1 Fi ¼ N and
PK

i¼1 Gi ¼ M, the Hellinger distance is defined as:

HDðF;GÞ ¼
1ffiffiffi
2
p �k

ffiffiffiffi
F
p

2
ffiffiffiffi
G
p
k2 ¼

1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ffiffiffiffiffi
Fi

p
2

ffiffiffiffiffi
Gi

p� �2

vuut ð4Þ

The Hellinger distance is grounded in Information Theory and takes into account the

magnitude of the cells since the difference between square roots of two “large” numbers is

smaller than the difference between square roots of two “small” numbers, even if these

pairs have the same absolute difference. Naturally, while the lower bound remains zero,
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the upper bound of this distance metric changes:

HDðF;GÞ ¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ffiffiffiffiffi
Fi

p
2

ffiffiffiffiffi
Gi

p� �2

vuut ¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

Fi þ Gi 2 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi�Gi

p� �
vuut

¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þM 2 2�
XK

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi�Gi

p
vuut #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þM

2

r
:

Since the SDC methods described in Section 3 produce approximately the same overall

population total N due to controlled methods of perturbation, the Hellinger distance is

bounded by 0 and
ffiffiffiffi
N
p

. For the comparison study in Section 5, we use the expression of

1 2 ðHDðF;GÞ=
ffiffiffiffi
N
p
Þ as the data utility measure, which is bounded between 0 and 1, 0

representing low utility and 1 representing high utility.

5. A Comparison Study

In this section we present a flexible table-generating server for census tables where we

proceed with the European Census Hub approach of defining a large hypercube as the

underlying data input to the server. We compare the application of SDC methods

described in Section 3 to four generated output tables and examine the properties of the

disclosure risk and data utility measures presented in Section 4.

5.1. Preparing the Underlying Hypercube and Generating Output Tables

For the comparison study, we generate a hypercube with an underlying population of size

1,500,000 individuals for two NUTS2 regions. The variables defining the hypercube

follow one of Eurostat’s specifications for a hypercube required by all Member States

as follows:

. NUTS2 Region – 2 regions

. Gender – 2 categories

. Banded age groups – 21 categories

. Current employment status – 5 categories

. Occupation – 13 categories

. Educational attainment – 9 categories

. Country of citizenship – 5 categories

From the UK Census 2001, cell proportions from published tables were calculated and

cross-classified using iterative proportional fitting. We then multiplied the proportions by

our population size of 1,500,000 individuals to produce the final hypercube. The

hypercube used in the comparison study has 245,700 cells. The distribution of cell counts

is skewed with a large proportion of zero cells as seen in Table 1.

The distribution of cell counts in the hypercube as shown in Table 1 was comparable to

the hypercube based on real census data produced by the United Kingdom according to the

above specification.
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In the flexible table-generating server of our comparison study, we apply a set of

preliminary SDC rules for generating tables and allow a maximum of three dimensions

with one additional variable to define the population of the table. Four different-size output

tables are generated from the input hypercube as follows (number of categories of each

variable are in parenthesis):

(1) Selected population: NUTS2 ¼ 1, table spanned by: Banded age group (21) *

Educational Attainment (9) * Occupation (13).

(2) Selected population: NUTS2 ¼ 2, table spanned by: Gender (2) * Banded age group

(21) * Country of citizenship (5)

(3) Selected population: Gender ¼ 1, table spanned by: Current activity status (5) *

Occupation (13) * Educational attainment (9)

(4) Selected population: Banded age group ¼ 10, table spanned by: NUTS2 (2) *

Occupation (13) * Educational attainment (9)

Table 2 contains details of the four generated output tables that are used in the comparison

study: the total size of the population, the number of cells and the average cell size in each

table as well as the distribution of cell counts.

Table 1. Distribution of cell counts in the generated hypercube

Cell value Number of cells Percentage of cells

0 226,939 92.4
1 4,028 1.6
2 2,112 0.9
3–5 2,964 1.2
6–8 1,664 0.7
9–10 720 0.3
11 and over 7,273 3.0

Total 245,700 100.0

Table 2. Details of four generated tables to be used in the comparison study

Details Table 1 Table 2 Table 3 Table 4

Total Population 854,539 645,461 736,355 96,656
Number of cells 2,457 210 585 234
Average cell size 347.8 3,073.6 1,258.7 413.1

Number of % % % %

Zeroes 1,534 (62.4) 49 (23.3) 275 (47.0) 84 (35.9)
Ones 44 (1.8) 14 (6.7) 16 (2.7) 9 (3.9)
Twos 35 (1.4) 2 (1.0) 9 (1.5) 4 (1.7)
Threes 27 (1.1) 5 (2.4) 3 (0.5) 6 (2.6)
Fours 20 (0.8) 4 (1.9) 9 (1.5) 1 (0.4)
Fives 17 (0.7) 1 (0.5) 5 (0.9) 4 (1.7)
Sixes and over 780 (31.8) 135 (64.3) 268 (45.8) 126 (53.9)
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From Table 2, output Table 1 is the largest table with the largest proportion of zero cells.

Output Tables 2 and 4 are similar in the number of cells but the size of the population is

considerably smaller in output Table 4, resulting in a larger proportion of zero cells and a

smaller proportion of cells of value one. Output Table 3 is a midsize table. It is clear from

the small cell counts and many zero cells that the generated output tables require the

application of SDC methods in the flexible table-generating server.

In the comparison study we provide an example of how a statistical agency might go about

assessing different SDC methods for a flexible table-generating server of census tables

through disclosure risk and data utility measures. In the pretabular approach of protecting

the input hypercube prior to generating tables, we apply three SDC methods as follows:

. Full random rounding of the hypercube to base 3 semicontrolled to the two NUTS2

totals.

. Random record swapping carried out by first constructing microdata of individuals

from the hypercube where each cell is duplicated to the number of individuals in the

cell. A random sample of five percent of individuals is selected in each NUTS2

region, then randomly paired with individuals in the opposite NUTS2 region and their

geographical variables swapped. This produced a total swap rate of ten percent of

individuals having their NUTS2 regions swapped. Following the record-swapping

procedure, the hypercube is reconstructed.

. Stochastic perturbation on the hypercube is based on an invariant probability

transition matrix with controls in the overall totals of the two NUTS2 regions.

The perturbation is carried out on cells of values in the range 0–10; all cells above a

value of 10 have the same probabilities of perturbation depending on their residual

value to base 5. The probability transition matrix for each NUTS2 region used in this

study is presented in Table 3.

The pretabular disclosure-controlled hypercubes are used as input to the flexible

table-generating server and the four output tables generated under each SDC method.

The comparison results also include the case where a post-tabular SDC method of

semicontrolled random rounding to base 3 is applied directly to the four output tables that

are generated from the original unperturbed hypercube. The SDC methods are compared

through the disclosure risk and data utility measures described in Section 4.

5.2. Results of the Comparison Study

To compare the pretabular SDC methods applied to the original hypercube (record

swapping, semicontrolled random rounding and stochastic perturbation), we first assess

the impact of the perturbation on the small cells in the generated output tables. Table 4

presents the number of small cells of size 1 and 2 in the original hypercube and in each of

the four output tables defined in Subsection 5.1, and the percentage of those cells that were

altered under the SDC methods. Record swapping generally provided the least number of

small cells perturbed except for output Table 4, where the swapped variable NUTS2 is

used as a spanning variable of the table. Output Table 3 did not include the swapped

NUTS2 variable and hence all cells in the table contain original cell counts. Random

rounding eliminates all small cells of size 1 and 2 and provides more protection compared
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to record swapping and the stochastic perturbation. It is well known, however, that random

rounding has the risk of being able to reveal original cell values, especially when the sum

of rounded cells does not add up to the rounded marginal totals. However, ensuring the

consistency of the rounding across same cells in different tables and controlling some of

the marginal totals lowers the risk of being able to reveal original cell values.

Table 5 presents the disclosure risk measure in (3) and the Hellinger distance in (4)

for the output tables defined in Subsection 5.1 generated on the pretabular disclosure-

controlled hypercubes according to the SDC methods: record swapping, semicontrolled

random rounding and stochastic perturbation. In addition, we report the measures for the

case where the SDC method of semicontrolled random rounding is applied directly to the

output tables that were generated from the original hypercube to compare the pretabular

and post-tabular approach for this SDC method.

To modify the second term in the disclosure risk measure in (3) following the SDC

methods as described in Subsection 4.2, we used the following multipliers: for record

swapping, the average diagonal probability of the probability transition matrix is 0.9; for

the stochastic perturbation, the average diagonal probability of the probability transition

matrix is 0.75 for the small counts and 0.9 for the large counts; for the random rounding to

base 3, we use the multiplier of 0.33.

From Table 5, we see that the disclosure risk measures are all smaller for the perturbed

tables compared to the original tables, even for the case of record swapping in output

Table 3 where the perturbed table is identical to the original table since the perturbed

NUTS2 variable was not included as a spanning variable of the table. The utility measures

are all high, showing that all SDC methods can provide tables that are fit for purpose

for users.

In general, it is clear that the method of record swapping when applied to the input

hypercube did little to reduce disclosure risk in the final output tables in the comparison

study. However, the disclosure risk measure is always slightly smaller than the disclosure

risk measure of the original table to reflect the uncertainty in the table based on the

assumption that an intruder cannot be certain which variables were swapped. The data

utility measure based on the Hellinger distance for output Table 3 under record swapping

is 1.00, since the perturbed table is equal to the original table. The data utility measure

under record swapping was low for the two output Tables 1 and 2 where the perturbed

Table 4. Number of small cells of size 1 and 2 in original hypercube and generated tables, and percentage of

those cells that were perturbed

Original
hypercube Table 1 Table 2 Table 3 Table 4

Number of cells of
size 1 and 2

6140 79 16 25 13

Percentage perturbed:
Record swapping 26.9 15.2 12.5 0 30.8
Stochastic

perturbation
33.2 29.1 25.0 36.0 23.1

Random rounding 100 100 100 100 100
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Table 5. Disclosure risk and data utility (Hellinger distance) for the generated tables

Disclosure risk
RðF;w1;w2Þ in (3)

Data utility
1 2 ðHDðF;GÞ=

ffiffiffiffi
N
p
Þ in (4)

Table 1

Original 0.318 -

Perturbed input
Record swapping: 0.282 0.988
Semicontrolled random rounding 0.137 0.991
Stochastic perturbation 0.239 0.995

Perturbed output:
Semicontrolled random rounding 0.135 0.993

Table 2

Original 0.248 -

Perturbed input:
Record swapping 0.191 0.972
Semicontrolled random rounding 0.070 0.996
Stochastic perturbation 0.210 0.998

Perturbed output:
Semicontrolled random rounding 0.072 0.996

Table 3

Original 0.339 -

Perturbed input:
Record swapping 0.295 1.000
Semicontrolled random rounding 0.130 0.994
Stochastic perturbation 0.254 0.996

Perturbed Output:
Semicontrolled random rounding 0.127 0.996

Table 4

Original 0.298 -

Perturbed input:
Record swapping 0.271 0.987
Semicontrolled random rounding 0.105 0.991
Stochastic perturbation 0.229 0.994

Perturbed output:
Semicontrolled random rounding 0.105 0.992
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NUTS2 variable was used to select the population for these tables. The data utility measure

under record swapping for output Table 4 was slightly higher, since in this case NUTS2

was a variable spanning the table and hence did not change the overall total of the table.

The stochastic perturbation carried out on the input hypercube outperformed record

swapping with smaller disclosure risk measures and higher data utility measures (except

for output Table 3). The stochastic perturbation has a higher disclosure risk compared to

semicontrolled random rounding, since a large percentage of small cells are unchanged

by the perturbation, but it has higher data utility.

The semicontrolled random rounding outperformed all other methods with respect to

the lowest disclosure risk, since there are no small cells in the tables and attribute

disclosure risk is reduced by the introduction of random zeros. However, the data utility

measure based on the Hellinger distance was slightly lower compared to the stochastic

perturbation method as mentioned above. There was little difference between the

disclosure risk measures comparing the pretabular semicontrolled random rounding on

the input hypercube to the post-tabular semicontrolled random rounding applied directly

to the output tables generated from the original hypercube. However, there is an increase

in the data utility measure when applying the post-tabular semicontrolled random

rounding, especially for the large output Table 1 and midsize output Table 3.

Figure 2 presents a disclosure risk-data utility map of the four generated tables where RS is

record swapping, SP is the stochastic perturbation, RR is the semicontrolled random

rounding on the input hypercube and RRP is the semicontrolled random rounding applied

directly to the generated output tables. The data utility measure is the Hellinger distance in

(4). The upper right-hand quadrant of the map represents high disclosure risk and high utility

and the lower left-hand quadrant represents low disclosure risk and low data utility.

The statistical agency needs to decide on a tolerable disclosure risk threshold above

which they are not prepared to release a table. As an example, the disclosure risk-data

utility map shows that for a tolerable disclosure risk threshold of up to 15 percent, the
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Fig. 2. Disclosure risk – data utility map for generated tables (output Table 1 (T1) to output Table 4 (T4)):

RS – record swapping, SP – stochastic perturbation, RR – semicontrolled random rounding on input hypercube,

RRP – semicontrolled random rounding on generated tables
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output tables where semicontrolled random rounding was applied directly to tables that

were generated from the original hypercube have the highest data utility as they are on the

farthest right-hand side of the map.

6. Concluding Remarks

In this article, we have compared pretabular SDC methods applied to a large hypercube

(record swapping, stochastic perturbation and semicontrolled random rounding) and a

semicontrolled random rounding applied directly to output tables generated from the

original hypercube. For the pretabular SDC methods, record swapping had little impact

on reducing disclosure risk and also had lower data utility. Semicontrolled random

rounding offered more protection as all cell values in the table not a multiple of base b

are perturbed, and by preserving the consistency of cells across tables, it is more

difficult to undo the rounding to reveal original cell values. The stochastic perturbation

had the best overall data utility, but entailed higher disclosure risks compared to the

semicontrolled random rounding. Finally, we have seen that the post-tabular SDC

method of semicontrolled random rounding applied directly to the generated output

tables produced nearly the same amount of disclosure risk reduction as the pretabular

semicontrolled random rounding applied to the input hypercube, but had a higher level

of data utility.

The aim of the comparison study was not primarily to evaluate specific SDC methods or

indeed determine their optimum parameterization, but rather to demonstrate how such a

disclosure risk and data utility analysis should be carried out by a statistical agency when

disseminating census data. To this end, we have proposed new global measures of

disclosure risk and data utility based on information theory that are particularly suited for

assessing disclosure risk arising from attribute and identity disclosure in census frequency

tables and can easily be embedded in a web-based flexible table-generating server. The

proposed modifications to the disclosure risk measure following the application of an SDC

method show that we can reflect the level of uncertainty added to the tables and therefore

reduce the disclosure risk. Further research is needed to refine and improve post-tabular

SDC methods whilst preserving additivity and consistency of user-defined tables. More

extensive empirical studies are needed that involve real data and the testing of SDC

methods across their respective parameter spaces.

Another key aspect of the SDC problem in a flexible table-generating server is the

management of users and governance processes. The server can be freely available on the

statistical agency’s website for all users or restricted via licensing and passwords to only

approved users. For the former case, it is clear that SDC rules and methods would have to

be highly protective to guard against the fact that users can query the same table multiple

times in an attempt to undo SDC methods and reveal original cell counts. Clearly,

perturbative SDC methods, preserving the additivity and consistency of same cells across

different tables, and high thresholds for dissemination would be required. For the latter

case, less protection would be needed, allowing for higher-quality data, but protocols

would then need to be in place to handle multiple overlapping queries from the same user,

the management of users and their expectations.

Shlomo et al.: Flexible Table Generators 323



7. References

Antal, L., N. Shlomo, and M. Elliot. 2014. “Measuring Disclosure Risk with Entropy in

Population Based Frequency Tables.” In PSD’2014 Privacy in Statistical Databases,

edited by J. Domingo-Ferrer, 62–78. Berlin: Springer.

Cover, T.M. and J.A. Thomas. 2006. Elements of Information Theory, 2nd ed. New York:

Wiley.

Dalenius, T. and S.P. Reiss. 1982. “Data Swapping: A Technique for Disclosure Control.”

Journal of Statistical Planning and Inference 7: 73–85.

Doyle, P., J.I. Lane, J.M.M. Theeuwes, and L. Zayatz. 2001. Confidentiality, Disclosure

and Data Access: Theory and Practical Applications for Statistical Agencies.

Amsterdam: Elsevier Science B.V.

Duncan, G., M.J. Elliot, and J.J. Salazar. 2011. Statistical Confidentiality: Principles and

Practice. New York: Springer.

Fienberg, S.E. and J. McIntyre. 2005. “Data Swapping: Variations on a Theme by

Dalenius and Reiss.” Journal of Official Statistics 9: 383–406.

Fraser, B. and J. Wooton. 2005. “A Proposed Method for Confidentialising Tabular Output

to Protect Against Differencing.” Joint UNECE/Eurostat Work Session on Statistical

Data Confidentiality, Geneva, November 9–11. Available at: www.unece.org/file

admin/DAM/stats/documents/ece/ces/ge.46/2005/wp.35.e.pdf (accessed April 2015).

Gouweleeuw, J., P. Kooiman, L.C.R.J. Willenborg, and P.P. De Wolf. 1998. “Post

Randomisation for Statistical Disclosure Control: Theory and Implementation.”

Journal of Official Statistics 14: 463–478.

Hundepool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing, E. Schulte Nordholt, K.

Spicer, and P.P. de Wolf. 2012. Statistical Disclosure Control. Chichester: John Wiley

& Sons.

Salazar-Gonzalez, J.J., C. Bycroft, and A.T. Staggemeier. 2005. “Controlled Rounding

Implementation.” Joint UNECE/Eurostat Work Session on Statistical Data Confiden-

tiality, Geneva, November 9–11. Available at: www.unece.org/fileadmin/DAM/stats/

documents/ece/ces/ge.46/2005/wp.36.pdf (accessed April 2015).

Shlomo, N. 2007. “Statistical Disclosure Control Methods for Census Frequency Tables.”

International Statistical Review 75: 199–217. Doi: http://dx.doi.org/10.1111/j.

1751-5823.2007.00010.x.

Shlomo, N. and C. Young. 2008. “Invariant Post-tabular Protection of Census Frequency

Counts.” In In PSD’2008 Privacy in Statistical Databases, edited by J. Domingo-Ferrer

and Y. Saygin, 77–89. Berlin: Springer.

Willenborg, L.C.R.J. and T. de Waal. 2001. Elements of Statistical Disclosure Control.

New York: Springer.

Received July 2013

Revised October 2014

Accepted November 2014

Journal of Official Statistics324

www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2005/wp.35.e.pdf
www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2005/wp.35.e.pdf
www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2005/wp.36.pdf
www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2005/wp.36.pdf
http://dx.doi.org/10.1111/j.1751-5823.2007.00010.x
http://dx.doi.org/10.1111/j.1751-5823.2007.00010.x

