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ReGenesees is a new software system for design-based and model-assisted analysis of
complex sample surveys, based on R. As compared to traditional estimation platforms, it
ensures easier and safer usage and achieves a dramatic reduction in user workload for both the
calibration and the variance estimation tasks. Indeed, ReGenesees allows the specification of
calibration models in a symbolic way, using R model formulae. Driven by this symbolic
metadata, the system automatically and transparently generates the right values and formats
for the auxiliary variables at the sample level, and assists the user in defining and calculating
the corresponding population totals. Moreover, ReGenesees can handle arbitrary complex
estimators, provided they can be expressed as differentiable functions of Horvitz-Thompson
or calibration estimators of totals. Complex estimators can be defined in a completely free
fashion: the user only needs to provide the system with the symbolic expression of the
estimator as a mathematical function. ReGenesees is in fact able to automatically linearize
such complex estimators, so that the estimation of their variance comes at no cost at all to the
user. Remarkably, all the innovative features sketched above leverage a particular strong point
of the R programming language, namely its ability to process symbolic information.
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1. What is ReGenesees?

ReGenesees (R Evolved Generalized Software for Sampling Estimates and Errors in

Surveys) is a full-fledged R software for design-based and model-assisted analysis of

complex sample surveys. This system is the outcome of a long-term research and

development project, aimed at defining a new standard for calibration, estimation and

sampling error assessment to be adopted in all large-scale sample surveys routinely carried

out by Istat (the Italian National Institute of Statistics).

The first public release of ReGenesees for general availability dates back to December

2011. The system is distributed as open source software under the European Union Public

License (EUPL). It can be freely downloaded from JOINUP (the collaborative platform

for interoperability and open source software of the European Commission) and from the

Istat website.

Until the advent of ReGenesees, the estimation phase for sample surveys was handled at

Istat by a SAS application named GENESEES (Falorsi and Falorsi 1997). The name of the
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new R-based system has been deliberately chosen to emphasize Istat’s seamless offer of

software tools dedicated to that phase, while at the same time highlighting its evolution

and enhancement through R. It is worth stressing, in any case, that the ReGenesees system

is not the outcome of the simple migration to R of its SAS predecessor, but rather the fruit

of a new, challenging and completely independent project.

The principal aim of this article is to introduce ReGenesees to the official statistics

community. We will not try to provide a complete description of the statistical methods

offered by ReGenesees, nor to describe its software implementation details: condensing

this in an article would be beyond our ability. Instead, we will focus on few qualifying

aspects which we perceive as ReGenesees “power features” and which, in our opinion,

distinguish the system from other existing estimation platforms developed by National

Statistical Institutes (NSIs). A broad overview of these qualifying aspects will be given in

Section 3, after a brief discussion of the motivations of the project in Section 2.

Since many innovative features of ReGenesees can be traced back to a particular strong

point of the R programming language, namely its ability to process symbolic information,

the latter will form the leitmotif of the whole presentation.

R (R Core Team 2014) adheres to the functional programming paradigm and its semantics

reveal some notable affinities with LISP (the ancestor of all functional languages). One

relevant similarity is precisely the ability to manipulate symbolic expressions, a feature the

R community usually refers to as “computing on the language”. Perhaps the most popular

materialization of this ability is the formula class with its ubiquitous usage in R statistical

modelling functions (Chambers and Hastie 1992). Section 4 will be devoted to illustrate how

ReGenesees exploits these potentialities in the calibration context.

A strictly related, though maybe less well known, fact is that R provides functionalities

(e.g., symbolic differentiation and polynomial algebra) which are usually thought as

hallmarks of Computer Algebra Systems (i.e., specialized software platforms where

computation is performed on symbols representing mathematical objects rather than their

numeric values). In Section 5 we will show how R facilities for computing symbolic

partial derivatives of functions of several variables have been used in ReGenesees to fully

automate the variance estimation of complex estimators.

Readers interested in assessing to what extent ReGenesees could cover the typical

needs arising in NSIs during the estimation phase will find a list of the statistical

methods made available by the system in Section 6. Section 7 will provide a quick overview

of ReGenesees software design. There, we will acknowledge ReGenesees’ indebtedness to

the R survey package (Lumley 2004, 2010), but will also discuss those specific features

which, in our opinion, make ReGenesees more fit than survey for the large-scale

elaborations of the official statistics industry. The progress made so far in migrating Istat

production processes to the new system will be reported in Section 8. Finally, Section 9 will

address ongoing work and possible future extensions of the ReGenesees project.

2. Motivation of the ReGenesees Project

The tasks of calibrating survey weights, computing survey estimates, and assessing their

precision, constitute a fundamental building block of the production process of official

statistics. These are very complex tasks, whose correct execution requires a good
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knowledge of the underlying statistical theory, full awareness of the adopted sampling

plans, and often also some insight into the phenomena under investigation. Such skills,

which rightfully contribute to define the ideal cultural background of a “good official

statistician”, cannot at present be entirely superseded by a software (nor probably will in

the future), no matter how sophisticated and powerful it may be. However, most NSIs

agree that the availability of highly evolved software systems (along with the definition of

standard protocols for their optimal usage) is essential to ensure the accuracy, the safety

and the full reproducibility of statistical production processes.

In the past, this strategic vision drove Istat and many other NSIs to invest in developing

in-house software dedicated to the estimation phase: one may think, for example, of GES

of Statistics Canada (Estevao et al. 1995), CLAN of Statistics Sweden (Andersson and

Nordberg 1994), CALMAR and POULPE of French NSI INSEE (Sautory 1993; Caron

1998), BASCULA of Statistics Netherlands (Nieuwenbroek et al. 2000), g-CALIB of

Statistics Belgium (Vanderhoeft 2001) and GENESEES of Istat (Falorsi and Falorsi 1997).

Today, the same strategic vision (even reinforced by the awareness of the ongoing rapid

technological change, with its challenges and opportunities) pushes the same NSIs to

renew, enrich or even redesign their software systems from scratch.

Some NSIs are continuously extending their traditional estimation platforms, trying to

accommodate additional statistical capabilities as new needs arise in production and the

methodology matures. Evidently, this approach is aimed at preserving the overall “look

and feel” of the original system as much as possible (in terms of requirements, application

logic and user experience), so that no abrupt and costly transitions can affect the

production process. Relevant examples are Statistics Canada’s project StatMx (Statistical

Macro Extensions), which extends GES (Mohl 2007), as well as Statistics Sweden’s new

estimation tool ETOS (Estimation of Totals and Order Statistics), which enhances CLAN

(Andersson 2009).

Istat decided to follow a different path, namely to redesign its estimation platform from

scratch and to implement it in a different programming language. While the attempt to

soften Istat dependence on proprietary technologies was undeniably a major driving

factor, it was not the only relevant one. We were also interested in: (i) pushing our system

towards automation (to reduce user workload and errors), (ii) improving its modularity

(so that it could become easier to maintain and evolve), and (iii) providing a wider choice

of statistical methods (beyond those formerly available). ReGenesees is the fruit of the

efforts made by Istat in this direction.

3. ReGenesees: a Paradigm Shift

In the design phase of the ReGenesees project, it emerged fairly soon that the expectations

described in Section 2 could only be met through a radical paradigm shift. As a

consequence, ReGenesees has turned out to be rather different from its SAS predecessor

GENESEES (and, incidentally, from most of other existing estimation tools) from the

standpoint of both application logic and user experience. Indeed, besides allowing

computing estimates and sampling errors for a much wider range of estimators,

ReGenesees ensures easier and safer usage and a dramatic reduction in user workload. In a

nutshell (see Sections 4, 4.1 and 5, 5.1 for more on points (1) and (2) below):
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(1) User interaction with the new system takes place at a very high level of abstraction.

ReGenesees users in fact no longer need to preprocess the survey data relying on ad

hoc programs; instead, they only have to feed the software with (i) the data as they

are, plus (ii) symbolic metadata that describe the adopted sampling design and

calibration model (by “calibration model”, we mean the assisting linear model

underlying a specific calibration problem). At that point, it is up to the system itself to

transform, in an automatic and transparent way, the survey data into the complex data

structures required to solve the calibration problem and to compute estimates and

errors.

(2) Besides totals and absolute frequency distributions (estimators that were already

covered by GENESEES), ReGenesees is able to compute estimates and sampling

errors with respect to means, ratios, multiple regression coefficients, quantiles, and,

more generally, with respect to any complex estimator, provided it can be expressed

as a differentiable function of Horvitz-Thompson or calibration estimators. It is worth

stressing that such complex estimators can be defined in a completely free fashion:

the user only needs to provide the system with the symbolic expression of the

estimator as a mathematical function. ReGenesees is in fact able to automatically

linearize such complex estimators, so that the estimation of their variance comes at no

cost at all to the user.

Existing estimation software (the Istat traditional SAS system being no exception)

generally gave little support to users in preparing auxiliary variables and population totals

for calibration, or in deriving the Taylor expansion of nonlinear estimators and in

computing the corresponding linearized variable for variance estimation purposes. As a

consequence, ad hoc (often very complex) programs for data preparation, transformation

and validity checking were developed and maintained outside the scope of the estimation

system: a time-consuming and error-prone practice. ReGenesees frees its users from

such needs, with an evident gain in terms of workload reduction, better usability and

increased robustness against possible errors. Furthermore, letting ReGenesees carry out

tasks that traditional platforms delegated to a (skilled) human makes the statistical

production workflow fully reproducible, as the system persistently logs all the elaboration

steps it executes.

Interestingly, both the innovative ReGenesees features sketched above leverage R’s

ability to process symbolic information. As a matter of fact, developing the same

functionalities in SAS would have been prohibitive: a striking example of what we meant,

in Section 2, when referring to “opportunities of technological change”.

A technological shift, on the other hand, always involves challenges and some price to

be paid. The most threatening challenge faced by the ReGenesees project has been to

demonstrate that an R-based system would actually be able to manage efficiently the huge

amounts of data involved in processing Istat large-scale surveys (see Section 7 for an

illustrative example).

A lot of effort has been invested during the whole development cycle of the new system

to meet this challenge. Thanks to the empirical evidence and to the reproducible results

accumulated during an extensive and thorough testing campaign, we are certain that the

challenge has been definitely overcome. Indeed, since its beta release, ReGenesees has been
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successfully tested on both the Labour Force Survey (LFS) and the Small and Medium

Enterprises Survey (SME): where the tasks of calibration and computation of estimates and

errors are concerned, these two surveys constitute (each one in its own domain) the most

severe test bed available at Istat. Furthermore, today about 20 Istat large-scale surveys

have successfully integrated ReGenesees into their production workflow.

ReGenesees also underwent an independent validation, which was carried out by

colleagues from the UK statistical institute (ONS). A first comparative study, performed

on their Life Opportunities Survey, measured ReGenesees effectiveness and efficiency

using Statistics Canada’s GES as a benchmark. The outcome was that ReGenesees

replicated the results achieved by GES exactly, while ensuring a significant increase in

efficiency (in their testing environment, execution times turned out to be halved on

average). This result, in turn, triggered a second ONS initiative. ReGenesees was used to

calibrate three important surveys for the Scottish Government, whose weighting

procedures had till then been contracted to three separate external companies: (i) Scottish

Household Survey, (ii) Scottish Health Survey, and (iii) Scottish Crime and Justice

Survey. Again the results were very satisfactory, and the ONS Methodology Advisory

Service suggested ReGenesees as a possible “calibration engine” to be adopted in the

novel centralized weighting framework designed for the Scottish Government (Davidson

2013). Eventually, ReGenesees was indeed used in production for the last round of all the

aforementioned surveys (Scottish Government (2013a), (2013b), and (2014)).

4. Leveraging Symbolic Information: the Calibration Side

Real-world calibration tasks in the field of official statistics can simultaneously involve

several hundreds of auxiliary variables (just to give an impression: each quarterly round of

the Italian LFS entails calibrating to known population totals for over 4,000 auxiliary

variables). Moreover, the construction of such auxiliary variables is in general highly

non-trivial, as they need to be carefully derived from the original survey variables

according to the (possibly very complex) adopted calibration models. With respect to such

operations, traditional calibration facilities (as those listed in Section 2, mostly based on

SAS) gave limited practical support to users, instead devoting dozens of user manuals’

pages to describing the standard data structures they expected as input. As a consequence,

users had to develop customized programs (typically SAS scripts) in order to generate the

right input data to feed the calibration system, with “right” here meaning: (i) appropriate to

the survey data and to the calibration task at hand, and (ii) compliant with all the

documented rules imposed by the system.

Conversely, users interact with the ReGenesees system at very high level of abstraction,

as they only need to specify the calibration model in a symbolic way, via R-model formulae.

Model formulae are R objects of classformula (Chambers and Hastie 1992). Thanks to the

flexible syntax of this class and to the powerful semantics of its methods, R-model formulae

can be used to compactly specify a wide range of statistical models (far beyond the ANOVA

context from which the inspiring notation of Wilkinson and Rogers (1973) originally came).

In particular, R-model formulae have the expressive power to represent arbitrarily complex

calibration models, including sophisticated modelling aspects such as, for example,

interactions between numeric and categorical auxiliary variables, multi-way interactions,
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factor crossing, nesting and conditioning, collinearity prevention and term aliasing,

handling customized contrasts, referencing auxiliary variables defined on the fly, and so on.

Driven by a calibration-model formula, ReGenesees is able to transparently generate

the right values and formats for the auxiliary variables at the sample level. In addition,

the system assists in defining and calculating the population totals corresponding to the

generated auxiliary variables. Indeed, by leveraging again the calibration model formula,

ReGenesees provides the user with a template dataset appropriate to store the requested

totals. Whenever the actual population totals are available to the user as such, that is, in the

form of already computed aggregated figures, the user has only to fill in the template. This

case typically occurs in Italy for household surveys (whose sampling design is two-stage:

municipalitiesþ households) because demographic balance figures are updated and

released on a monthly basis, whereas a centralized population register is not yet available.

An even bigger benefit is achieved when the sampling frame of the survey is available as

a single database table and the actual population totals can be calculated from this source.

In such cases, ReGenesees is able to automatically compute the totals of the auxiliary

variables from the sampling frame, and to safely arrange and format these values so that

they can be directly used for calibration. This scenario applies to all the structural business

surveys carried out in Italy, whose samples are drawn (typically with a one-stage design)

from ASIA, the Istat comprehensive archive of about 4.5 million Italian active enterprises.

In the next section, the abstract considerations sketched above will be illustrated in

practice by two calibration examples.

4.1. Two Calibration Examples: Global and Partitioned Calibration

Here we provide two simple examples illustrating how a ReGenesees user can tackle a

calibration task. Both examples will be discussed in the light of the considerations set out

in Section 4.

Both examples will address the same calibration problem, which will be solved globally

in the first case, and in a partitioned way in the second case. For the sake of clarity, each

example will be decomposed into atomic elaboration steps. For each elaboration step, first,

we will provide a quick natural-language description of what is going on; then, we will

show the corresponding R-code statements. Such code fragments will be reported as if

they were typed by a user interacting with ReGenesees through the ordinary

R command-line interface; the same elaborations could also be obtained by exploiting

the graphical user interface of the system (see Section 7).

Both examples will involve two artificial datasets mimicking structural business

statistics data, which ship with the ReGenesees system. The first dataset, sbs, represents a

sample of enterprises, while the second, sbs.frame, is the sampling frame from which

the sample has been selected.

We will calibrate sbsweights with calibration constraints imposed simultaneously on the

total number of employees (emp.num) and enterprises (ent) inside domains obtained by:

i) crossing two-digit classification of economic activity or industry (nace2) and

region (a convenience, threefold territorial division);

ii) crossing employment size classes (emp.cl), economic activity macro-sector

(nace.macro) and region.
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Let us now proceed step by step with the first example.

Code fragment S1 simply tells the ReGenesees system that the sbs sample was selected

with a stratified one-stage unit sampling design without replacement. Since the present

focus is on calibration, we cannot go into any detail on function e.svydesign. Rather,

we only point out that it can handle a wide range of complex sampling designs

(see Section 6 for a list).

The calmodel formula in code fragment S2 specifies the assisting linear model

underlying our complex calibration problem. Without going into syntax details: ‘, ’

declares a model formula, ‘:’ means interaction, ‘1 ’ means sum of effects (not arithmetic

addition), ‘-1’ means no intercept term needed (otherwise, it would be tacitly implied in

R). More specifically, calmodel identifies the calibration constraints, as well as

the related auxiliary variables. Given the nature of the sbs dataset, such a calibration

model – which involves only six original survey variables, two numeric and four

categorical – translates into 462 different numeric auxiliary variables.

Code fragment S2 generates a template dataframe (pop) to store properly the known

totals of these 462 variables (in fact pop has one row and 462 columns, as shown). It is a

template dataframe in the sense that all the known totals it must be able to store are still
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missing, but it has the right certified structure (in terms of dimension, column names,

variable types, : : :) to be processed successfully by the calibration facility of the

ReGenesees system once filled. Note that the pop.template function works in a

declarative way: it avoids any need for the user to understand, comply with, or even be

aware of, the structure of the template that is being built.

Function fill.template, in code fragment S3, transparently computes the requested

population totals from the sampling frame, and arranges and formats such values

according to the template structure. Note that these elaborations are again driven by the

calibration model formula calmodel, which is attached as an invisible attribute to the

template dataframe pop returned by the previous code fragment S2.

Function e.calibrate in code fragment S4 first automatically generates the model

matrix storing the values of the 462 numeric auxiliary variables for the whole sample, then

computes the desired calibrated weights.

In conclusion, fragments S1 – S4 show that we were able to perform a complex

calibration task by passing to ReGenesees only the data as they were plus symbolic

metadata, without any need to work out the 462 numeric auxiliary variables and their

population totals.

Let us come back to the calmodel formula in code fragment S2. This formula

identifies a factorizable calibration model, as variable region acts as a common factor

interacting with all the other variables appearing in the formula. Factor variables with this

property split the sample (and the target population) into nonoverlapping subsets known as

“calibration domains” (“model groups” in the terminology of Estevao et al. 1995). The

interest in factorizable calibration models lies in the fact that the global calibration

problem they describe can actually be broken down into smaller local subproblems, one

per calibration domain, which can be solved separately. This opportunity can, in many

cases, result in a dramatic reduction in computational complexity. Obviously the

computational efficiency gain increases with the size of the survey and (most importantly)

with the number of auxiliary variables involved.

Now, code fragments S2 – S4 above show how the ReGenesees calibration facility

e.calibrate can be used to solve a factorizable calibration problem with a global

approach. In the next example, we will instead show how to solve the same problem with a

partitioned approach. Again no data preparation effort is required of the user.

We are now ready to go on with the second example.
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Code fragment S5 shows how we can tell ReGenesees to solve our factorizable

calibration problem in a partitioned way. We only need to: (i) pass to the calmodel

argument the reduced model obtained by factoring the common factor variable region

out from the original model; (ii) pass the same variable to the partition argument in

order to identify the calibration domains. Note that this implies a different structure of the

known totals template pop2 as compared to pop in S2. Specifically, we get as many rows

as calibration domains (three in our example, since we have three regions) and a new

column to identify such domains. Hence, the number of cells to be filled with actual

population totals remains the same, that is, 462 ¼ 3 £ (155 – 1), as it must be. Again the

user does not need to take care of such format details, as they are automatically handled by

function fill.template in code fragment S6.

Function e.calibrate in code fragment S7 sequentially runs the three calibration

subproblems corresponding to the calibration domains identified by partition. Lastly,

code fragment S8 shows that the calibrated weights achieved by the partitioned algorithm

are indeed equal to those obtained previously through the global approach: we reported

this result for illustration only, as it is guaranteed by construction.

We conclude by pointing out two technical aspects of the partitioned calibration

task seen in code fragments S5 – S7. First, the computational efficiency gain of the

partitioned approach is evident even for our toy example: execution time indeed turns

out to be reduced by a factor of 10 with respect to the global calibration alternative.

Second, solving the calibration problem in a partitioned way has some nontrivial

consequences in the variance estimation phase, as discussed in Estevao et al. (1995).

Nevertheless, as we will show in Subsection 5.1, the ReGenesees system will

automatically take care of all the involved technical issues (mainly arising from the

interplay between estimation domains and calibration domains), again without requiring

any specific effort of the users.

5. Leveraging Symbolic Information: the Linearization Variance Side

The Taylor linearization method is a well-established, approximate tool (Woodruff 1971;

Wolter 2007) for estimating the variance of complex estimators, namely estimators that

can be expressed as nonlinear (but “smooth”, say of class C 2 at least) functions of

Horvitz-Thompson (HT) estimators of totals:

Zardetto: ReGenesees: an Advanced R System for Estimation 185



û ¼ f ðŶ1; :::; ŶmÞ ð1Þ

where Ŷj ¼
k[s

P
dkyjk and the design weights dk are reciprocals of first-order inclusion

probabilities, dk ¼ p21
k .

The key assumption of the method, generally justified by large-sample arguments (see

e.g., Krewski and Rao 1981), is that, as far as variance estimation is concerned, a complex

estimator can be approximated by its first-order Taylor series expansion:

û < uþ
Xm

j¼1

›f

›Ŷj

�
�
�
�
�
Y

ðŶj 2 YjÞ _¼ ûlin ð2Þ

The linear approximation of the original complex estimator (1) is then expressed (up to

constant, though unknown, terms) as the HT total of a single artificial variable ẑ:

ûlin <
k[s

X
dkẑk þ const ð3Þ

Variable ẑ in Equation (3) is the so-called linearized variable (Woodruff 1971) of the

complex estimator (1):

ẑk ¼
Xm

j¼1

›f

›Ŷj

�
�
�
�
�
Ŷ

yjk ð4Þ

The approximate identity symbol < in Equation (3) and the hat over z in Equations

(3)-(4) rest on having evaluated the gradient of function f at estimated totals Ŷ rather than

at the corresponding true (but unknown) values Y. From Equation (3) it follows that an

estimator of the (approximate) variance of a complex estimator can be built for all

sampling designs for which a good estimator of the variance of an HT total is known:

V̂ðûÞ < V̂ð
k[s

X
dkẑkÞ ð5Þ

Equation (5) summarizes the “golden rule” of the method: estimating the variance of a

complex estimator boils down to the much simpler problem of estimating the variance of

the HT total of its linearized variable ẑ, under the sampling design at hand.

The extension to “smooth” functions of calibration estimators (see Särndal 2007 and

references therein) of totals is straightforward. Let us indicate an estimator of this kind as

follows:

û ¼ f
�
Ŷ

CAL

1 ; : : : ; Ŷ
CAL

m

�
ð6Þ

where Ŷ
CAL

j
¼

k[s

P
wkyjk and the calibrated weights wk are obtained by minimizing an

appropriate distance function Gðw; dÞ from the design weights dk, subject to calibration

constraints involving a set of auxiliary variables x and the corresponding known

population totals:
k[s

P
wkxk ¼

k[U

P
xk.
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The golden rule (5) still applies to estimators such as (6), the only relevant change being

a different expression for the linearized variable (Deville 1999):

ẑk ¼
Xm

j¼1

›f

›Ŷ
CAL

j

�
�
�
�
�
�
ŶCAL

gkêjk ð7Þ

namely the value of the original variable yjk has been replaced by the product of the

g-weight, gk ¼ wk=dk, with the estimated residual of that variable under the adopted

calibration model:

êjk ¼ yjk 2 x0 k�b̂j ð8Þ

The g-weighted residuals in (7) result from linearizing the GREG estimator (Särndal

et al. 1989), and from Deville and Särndal’s (1992) well-known finding that, under mild

conditions on the involved distance functions, all calibration estimators are actually

asymptotically equivalent to the GREG estimator.

Besides asymptotic theory, there is solid empirical evidence that the Taylor

linearization method can yield reliable variance estimates, as long as: (i) the functional

form of the estimator is well behaved, (ii) the sample is large and the sampling design is

not awkward, and (iii) the variables involved in the estimator are not highly skewed at the

population level. These conditions are frequently met in official statistics production, but

there are notable exceptions, such as the skewness characterizing many business statistics

variables. An investigation of the empirical properties of the variance estimators would

therefore be an interesting topic for future study.

While the mathematical framework outlined by Equations (1)-(8) is clear, its software

implementation involves some subtle and tricky technical points. For instance, domain

estimation of standard errors tends to become cumbersome, especially for complicated

functions of calibration estimators. Moreover, as anticipated in Subsection 4.1, when a

partitioned calibration is performed, the interplay between estimation domains and

calibration domains has to be carefully taken into account for variance estimation (see the

“general case” discussed in sec. 5 of Estevao et al. 1995). Note that this issue has a relevant

impact on software implementation, since the partitioned calibration approach is

computationally far more efficient than the global one, if not even the only feasible

alternative for some large-scale surveys (see Section 7 for an illustrative example).

From a software development standpoint, the linearization approach to variance estimation

has a fundamental drawback: the Taylor series expansion of a nonlinear estimator does

depend on its functional form f. Therefore, using traditional computing environments (e.g.,

SAS) that are unable to perform symbolic differentiation, different programs have to be

developed separately for each nonlinear statistic f. As a direct consequence, traditional

systems like those listed in Section 2 suffer from two main limitations.

First, they support only a rather limited set of nonlinear estimators, typically ratios of

totals (EUROSTAT 2002, 2013). As a somewhat extreme example, Istat traditional system

GENESEES cannot automatically handle any nonlinear estimator. At the other extreme,

Statistics Sweden’s system CLAN, despite being unquestionably more general and

versatile, still can only handle rational functions of totals.
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The second limitation is that traditional platforms generally cannot allow their users to

define their own complex estimators, namely statistics which are not built in. Whenever

users of such systems need non-built-in estimators, they have to develop ad hoc programs

to compute the appropriate linearized variables on their own.

Even CLAN users must actually write SAS (%FUNCTION) macros to let the system

understand the functional form of the rational function they are interested in. Moreover, those

macros become more and more complicated as the complexity of the estimator grows (see the

examples reported in the Appendix), with the risk of impairing the usability of the system

(Davies and Smith 1999; Ollila et al. 2004). In fact, CLAN users have to successively

decompose their original function into simpler subfunctions until no further simplification is

possible, using the four elementary algebraic operations (i.e., addition, subtraction,

multiplication and division) provided by the system as preprogrammed macros (i.e., %ADD,

%SUB, %MULT and %DIV). The purpose of this coding burden is to enable CLAN to compute

the linearized variable of a complex rational function of totals in a stepwise fashion, that is, by

successively applying appropriate Woodruff transformations corresponding to elementary

binary functionsþ , 2 , £ , and /, which are the only ones the system can directly cope with.

ReGenesees overcomes both the limitations mentioned above, again leveraging R’s

ability to process symbolic information. We achieved this goal through the following

steps. First, we devised a simple syntax for specifying arbitrary complex estimators

through their functional form, and enabled it by exploiting R methods for manipulating

expression objects (see the next section for further details). Then, we used advanced R

facilities for calculating symbolic derivatives to develop a sort of “universal” linearization

program. Once equipped with it, we were in the position to add to the system new

nonlinear estimators almost for free (see Section 6 for a list). Lastly, we engineered our

universal linearization program, making it friendly and fully visible to users. The resulting

function, named svystatL, handles arbitrary user-defined complex estimators, as we

show in the next section with two practical examples.

5.1. Two Examples of Complex Estimators: Geometric Mean and Standard Deviation of

a Variable

As we have already sketched above, we equipped ReGenesees with a simple syntax for

specifying arbitrary complex estimators through their functional form, via R

expression objects. According to this syntax:

i) the estimator of the total of a variable is simply represented by the name of the

variable itself;

ii) the convenience name ones identifies an artificial variable whose value is 1 for each

elementary unit.

Evidently, the system variable ones can be used directly to estimate the size (in terms of

elementary units) of the population, as well as to define the estimator of the mean of a

given survey variable.

By combining rules (i) and (ii) above, and by making use of whatever algebraic

operators and mathematical functions R understands, ReGenesees users can actually

define any estimator they need.
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Here are some elementary examples:

. Ŷ maps to expression(y)

. N̂ maps to expression(ones)

. R̂ ¼ Ŷ

X̂
maps to expression(y/x)

. m̂y ¼
Ŷ

N̂
maps to expression(y/ones)

. B̂ ¼ T̂in2T̂out

T̂inþT̂out
maps to expression((in 2 out)/(in þ out))

with T̂ var in the last item indicating the estimator of the total of variable var.

After this necessary preamble, let us now switch to our complex estimator examples.

For each example, we will proceed step by step, illustrating each atomic elaboration step

with the same style we adopted in Subsection 4.1.

Note that, since the estimators we are going to tackle cannot be expressed as rational

functions of estimators of totals, they could not be handled directly (i.e., automatically) by

any of the traditional estimation platforms listed in Section 2, not even by CLAN which is

the most general and flexible among them.

Our first example will address the geometric mean of a (non-negative) survey variable y.

To this end, recall that the geometric mean of y can be expressed as the exponential of the

average of the logarithm of y, so that our complex estimator reads:

Ĝy ¼ e ðT̂logðyÞ=N̂Þ ð9Þ

We will work with the same sbs-like data we used in Subsection 4.1, and will select

number of employees (emp.num) as study variable y.

The purpose of code fragment S9 ought to be clear: if we included log(emp.num)

directly inside the expression in S10, this would have been interpreted – according to

the syntax introduced before – as the logarithm of the estimator of the total of emp.num,

rather than as the estimator of the total of the logarithm of emp.num, which is what

Equation (9) actually dictates.

As a whole, code fragments S9 – S11 above show that ReGenesees was able to estimate

the variance of a user-defined complex estimator in a completely automated manner,

overcoming any need for developing ad hoc programs.
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Our second example focuses on the estimator of the Standard Deviation of a survey

variable y:

Ŝy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N̂

N̂ 2 1
m̂y 2 2 ðm̂yÞ

2
� �

s

ð10Þ

We will keep working with the same survey data and we will select value added (va) as

study variable. This time we will compute estimates and sampling errors on a calibrated

design object, more specifically on the result of our partitioned calibration example of

Subsection 4.1, sbscal2. Moreover, we will not estimate va’s standard deviation for the

whole population, but rather for domains identified by employment size classes, emp.cl:

note that each of these estimation domains intersects all the calibration domains of

sbscal2 (which were identified by variable region). The purpose of such choices is to

show that no additional effort is actually required of a ReGenesees user for handling the

additional technical complexities of this second example.

Code fragment S12 has exactly the same purpose as S9. Code fragments S12 – S14

above demonstrate that ReGenesees was actually able to cope with the very complex

analysis we set up for our second example in a completely automated way, again

overcoming any need for developing ad hoc programs. More specifically, function

svystatL in fragment S13 handled all the following tasks rigorously (though

transparently to the user): (i) compute symbolically the gradient of the function specifying

the complex estimator, f, with respect to the estimators of totals f depends on (i.e., Ŷ, T̂y 2

and N̂); (ii) compute the (calibrated) estimates of such totals for all the requested

estimation domains; (iii) for each estimation domain, evaluate the gradient of f at the

corresponding estimated totals; (iv) for each elementary unit belonging to a given

estimation domain, compute the g-weighted residuals of the variables whose totals appear

in f, taking into account the different estimated regression coefficients pertaining to the

calibration domains which happen to be intersected by the given estimation domain;
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(v) for each elementary unit in the sample, compute the linearized variable obtained by

putting together all the aforementioned ingredients according to Formula (7); (vi) pass the

linearized variable and the direct weights to the variance estimation algorithm appropriate

for an HT total under the sampling design at hand; (vii) return the obtained results for the

requested estimation domains.

6. ReGenesees Statistical Methods in a Nutshell

From a statistical point of view, the ReGenesees system is quite rich and flexible, as it is

able to handle a wide range of sampling designs, calibration models and estimators. As

anticipated in the article outline, we cannot provide a thorough description of the methods

offered by ReGenesees here. Instead, we will report them concisely in a list (see Table 1

below) and limit ourselves to clarifying those expressions which might not be self-evident

to readers who are not official statistics practitioners. Further details, along with a wealth

Table 1. A summary of ReGenesees statistical methods

† Complex sampling designs
W Multistage, stratified, clustered, sampling designs
W Sampling with equal or unequal probabilities, with or without replacement
W “Mixed” sampling designs (i.e., with both self-representing and

non-self-representing strata)
† Calibration

W Global and partitioned (for factorizable calibration models)
W Unit-level and cluster-level weights adjustment
W Homoscedastic and heteroscedastic models
W Linear, raking and logit distance functions
W Bounded and unbounded weights adjustment
W Multi-step calibrations

† Basic estimators
W Horvitz-Thompson
W Calibration estimators

† Variance estimation
W Multistage formulation
W Ultimate cluster approximation
W Collapsed strata technique for handling lonely PSUs
W Taylor linearization of nonlinear “smooth” estimators
W Generalized variance functions method

† Estimates and sampling errors (standard error, variance, coefficient of variation, confidence
interval, design effect) for:
W Totals
W Means
W Absolute and relative frequency distributions (marginal, conditional and joint)
W Ratios between totals
W Multiple regression coefficients
W Quantiles

† Estimates and sampling errors for complex estimators
W Handles arbitrary differentiable functions of Horvitz-Thompson or calibration estimators
W Complex estimators can be freely defined by the user
W Automated Taylor linearization
W Design covariance and correlation between complex estimators

† Estimates and sampling errors for subpopulations (domains)
W All the analyses above can be carried out for arbitrary domains
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of practical examples, can be found in the reference manual of the system (Zardetto 2014).

Lastly, we will point out some resources for assessing how ReGenesees statistical methods

compare to those offered by other existing systems cited in Section 2.

In multistage sampling, it is common jargon to call “self-representing” those primary

sampling units (PSUs) which are selected with probability one. Thus, for instance, all PSUs

belonging to a “take-all” stratum are self-representing. Sometimes efficiency considerations

push survey designs to the extreme of selecting just a single PSU per stratum: this happens, for

instance, in the Italian LFS. In these cases, population strata containing just a single

self-representing PSU are referred to as self-representing strata (SR strata); all the other strata,

containing many PSUs among which just a single one is randomly selected with probability

less than one, are called non-self-representing (NSR strata).

The resulting sampling design is sometimes called “mixed”, because the actual stages of

selection differ for SR and NSR strata. For instance, the Italian LFS is actually a two-stage

cluster sampling design inside NSR strata (namely a pps selection of municipalities

followed by a srs of households) and a one-stage cluster sampling inside SR strata (namely

a srs of households inside those municipalities which are always included in the sample).

Note also that for the Italian LFS all the PSUs selected inside NSR strata are “lonely

PSUs” by design.

Both the mixed nature of a sampling design and the occurrence of lonely PSUs (i.e.,

PSUs which are alone inside a NSR stratum at the sample level) are issues that need to be

carefully taken into account in variance estimation, and this is ensured by ReGenesees.

In particular, the system overcomes problems arising from lonely PSUs by adopting the

collapsed strata technique, as proposed by Rust and Kalton (1987).

When clusters selected at subsequent sampling stages (k $ 2) have equal inclusion

probabilities (e.g., for a stratified two-stage design with srs of both PSUs and SSUs),

ReGenesees correctly estimates the full multistage variance, without neglecting

subleading contributions arising from stages after the first (2, : : : , k). This exploits a

recursive algorithm similar to the one proposed in Bellhouse (1985), inherited and

extended from package survey (see Section 7 for details).

Conversely, for unequal probability sampling without replacement (e.g., the pps selection of

PSUs in NSR strata of the Italian LFS), in order to get exact variance estimates second-order

inclusion probabilities should be known, which is generally unfeasible. In such cases,

ReGenesees resorts to so-called Ultimate Cluster approximation (Kalton 1979), which rests on

pretending that PSUs were sampled with replacement, even if this is not actually the case. If

PSUs were sampled with replacement, the only contribution to the variance would come from

estimated PSU totals, in that one could simply ignore any available information about

subsequent sampling stages – which explains the phrase “ultimate clusters”. This

approximation is known to result in conservative variance estimates, with an upward bias

which is negligible as long as the actual sampling fractions of PSUs are very small.

As a rule, ReGenesees computes variance estimates of nonlinear estimators with the

Taylor approach summarized in Section 5. Quantiles – being implicit, non-smooth

functions of totals – are a mandatory exception. Here ReGenesees switches to the method

proposed in Woodruff (1952), whose main ingredients are the estimation and the local

inversion of the cumulative distribution function of the interest variable, again using

facilities from and extending the survey package.
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The Generalized Variance Functions (GVF) method (see, e.g., sec. 7 of Wolter 2007) is

the first (and so far only) ReGenesees incursion in the model-based realm. The GVF

method (whose justification is largely empirical, with few exceptions) amounts to

modelling the variance of an estimator as a function of its expected value, and using the

fitted model to predict variance estimates, rather than computing them directly.

It is worth stressing that only a rather limited subset of the statistical methods covered

by ReGenesees was already available inside its SAS predecessor GENESEES. For

instance, the only estimators provided were totals and absolute frequencies, and variance

estimation in multistage designs could be tackled only under the ultimate cluster

approximation.

Readers interested in assessing how ReGenesees statistical methods compare to those

offered by existing systems developed by NSIs are referred to the following resources.

EUROSTAT (2002) provides a synoptic table summarizing the suitability of software

tools for sampling designs and related issues on variance estimation (p. 34): this covers

BASCULA, CLAN, GENESEES, GES, and POULPE. A similar table, this time also

taking into account ReGenesees (but loosing GES), can be found in Appendix 7 of

EUROSTAT (2013). Davies and Smith (1999) review and compare CLAN and GES in

depth. Lastly, Ollila et al. (2004) offer the most comprehensive and thorough comparative

study we are aware of, even though restricted to BASCULA, CLAN, and POULPE (only a

brief overview is given of g-CALIB and GENESEES).

7. ReGenesees Software Design: a Quick Overview

System Architecture. The ReGenesees system has a clear-cut two-layer architecture. The

application layer of the system is embedded into an R package named ReGenesees

(Zardetto 2014). A second R package, called ReGenesees.GUI (Zardetto and

Cianchetta 2014), implements the presentation layer of the system (namely a Tcl/Tk GUI).

Both packages can be run in Windows as well as in Mac, Linux and most of the Unix-like

operating systems. While the ReGenesees.GUI package requires the ReGenesees

package, the latter can be used also without the GUI on top. This means that the statistical

functions of the system will always be accessible to users interacting with R through the

traditional command-line interface (as for code fragments in Subsections 4.1 and 5.1).

Conversely, less experienced R users will benefit from the user-friendly mouse-click

graphical interface.

Related R Projects. It is worth mentioning that, especially in terms of software design

principles, the ReGenesees package owes a lot to the beautiful, rich and still growing

survey package written by Thomas Lumley (Lumley 2004, 2010). Retrospectively, the

original seeds of the ReGenesees project can be traced back to late 2006, when we were

trying to optimize and extend survey in order to enable its critical functions to

successfully process Istat’s large-scale surveys. Fairly soon, this attempt required us to

rethink the technical implementation of the package globally, that is, consider its internal

structure at a deeper level. Over time, this line of work coagulated into an R package in its

own right, with many advanced and useful new features that were not covered by

survey. A tentative list of ReGenesees user-visible improvements over the survey

package is presented in Table 2.
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Table 2. Some ReGenesees improvements over the survey package

Feature How it works

Calibration and variance
estimation functions can
efficiently process large-scale
surveys even in environments
with low computational
resources (e.g., ordinary PCs)

† Exploits calibration models factorization through a
dedicated divide and conquer algorithm

† Accelerates execution and saves memory by means
of ad hoc optimizations of many internal functions
(e.g., variance, design effects and domain estimation
for nonlinear estimators)

Provides estimates and sampling
errors for arbitrary
user-defined complex
estimators, i.e., any nonlinear
differentiable function of
Horvitz-Thompson or
calibration estimators
of totals

† Enables users to define their own complex estimators
symbolically (i.e., as mathematical functions) by means
of R expressions

† Exploits R symbolic differentiation facilities to linearize
complex estimators automatically, so that their
variance is estimated on the fly

Assists users in computing and
organizing population totals
for calibration tasks

† Driven by the calibration model formula,
automatically generates a template dataframe to be
filled with actual population totals

† If the sampling frame of the survey is available,
the template is filled automatically

† Able to cope with sampling frames of several million
rows and thousands of auxiliary variables by means
of a dedicated adaptive chunking algorithm

Interaction with all summary
statistics functions
(i.e., estimators of totals,
means, frequencies, ratios,
quantiles, multiple regression
coefficients, and complex
estimators) has been
standardized, so that they are
easier to assemble in an
industrialized process

† All estimators share (nearly) the same interface,
even for domain estimation

† All estimators produce return values with the same
structure, even for subpopulation estimation

† Estimates and sampling errors can be written to
database tables or exported to external files in a
common data model

New statistical capabilities
and utilities

† Hints on feasible bounds for range-restricted calibration
† Quick estimates of auxiliary variables totals
† Compression of nested factors to reduce model-matrix

sparseness in calibration tasks
† Detailed diagnostics on the calibration process and

on its results
† Merge of new survey data into existing design objects
† Collapsed strata technique for getting rid of lonely

PSUs in variance estimation
† Detailed diagnostics on the collapsing process and

on the generated superstrata
† Covariance and correlation between complex estimators
† A generalized variance functions (GVF) infrastructure,

i.e., facilities for defining, fitting, testing and plotting
GVF models, and to exploit them to predict variance
estimates
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Providing a comprehensive head-to-head comparison of ReGenesees to survey here

would be beyond the present article’s scope. However, we are able to present to the

interested reader at least one example highlighting how the development trajectory of our

system happened to diverge from survey. This example relates to the partitioned

calibration functionality of ReGenesees, which was introduced in Subsection 4.1 and

whose impact on variance estimation has been stressed in Sections 5 and 5.1.

In late 2006 we started studying, analyzing and testing survey in order to verify

whether that package was able to satisfy, at least partially, the typical needs of Istat sample

surveys. By using data from the Italian LFS as empirical test case, we soon realized that

survey could not have been adopted at Istat “as it was” (Scannapieco et al. 2007).

Indeed, every attempt to exploit its calibration function calibrate on LFS data

invariably led either to memory allocation failures or to unaffordable execution times,

whatever testing environment (i.e., hardware and operating system configuration) we set

up. The point was that, despite being anything but naive, survey code was not optimized

for processing such huge amounts of data.

To be slightly more specific: for each quarterly sample, typical LFS datasets have about

200,000 rows, and survey weights must be calibrated using over 4,000 numeric auxiliary

variables. If the calibration task was to be tackled globally (and this is indeed the only

available option in survey) those numbers would require: (i) computing a sample model

matrix of over 8 £ 108 numeric entries (i.e., about 6 GB of memory space), (ii) computing

the cross-product of that model matrix, yielding a matrix of over 1.6 £ 107 elements

(i.e., about 120 MB), (iii) computing the (generalized) inverse of (an appropriate scaling

of) that cross-product matrix, and (iv) repeating steps (ii)-(iii) for all the needed iterations

of a Newton-Raphson algorithm until convergence. Note that, in spite of appearances,

point (iii) – rather than (i) – turns out to be the hardest one, due to the high (typically

cubic) computational and space complexity of generalized inverse algorithms.

As anticipated, the viable alternative we figured out was a “divide and conquer” calibration

program exploiting a common feature of most Istat large-scale surveys, namely the factorizable

nature of their calibration tasks. Coming back to the Italian LFS example: since known

population benchmarks are defined at NUTS 2 level (i.e., for the 21 Italian administrative

regions), ReGenesees calibration facility e.calibrate can split the unaffordable global

calibration problem into 21 smaller subproblems. With respect to points (i)–(iii) defined above,

each one of these local calibration subproblems involves matrices whose size is, on average,

about 400 (i.e., 212) times smaller than those arising in the global approach.

Unfortunately, it would have been impossible to overcome survey limitations by

locally modifying and extending just the calibration function, because the side effects of

our partitioned algorithm would have propagated through survey’s variance estimation

Table 2. Continued

Feature How it works

Provides a comprehensive
and user-friendly
point-and-click GUI

† Pure R implementation, relies on tcltk and
tcltk2 packages
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backbone. The reason is that, as discussed in Section 5 of Estevao et al. (1995), solving the

calibration problem in a partitioned way has subtle, nontrivial consequences in the

variance estimation phase. Stated differently: in order to ensure that computed variance

estimates of calibration estimators (as well as of functions of calibration estimators) are

identical, irrespective of whether the underlying calibration problem has been solved

globally or in a partitioned way, the software program addressing variance estimation must

behave differently in the two cases. This explains why we were forced to override

survey’s variance estimation facility and to implement dedicated solutions appropriate

to our partitioned calibration approach.

Similarly, technical issues arising from the interplay between estimation domains and

calibration domains when estimating the variance of partitioned calibration estimators in

subpopulations (recall point (iv) at the end of Subsection 5.1.) prevented us from retaining

survey’s workhorse function for domain estimation svyby. Again we had to override

that function and to develop suitable alternatives.

In summary, none of the user-visible ReGenesees features reported in Table 2 as

improvements over the survey package has been obtained as a simple add on. Instead,

each one is the result of extensive and thorough programming effort at a deeper level. This is

not surprising, given the sophisticated and highly specialized nature of both software tools.

Software Interoperability. As testified by recent standardization initiatives such as

GSIM (UNECE 2013a) and CSPA (UNECE 2013b), NSIs are striving to modernize their

production workflows in such a way that software components could be shared between

different organizations and assembled “LEGO-wise” into industrialized processes.

Devising and implementing a common information model and a standard production

architecture are mandatory steps still to be completed to reach this challenging goal.

Anyway, we think ReGenesees complies with many of the requirements implied by this

modernization vision. Just to mention some of them: (i) it is free, (ii) it is open source,

(iii) it is cross-platform, (iv) it supports input and output of data in “open” formats, (v) it is

a collection of modules (namely R functions) with clearly defined interfaces, (vi) its main

functionalities have been designed to reduce (or avoid, whenever possible) human

intervention, (vii) its main functionalities are clearly mapped to GSBPM (UNECE 2013c),

(viii) it is available for download and sharing by all interested users, (ix) its technical and

end-user documentation is available in English.

8. Migrating Istat Procedures Towards ReGenesees

As already stated above, the first public release of the ReGenesees system is quite recent

(December 2011). The software began to spread in Istat from late 2010 onwards during its

beta-testing cycle. A recent (informal) internal survey revealed that – to date – it is being used

in production by 20 Istat large-scale surveys. These include: (i) ten surveys on enterprises

carried out in compliance with Eurostat regulations, including seven structural business

surveys (e.g., Community Innovation Survey, Information and Communication Technology,

Labour Cost Survey) and three short-term statistics surveys (e.g., Services Turnover Indices);

(ii) three agri-environmental surveys (e.g., Survey on Permanent Crops); (iii) five surveys in

the social demographic domain (e.g., Time Use, Health Conditions and Use of Medical
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Services, Safety of Women); (iv) and two census-related surveys (Post Enumeration Survey

of the 6th Agricultural Census and 9th Industry and Services Census).

In the opinion of survey statisticians involved, the migration of the standard calibration

and estimation procedures from GENESEES to ReGenesees resulted in a significant

reduction in both user workload and execution time. The observed 3:1 prevalence of

business surveys on household surveys is arguably related to what we discussed at the end

of Section 4: when samples are drawn from a centralized frame (like the Italian archive of

enterprises ASIA), ReGenesees automatically computes the totals of the auxiliary

variables from the sampling frame, and safely arranges and formats those values so that

they can be directly used for calibration.

Though as yet partial, ReGenesees penetration can be deemed quite satisfactory,

especially considering that SAS has been a de facto standard for statistical elaborations in

Istat since the early ’80s. Many Istat statisticians have strong SAS skills, some of them

have been familiar with Istat’s legacy estimation platform GENESEES for decades, and

there are always some costs involved in changing a consolidated production workflow:

it would have been unrealistic to expect an immediate transition to ReGenesees.

9. Ongoing Work and Future Extensions

Since its beta release, ReGenesees has been steadily gaining ground in Istat: to date, as

already sketched above, it has been successfully integrated into the production workflow

of about 20 large-scale surveys. Moreover, other Istat surveys are migrating to the new

system at present. Surveys with a bigger “mass” (i.e., involving more actors operating in a

more complex context) arguably have a greater “inertia” (i.e., are more resilient to

changes). In this respect, our next challenge will be to undertake the migration towards

ReGenesees of the production workflow of the Italian LFS and SME, a task whose

technical feasibility has already been proven. Internal training courses dedicated to the

new R-based system, whose first edition was launched in 2013, will allow an even faster

and wider diffusion of ReGenesees in Istat production processes.

In the meantime, the ReGenesees project is in full swing and still growing. ReGenesees

version 1.6, whose public release took place in April 2014, added facilities implementing

the Generalized Variance Functions (GVF ) method (Wolter 2007). The option of

predicting variance estimates based on a fitted model explaining the variance of an

estimator in terms of its expected value, rather than directly computing such variance

estimates, can benefit surveys with very demanding dissemination schedules and

publication plans.

We are currently assessing the feasibility of integrating the EVER package (Zardetto

2012) with ReGenesees, thus bringing the extended DAGJK technique (Kott 2001) for

variance estimation into the latter system. This would make it possible to handle

estimators which cannot be expressed as closed-form mathematical functions of sample

observations, for example, due to hot-deck imputation variability (Miller and Kott 2011).

Another open line of research points towards the software implementation of the

generalized linearization technique, which hinges upon the notion of functional

derivatives of estimators (influence functions in the seminal paper of Deville (1999)). This

would be useful whenever the ordinary Taylor method cannot be applied, for example, for
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estimators which are based on order statistics or expressed as non-smooth, implicit

functions of totals, like the Gini index, the at-risk-of-poverty rate, and other Laeken

indicators (Osier 2009). Besides quantiles (which are available in ReGenesees too),

Statistics Sweden’s tool ETOS already provides sampling errors for the Gini index and

quantile shares. Anyway, our aim would be to enable ReGenesees to cope with arbitrary

user-defined functions of estimators of quantiles and cumulative distribution functions. Of

course, we are aware of the difficulty of this task.

We are confident that some of the aforementioned methodological enrichments will be

included in the next major release of the ReGenesees system, very likely together with

further developments on the software engineering side.

Appendix

With respect to the ability to automatically estimate the variance of nonlinear estimators

with the Taylor approach (thus excluding replication methods), Statistics Sweden’s tool

CLAN (nowadays extended by ETOS) is, to the best of our knowledge, the most general

and flexible of the traditional estimation platforms cited in Section 2. Indeed, it is able to

cope with arbitrary rational functions of estimators of totals. However, as anticipated in

Section 5, this comes at the price of asking CLAN users to program SAS macros which

become more and more complicated as the complexity of the desired estimator grows. The

examples below illustrate this point, draw a comparison with ReGenesees, and eventually

distil some insights from it.

Example 1

Suppose we want to estimate the mean of income (variable income) and its variance for

each cell of a two-way table crossing age group (variable agegrp) and sector of activity

(variable sector).

Ex1: CLAN Solution

The %FUNCTION SAS macro we would have to write in CLAN is as follows:

%macro function(a, b);

%tot(tab, income, (sector ¼ &a) and (agegrp ¼ &b))

%tot(nab, 1, (sector ¼ &a) and (agegrp ¼ &b))

%div(rab, tab, nab)

%estim(rab)

%mend;

Afterwards, in order to practically obtain the desired results in CLAN, we would have to

embed the macro above into an enclosing SAS program ending with a call to macro

%CLAN, and run that program.

Ex1: ReGenesees Solution

As ReGenesees users we would obtain the desired results by directly invoking function

svystatL as follows:
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> svystatL (ex1, expression(income/ones), by=~sector:agegrp)

Ex1: Comment

The most relevant point in this example is not the different amount of involved lines of

code in itself, but rather the reason for such a difference: the logic with which users

interact with CLAN and ReGenesees. In fact, while ReGenesees users must only ask the

system what they need (i.e., they have to invoke a program), CLAN users must also

provide the system with an explanation of how it has to compute what they need (i.e., they

have to write a program).

As we are going to see in the next example, the effects induced by these diverse

interaction paradigms become more evident as soon as a more complex estimator is

addressed.

Example 2

Suppose we want to compute estimates and sampling errors for a product of two ratios

between totals, say Q̂ ¼ ðŶ1=Ŷ2Þ £ ðŶ3=Ŷ4Þ, again for each cell of the two-way table used

in Example 1.

Ex2: CLAN Solution

The %FUNCTION SAS macro we would have to write in CLAN is as follows:

%macro function(a, b);

%tot(y1ab, y1, (sector ¼ &a) and (agegrp ¼ &b))

%tot(y2ab, y2, (sector ¼ &a) and (agegrp ¼ &b))

%div(r1ab, y1ab, y2ab)

%tot(y3ab, y3, (sector ¼ &a) and (agegrp ¼ &b))

%tot(y4ab, y4, (sector ¼ &a) and (agegrp ¼ &b))

%div(r2ab, y3ab, y4ab)

%tot(q1ab, r1ab, (sector ¼ &a) and (agegrp ¼ &b))

%tot(q2ab, r2ab, (sector ¼ &a) and (agegrp ¼ &b))

%mult(Q, q1ab, q2ab)

%estim(Q)

%mend;

Afterwards, in order to practically obtain the desired results in CLAN, we would have to

embed the macro above into an enclosing SAS program ending with a call to macro

%CLAN, and run that program.

Ex2: ReGenesees Solution

As ReGenesees users we would obtain the desired results by directly invoking function

svystatL as follows:

> svystatL(ex2, expression((y1/y2)*(y3/y4)), by=~sector:agegrp)
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Ex2: Comment

The most relevant point here is that the increased complexity of the estimator (as

compared to Example 1) doesn’t affect a ReGenesees user at all, whereas a CLAN user has

to write a trickier and lengthier SAS macro. As explained in Section 5, this is because

CLAN users always need to tell CLAN how to tackle the estimator they are interested in,

and this is achieved by successively decomposing it into simpler subfunctions, until no

further simplification is possible. This decomposition requires more and more steps as the

estimator complexity grows.
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