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The role of statistical tolerance intervals for developing ratio edit tolerances in a parametric
setup is investigated. The performance of the methodology is assessed for the normal and
Weibull distributions. The numerical results show that in terms of Type I and Type II errors,
statistical tolerance intervals exhibit better performance compared to other ratio edit
procedures available in the literature. The methodology is illustrated using 2010 and 2011
data from the Annual Survey of Manufacturers.
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1. Introduction

Ratio edit tolerances are bounds used for identifying errors in the data obtained by

Economic Census Programs so that they can be flagged for further review. The tolerances

represent upper and lower bounds on the ratio of two highly correlated items and are used

for outlier detection; that is, to identify units that are inconsistent with the rest of the data.

Some texts dedicated to the general topic of outlier detection include Barnett and Lewis

(1994), Rousseeuw and Leroy (2003), and Aggarwal (2013). A number of outlier detection

methods are also available in the literature and can be used for developing ratio edit

tolerances; we refer to Thompson and Sigman (1999) and Rais (2008) for a review and

comparison of these methods as they apply to the ratio edit problem. Thompson and

Sigman (1999) compared different methods for generating ratio edit tolerances, which

focused on “Type I” and “Type II” errors. A Type I error flags a ratio value as inconsistent

or wrong when it is not so. A Type II error flags an inconsistent ratio as consistent or

correct. Thompson and Sigman (1999) recommended a stepwise approach for developing

ratio edit tolerances, while Thompson and Adeshiyan (2003) discussed the effects of ratio

edit and imputation procedures on data quality for the 1997 Economic Census. Both

articles also emphasized the importance of incorporating subject-matter expertise when

developing the ratio edits.
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The issue of outliers or large data values in surveys has been addressed in the literature.

Tambay (1988) presents an empirical study comparing various methodologies for

identifying level outliers and/or trend outliers in subannual economic surveys. Latouche

and Berthelot (1992) focus on respondent follow-ups to units that may have an important

effect on statistical estimates. The authors present and compare three score functions as a

way to identify suspicious units according to their potential effect on the estimates. Kokic

and Bell (1994) discuss the setting where a number of unusually large observations fall

in the survey sample, which may grossly overestimate population totals. They proceed to

specify a cutoff criterion so that an optimal level can be found for Winsorizing the data. As

discussed in Rivest and Hidiroglou (2004), Winsorization is widely used to curb the effect

of outliers when computing survey estimates. Winsorized estimates have a downward bias

and smaller variance relative to their non-Winsorized analogues. When aggregating

survey estimates, these effects result in larger biases and less precision than standard

aggregated estimates. Hence, Rivest and Hidiroglou (2004) propose using a “corrected”

Winsorized estimate.

While not investigated here, we note a few other novel outlier detection methods that

could be investigated for performing ratio edits. Hido et al. (2011) present an approach to

identify outliers in a test dataset based on a training dataset comprised solely of inliers,

which is accomplished by using the ratio of the two dataset densities as an outlier score.

Yuen and Mu (2012) use a Bayesian linear regression setup to compute probabilities that

an observation is an outlier. Finally, Chawla and Gionis (2013) present a generalization to

the k-means algorithm as a way to simultaneously cluster and discover outliers in a dataset.

The purpose of our investigation is to examine the role of statistical tolerance intervals

in the process of developing ratio edit tolerances. A statistical tolerance interval provides

bounds that will capture a specified proportion or more of a sampled population with a

given confidence level; we refer to the book by Krishnamoorthy and Mathew (2009) for a

detailed discussion of the topic. Since ratio edit tolerances provide a range for the

acceptable ratios, a statistical tolerance interval can do the same provided that such an

interval is constructed using the good ratios; that is, using the data after deleting the ratios

that are inconsistent or problematic. An advantage of using a statistical tolerance interval

is that such an interval, by construction, controls the Type I error at a specified level,

similar to what is done in hypothesis testing. The Type II error performance can then be

studied and compared with other ratio edit tolerance intervals available in the literature, as

described in Thompson and Sigman (1999).

Our approach consists of computing statistical tolerance intervals based on the “good”

part of the data; that is, after trimming the data so that potentially bad ratios are excluded

from the tolerance interval computation. We have no clear guidance on the percentage of

trimming to be done, which should perhaps be done using the input of a subject-matter

expert. In the case of a nearly symmetric distribution, we recommend trimming both tails

of the distribution, unless there is reason to believe that the contamination is only in one

tail. We report numerical results for a two-sided tolerance interval for the case of a normal

distribution, computed after trimming both tails. Type I and Type II error probabilities are

reported and compared with the ratio edit tolerances available in the literature. We also

report results for a one-sided upper statistical tolerance limit for the case of a Weibull

distribution, computed after trimming is done only in the right tail. The overall conclusion
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is that the statistical tolerance interval approach has a considerable edge over the available

ratio edit tolerances in terms of controlling Type I and Type II error probabilities.

Furthermore, for several standard parametric distributions (including the normal and

Weibull distributions considered in our work), analytic expressions or accurate

approximations are available for the limits that define a statistical tolerance interval.

In other words, they are easy to compute and we refer to Krishnamoorthy and Mathew

(2009) for further details.

Before describing the methodology for computing a statistical tolerance interval, we

want to make a brief comment on the terminology used in this article and in the literature.

As already noted, ratio edit tolerances are thresholds used for identifying ratio edit failures

and are determined through a wide range of possible outlier detection methods; however,

they are not defined or determined using the same criteria that define a statistical tolerance

interval. On the other hand, statistical tolerance limits are bounds that capture at least a

specified proportion of the sampled population with a given confidence level. Since both

notions are traditionally referred to as “tolerance limits,” we will make it clear through the

context which type of “tolerance” is being discussed.

We begin our discussion with a review of outlier detection methods that are used for

ratio edits and then investigate the role of statistical tolerance intervals for the same.

2. Outlier Detection Methods for Ratio Edits

There are numerous procedures for outlier detection in the literature; for example, see

the texts by Iglewicz and Hoaglin (1993), Barnett and Lewis (1994), and Rousseeuw and

Leroy (2003). The focus of this study is not to provide an exhaustive comparison of those

procedures, but rather to compare our approach with the standard methods used in setting

ratio edit tolerances. In this section, we discuss three common approaches that have been

employed by the U.S. Census Bureau.

2.1. Robust Control Limits

Shewhart (1939) provided the first thorough treatment of control charts as a way

to monitor a quality characteristic of a process over time. Control charts (also called

Shewhart charts) are a simple, yet powerful way to visualize variability in a process. They

can be used to identify shifts in a process or when a process goes out of control, where this

latter setting is essentially an outlier detection problem. The outliers are identified by

placing control limits on the data. Let mT and sT denote the mean and standard deviation,

respectively, of a statistic of interest T ; T(X) for the process being monitored. Then

lower and upper control limits are given by mX 2 LsX and mX þ LsX, respectively. Here,

L controls how far one will allow the process to vary from the mean before determining

that it has gone “out of control.” Typically, we set L ¼ 3, which is the 3s-limit rule of

thumb often used for outlier detection. A more contemporary treatment of control chart

methodology can be found in Montgomery (2013).

While ratio data is usually not time ordered (even though the ratios themselves may be

constructed using the same variable measured at two different time points), we can still

apply a similar type of control limit methodology. As discussed in Thompson and Sigman

(1999), we can use robust estimates of the population mean and standard deviation to
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construct control limits, which in turn will be the ratio edit tolerances. The robust estimates

are based on trimming and Winsorizing, which we now describe in more detail for any

general univariate setting.

Suppose we have observed data x1, : : : , xn and let xð1Þ # xð2Þ # : : : # xðnÞ denote the

ordered data. The (symmetric) a-trimmed mean for the data is given by

�xa ¼
1

n 2 2 dane

Xn2dane

i¼daneþ1

xði Þ; ð1Þ

where d�e is the ceiling function and 0 , a , 1. As noted in Tukey and McLaughlin

(1963), the Winsorized variance is a consistent estimator of the variance of (1). The

Winsorized variance is given by

s2
Wa
¼

1

n 2 2 dane

Xn2dane

i¼daneþ1

ðxði Þ 2 �xWa
Þ2; ð2Þ

where

�xWa
¼

1

n

Xn2dane

i¼daneþ1

xði Þ þ dane xðdaneþ1Þ þ xðn2dane Þ

� �
 !

ð3Þ

is the Winsorized mean. It is easy to modify the above formulas to accommodate

asymmetric trimming and Winsorizing, which includes one-sided trimming and

Winsorizing as special cases. Finally, the interval based on robust control limits is

given by

ð�xa 2 LsWa
; �xa þ LsWa

Þ: ð4Þ

For ratio data, Thompson and Sigman (1999) use L ¼ 2 to set a more liberal rule and

L ¼ 3 to set a more conservative rule regarding the number of cases flagged for review.

Many robust measures of location and scale could be investigated to construct analogues

to the robust control limits in Equation (4). For example, one might simply consider the

median or an M-estimator for a robust estimate of location, while the median absolute

deviation or Gini’s mean difference could be used for a robust estimate of scale. These may

result in more informative limits for a particular application. However, our focus is on

comparing some of the more common methods used in setting ratio edit tolerances (e.g.,

Equation (4)) with the tolerance interval approach that we discuss in Section 3.

2.2 Fence-Based Methods

In exploratory data analysis, the interquartile range (IQR) can be used to identify potential

outliers in a univariate dataset. The IQR is a resistant measure of dispersion defined as

Q3 2 Q1, where Q1 and Q3 are the first and third quartiles, respectively. As discussed in

Hoaglin et al. (1986), the resistant rule flags values as outliers if they fall outside the

interval

ðQ1 2 kIQR;Q3 þ kIQRÞ; ð5Þ
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for some non-negative constant k. Thompson and Sigman (1999) studied the use of

Equation (5) as a way to set ratio edit tolerances and referred to the above rule as resistant

fences. They referred to the specific rules of setting the values of k equal to 1.5, 2.0, and 3.0

as inner, middle, and outer fences, respectively. Note that the inner-fences rule is almost

always employed when identifying univariate outliers on a boxplot.

Thompson (1999) explored a variation of resistant fences for asymmetric distributions.

Asymmetric fences are elongated in the direction of the skewness of the distribution.

Denoting the median by ~x, the asymmetric-fences method replaces the IQR in Equation (5)

with distances from ~x. Specifically, the asymmetric-fences rule flags values as outliers if

they fall outside the interval

ðQ1 2 k *ð~x 2 Q1Þ;Q3 þ k *ðQ3 2 ~xÞÞ: ð6Þ

For asymmetric fences, Thompson (1999) refers to values of k* equal to 3.0, 4.0, and 6.0

as inner, middle, and outer fences. Note that these rules are just twice the value of k used

for the resistant-fences rule.

2.3 Hidiroglou-Berthelot Method

The methodology introduced by Hidiroglou and Berthelot (1986) is a ratio edit procedure

that uses a centering transformation of the ratios followed by a magnitude transformation.

Here is a brief description of the procedure.

Let ðx1; y1Þ; : : : ; ðxn; ynÞ be observations of the variables of interest and ri ¼ xi=yi,

i ¼ 1, : : : , n denote the n ratios to be analyzed. Moreover, let ~r denote the median of the

ratios. Define

si ¼
ðri=~rÞ2 1; if ri $ ~r

1 2 ð~r=riÞ; if ri , ~r

(
ð7Þ

and

ei ¼ si £ ðmax{xi; yi}Þ
U; ð8Þ

where 0 # U # 1. As noted by Hidiroglou and Berthelot (1986), the quantity U “provides

control on the importance associated with the magnitude of the data”; see also Thompson

(2007). The values U ¼ 0.30 and U ¼ 0.50 are recommended in Belcher (2003), Sigman

(2002), and Thompson (2007).

Next, let eQ1
, ~e and eQ3

denote, respectively, the first quartile, the median, and the third

quartile of the ei’s. Now define dQ1
¼ max{~e 2 eQ1

; jA~ej} and dQ3
¼ max{eQ3

2 ~e; jA~ej},

which involve a constant A. The value A ¼ 0.05 is recommended in Hidiroglou and

Berthelot (1986). Ratios outside the interval

ð~e 2 CdQ1
; ~eþ CdQ3

Þ ð9Þ

are flagged as outliers, where C will determine the width of the interval. Various values of

C have been assessed in the literature; see Sigman (2002) and Thompson (2007). For our

study, we use C [ {4, 10, 15} since these provide a good representation of values found in
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the literature. We note that an appropriate choice of U, A, and C is necessary before the

procedure can be implemented.

The Hidiroglou-Berthelot method and the fence-based methods were both applied to

microlevel ratio editing for the Annual Survey of Government Finances in Cornett et al.

(2006). The authors found that the middle-fences rule and the Hidiroglou-Berthelot

method provided better results for their application, which they explain is partly influenced

by how the edit cells were formed. These methods (including some multivariate methods)

were also investigated for macroediting using survey estimates from the U.S. Census

Bureau’s Annual Capital Expenditures Survey in Thompson (2007). That paper found that

the Hidiroglou-Berthelot method performed the best, since it is designed to develop

flexible limits when the ratios are “highly volatile.” Thompson (2007) also underscores

how it is difficult to develop a “one method fits all” approach to ratio editing, especially at

the macrolevel. Thus it is important to emphasize that these methods, including the

approach we present, are all possible tools for setting ratio edit tolerances and final

determination should be done in coordination with a content-matter expert.

3. Statistical Tolerance Limits

By definition, a P/g tolerance interval captures a specified proportion P (called the content

of the tolerance interval) or more of a population with a given confidence level g.

A tolerance interval is computed using a random sample and the confidence level g reflects

the sampling variability. More formally, suppose a tolerance interval is to be computed

for the distribution of a random variable X and let X ¼ (X1, X2, : : : , Xn) denote a random

sample of size n. A P/g two-sided tolerance interval, say (L(X), U(X)), computed using

the random sample X, satisfies

PXðPX½LðXÞ # X # UðXÞjX� $ PÞ ¼ g: ð10Þ

The above condition states that with confidence level g, the interval (L(X), U(X)) contains

a proportion P or more of the distribution of X. As already noted, the confidence level g

reflects the sampling variability in the random sample X. The quantities L(X) and U(X) are

referred to as the tolerance limits. A one-sided tolerance interval, having only an upper or

lower limit, can be similarly defined.

In this article, we use a two-sided tolerance interval for a normal distribution and a one-

sided upper tolerance limit for a Weibull distribution. We shall now give expressions for

the corresponding approximate tolerance limits. For a univariate normal distribution with

unknown mean and unknown variance, let �X and S 2 denote the sample mean and sample

variance based on a sample of size n. Then a two-sided tolerance interval for the normal

distribution is given by �X ^ kS, where the quantity k, referred to as a tolerance factor, has

the approximate expression (see chap. 2 in Krishnamoorthy and Mathew 2009)

k ¼
ðn 2 1Þx2

1;Pð1=nÞ

x2
n21;12g

 !1=2

: ð11Þ

Here, x2
1;Pð1=nÞ denotes the 100Pth percentile of a noncentral chi-square distribution with

1 degree of freedom (df) and noncentrality parameter 1/n, while x2
n21;12g denotes

the 100ð1 2 gÞth percentile of a central chi-square distribution with (n 2 1) df.
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Now consider a random variable X following a Weibull distribution with scale

parameter u and shape parameter b, whose density is given by

f XðxÞ ¼
b

ub
xb21exp 2

x

u

� �b� �
: ð12Þ

Let û and b̂ denote the maximum likelihood estimates of u and b, respectively, based on

a random sample of size n. An approximate P/g upper tolerance limit for the Weibull

distribution is given by

exp { ln ðûÞ2
tn21;12g 2

ffiffiffi
n
p

ln { 2 ln ð1 2 PÞ}
� �

b̂
ffiffiffiffiffiffiffiffiffiffiffi
n 2 1
p }; ð13Þ

where tn21;12g 2
ffiffiffi
n
p

ln { 2 ln ð1 2 PÞ}
� �

is the 100(1 2 g)th percentile of a non-central t

distribution with (n 2 1) df and non-centrality parameter 2
ffiffiffi
n
p

ln { 2 ln ð1 2 PÞ}. The above

approximation is due to Bain and Engelhardt (1981).

3.1 Statistical Tolerance Limits for Ratio Edits

If the data are roughly symmetric, an upper and lower tolerance bound may be needed

to identify extremes in both tails of the data. However, ratio data are often right skewed.

Thus, Thompson and Sigman (1999) suggest first omitting extreme observations of the

untransformed data followed by a modified power transformation of the remaining data to

obtain approximate symmetry.

There is some additional flexibility and insight gained by using statistical tolerance limits as

an alternative to traditional ratio edit tolerance procedures. For example, we typically do not

need to be concerned about transforming the data to near symmetry since approximate

tolerance intervals have been developed for a wide range of distributions; see, for example,

Krishnamoorthy and Mathew (2009). Also, the content and confidence levels of a tolerance

interval allow us to reflect the uncertainty of what we are trying to capture with these intervals.

Such uncertainty is not directly quantified by the traditional ratio edit tolerance procedures.

For the tolerance-limit approach, we first temporarily trim the data based on a user-

specified trimming level. The assumption is that the remaining data behave similarly to

the “true” uncontaminated distribution. The trimmed dataset is then used to calculate

statistical tolerance limits, which can extend beyond the extremes of the trimmed data.

Thus, some of the initially trimmed data may be retained as “good” data if they fall within

the statistical tolerance limits, or the statistical tolerance limits may indicate that further

data should be classified as ratio edit failures.

Another benefit to using statistical tolerance intervals is that the limits can never be negative

for distributions with nonnegative support, regardless of the confidence and content levels

specified. However, robust control limits and fence-based limits can yield negative lower

bounds. While one can simply truncate the lower limits from these methods at zero, we do not

have to specify this additional assumption when using statistical tolerance intervals.

4. Numerical Study

We now compare the performance of statistical tolerance limits with the traditional outlier

procedures for determining ratio edits. All simulations in this section and calculations
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for the example in the next section are performed using the R programming language

(R Development Core Team 2013). Moreover, statistical tolerance limits are calculated

using the R add-on package tolerance (Young 2010).

We compare the performance of the statistical tolerance limits with the ratio edit

tolerances in two ways. First, we compute the average width of each procedure to

comment on the relative conservatism of each procedure. Next, we compute the proportion

of misclassified ratios with respect to each procedure’s limits. We are interested in the

proportion of false hits and misses, which are basically Type I and Type II error rates,

respectively. Specifically, let X be a ratio. Then

Type I Error Rate ¼ Pr{X flagged as “bad”jX is “good”} ð14Þ

Type II Error Rate ¼ Pr{X flagged as “good”jX is “bad”} ð15Þ

Note that in the literature on outliers, the Type I and Type II errors defined above are

rates of swamping and masking, respectively; we refer to Barnett and Lewis (1994) for

further discussion on swamping and masking effects. We also note that some researchers

may prefer to switch the definitions of Type I and Type II errors given above, unlike in a

hypothesis-testing situation where Type I and Type II errors have universally accepted

definitions. We chose the definitions given in (14) and (15) since they have already been

used in the literature; cf. sec. 4.1 of Thompson and Sigman (1999).

In the case of a heavily skewed distribution, the region of outliers will typically be in

the direction of the skewness. Therefore, instead of exploring simulated data where

transformations could get the data close to symmetry, we will explore using one-sided

trimming on the raw data in the direction of the skewness followed by a robust one-sided

limit.

Our simulations assess the efficacy of one-sided tolerance limits and two-sided

tolerance intervals for determining ratio edits. For the one-sided setting, we use a two-

component mixture of Weibull distributions to simulate contamination in the upper tail

of the data. For the two-sided setting, we use a three-component mixture of normals to

simulate contamination in both tails of the data. It should be noted that mixture

distributions (e.g., the contaminated normal model) have been used in the literature to

assess the performance of editing procedures for survey data; see Ghosh-Dastidar and

Schafer (2006). For each set of simulations, three scenarios were considered: well-

separated components (i.e., a big gap between the “good” ratios and the “bad” ratios),

moderate overlapping, and heavy overlapping.

Let Wei(u, b) be the Weibull distribution with scale parameter u and shape parameter b.

Let N(m,s 2) be the normal distribution with mean m and variance s 2. The distributions

we use for the one-sided contaminated simulations are:

. (Well Separated): 0.95*Wei(1,15) þ 0.05*Wei(50,100)

. (Moderate Overlapping): 0.95*Wei(1,15) þ 0.05*Wei(20,60)

. (Heavy Overlapping): 0.95*Wei(1,15) þ 0.05*Wei(5,40)

The distributions we use for the two-sided contaminated simulations are:

. (Well Separated): 0.90*N(1000,
ffiffiffiffiffi
50
p

) þ 0.05*N(500,
ffiffiffiffiffi
50
p

) þ 0.05*N(1500,
ffiffiffiffiffi
50
p

)
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. (Moderate Overlapping): 0.90*N(1000,
ffiffiffiffiffi
50
p

) þ 0.05*N(750,
ffiffiffiffiffi
50
p

) þ 0.05*N

(1250,
ffiffiffiffiffi
50
p

)

. (Heavy Overlapping): 0.90*N(1000,
ffiffiffiffiffi
50
p

) þ 0.05*N(900,
ffiffiffiffiffi
50
p

) þ 0.05*N(1100,
ffiffiffiffiffi
50
p

)

The following outlines the general simulation performed for our study:

1. Simulate n ratios, X1, : : : , Xn, from one of the contaminated models discussed above.

Denote this sequence of ratios by X.

2. Apply the traditional methods (i.e., the methods in Section 2) to X and calculate the

ratio edit tolerances based on these approaches.

3. Use trimming at the a [ {0.01, 0.02, : : : , 0.10, 0.15} levels on X. Call these

trimmed datasets Xa.

4. Using Xa, compute a normal statistical tolerance interval if contamination is

assumed in both tails, or a one-sided upper Weibull statistical tolerance limit if

contamination is assumed only in the right tail.

5. For each method and with respect to X, calculate the proportion of good ratios falling

outside of the tolerance limits (Type I error), and the proportion of bad ratios falling

within the tolerance limits (Type II error).

6. Calculate the width of the statistical tolerance interval and the intervals determined

by the traditional methods. For the one-sided setting, the one-sided upper tolerance

limit will be taken as the width since an absolute lower limit of 0 is assumed for the

data.

7. Repeat the above B times. For each method, average the Type I error rates, Type II

error rates, and interval widths to get Monte Carlo estimates of each quantity.

For our simulations, we generate n [ {300, 1000} ratios B ¼ 10,000 times and compute

P/g tolerance intervals at the 90/90 and 95/95 levels. Recall from Section 3 that P is the

content of the tolerance interval and g is its confidence level. For the methods discussed

in Section 2, we specify values for the constants (which we refer to as “Factors” in the

summary tables) based on the references cited within.

Tables 1–3 give the simulation results for the three contamination structures considered

for n ¼ 1,000. The general results are similar for n ¼ 300, which are reported in

Tables 6–8 in the Appendix. We only report the results for a subset of the trimming levels

used, but the trend in the average widths and errors as a changes is apparent. When the

contamination structure is well separated or moderately overlaps with respect to the

“good” data and a trimming level is selected close to the amount of contamination (5% for

our simulations), then the statistical tolerance interval approach performs the best, namely

meaning that the Type I error comes close to the nominal (1 2 g) level. Note the results in

bold in the tables, which pertain to the temporary trimming done at the true percentage of

contamination. Regardless of the contamination structure, this approach does a good job of

controlling the Type I errors as long as the level of trimming does not heavily exceed the

content level P of the tolerance interval.

For the robust control limits, larger values of L yield smaller Type I errors, but larger

Type II errors. Using L [ {2.0, 2.5, 3.0, 3.5}, we see there is generally a wide spread in the

Type I and Type II errors. Again, we note that Thompson and Sigman (1999) use L ¼ 2 for

a more liberal rule and L ¼ 3 for a more conservative rule regarding the number of cases
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flagged for review. While the overall simulation results for n ¼ 300 and n ¼ 1,000 were

similar, we note that the sample size does affect the errors for the robust control limits; that

is, for larger n, the Type I error rates increase, while the Type II error rates decrease.

The fence-based methods are typically more conservative with respect to the statistical

tolerance interval approach. As the contamination structure mixes more with the good

data, we note that the Type II errors for the fence-based methods increase significantly

with respect to the Type II errors for the tolerance intervals. We also note that the

summaries are very similar for the two fence-based methods under the two-sided setting.

This is expected given the symmetry of the generated data.

For most of the common values of the Hidiroglou-Berthelot method, we see that their

performance is comparable to the statistical tolerance interval approach (at the 90/90 and

95/95 levels) under the well-separated case. The exceptions are when (U, C) ¼ (0.3, 10)

and (U, C) ¼ (0.3, 15). Again, as the contamination structure mixes more with the good

data, we note that the Type II errors increase significantly with respect to the Type II errors

for the tolerance intervals.

Overall, the simulation results show that as more of the contaminated data mixes with

the good data, masking becomes more prevalent. This results in intervals that do not (or

cannot) exclude the contaminated data, which in turn increases the Type II errors for all

procedures. When assessing the methods of Section 2, we simply used common levels

found in the literature. Different results would obviously be obtained by adjusting the user-

specified constants. But for a given set of data, the intuition may not always be apparent

as to the trade-off in terms of the types of errors. However, the intuition with the values

specified in the tolerance interval approach (i.e., a, P, and g) are all clear. Informative

choices of these levels will help control both types of errors, thus suggesting the utility of

statistical tolerance intervals as a way to set ratio edit tolerances.

5. Annual Survey of Manufacturers

The Annual Survey of Manufacturers (ASM) collects data for the years between the

Economic Census, which is conducted in the years ending in 2 and 7. The annual survey

data are estimates derived from a statistically selected sample from all manufacturing

establishments with one or more paid employees. The collection mode for this survey

is through paper and internet reporting. Examples of statistics that the ASM reports for

different manufacturing sectors include employment, payroll, operating expenses,value of

shipments, and inventories.

In order to make the results of this example accessible and reproducible for the reader,

our analysis uses the Statistics for Industry Group and Industries file for the years 2010

and 2011. The data can be accessed from the U.S. Census Bureau’s website for the ASM

found at http://www.census.gov/manufacturing/asm/index.html. The

statistics are reported at various North American Industry Classification System (NAICS)

levels. We use the lowest level reported, which is the six-digit NAICS industry grouping.

We note that since this is officially published data, it has already gone through the U.S.

Census Bureau’s editing process. Our intent is to highlight the implementation of the

statistical tolerance interval approach on this edited macrodata, which would typically be

followed by a subject-matter expert’s analysis of the flagged values.
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We study six ratios for this example. Many of the variables comprising the ratios are

reported in U.S. dollars, such as payroll, materials, and inventories. For all such quantities,

the values are reported in $1,000 on the summary file. The ratios we study, as well as the

abbreviations we use, are:

. PR/NE: annual payroll/number of employees;

. MU/TS: materials used/total value of shipments;

. ME/MB: materials and supplies at end of the year/materials and supplies at

beginning of the year;

. WH/WA: all production worker’s hours (in 1,000 hours)/production worker’s

average per year (i.e., the number of employees on payroll on certain days of the

month specified by the ASM);

. IE/IB: total inventories at the end of the year/total inventories at the beginning of the

year; and

. WE/WB: work-in-process inventories at the end of the year/work-in-process

inventories at the beginning of the year.

The total number of industries for each dataset is 321. However, some ratios are not

calculated since one or both of the values for an industry are withheld due to estimates not

meeting publication or disclosure standards set by the U.S. Census Bureau.

We first determine whether a normal or Weibull distribution is most appropriate for

each 5% trimmed ratio dataset. While we only explore these two distributions, there are no

restrictions on which parametric distributions to investigate – especially if knowledge is

available from a subject-matter expert. Regardless, we first use the Kolmogorov-Smirnov

test to assess whether data from corresponding years follow the same distribution. Four of

the ratios (PR/NE, MU/TS, ME/MB, and IE/IB) yield p-values well over 0.15, while the

other two ratios (WH/WA and WE/WB) have p-values below 0.05.

For the four ratios that have statistically similar distributions between the two years, we

temporarily pool each pair of ratio datasets. We use the Shapiro-Wilk test for normality

and the chi-square goodness-of-fit for testing the Weibull assumption. We then select the

distribution of which corresponding test had the higher p-value. While these are two

different tests, this is merely a simple approach to decide upon a distribution.

For the two ratios that are significantly different, we proceed similarly with testing the

normality or the Weibull assumption. However, we keep each year’s data separate and run

the tests on these datasets. We then choose the distribution of which the test yielded the

higher p-value between the two datasets for a given ratio.

After determining to proceed with the Weibull or normal assumption, we then compute

one-sided tolerance limits or two-sided tolerance intervals, respectively. We consider

the 90/90 and 95/95 levels with an initial trimming of 5%. We also perform a relative

comparison between the 2010 and 2011 ratios. Specifically, we compare the proportions of

how an industry is classified (i.e., as being “good” or an “outlier”) from 2010 and 2011.

These quantities give us an indication of how stable the classifications are from 2010 to

2011 with respect to the calculated limits.

For the PR/NE ratios, we also calculate the other limits discussed in this article. We

found that the Weibull distribution is appropriate for both the 2010 and 2011 data. Thus,

we calculate 90/90 and 95/95 one-sided upper Weibull tolerance limits. The results are

Journal of Official Statistics90



T
a

b
le

4
.

C
o

m
p

a
ri

so
n

o
f

th
e

o
n

e-
si

d
ed

u
p

p
er

li
m

it
s

fo
r

th
e

P
R

/N
E

d
a

ta

M
et

h
o

d
U

p
p

er
li

m
it

(2
0

1
0

)
U

p
p

er
li

m
it

(2
0

1
1

)
O

u
tl

ie
r

to
g

o
o

d
G

o
o

d
to

o
u

tl
ie

r
G

o
o

d
to

g
o

o
d

L
R

o
b

u
st

co
n

tr
o

l
li

m
it

s
2

.0
6

8
.9

8
4

6
7

1
.0

7
4

0
0

.0
0

3
1

0
.0

0
9

4
0

.8
8

4
0

2
.5

7
3

.7
2

1
1

7
6

.0
4

4
2

0
.0

1
2

5
0

.0
0

3
1

0
.9

1
5

4
3

.0
7

8
.4

5
7

7
8

1
.0

1
4

3
0

.0
0

3
1

0
.0

0
3

1
0

.9
4

9
8

3
.5

8
3

.1
9

4
2

8
5

.9
8

4
4

0
.0

0
6

3
0

.0
0

3
1

0
.9

6
8

7

k
R

es
is

ta
n

t
fe

n
ce

s
1

.5
8

4
.5

6
0

3
8

6
.1

8
3

2
0

.0
0

0
0

0
.0

0
6

3
0

.9
7

4
9

2
.0

9
2

.9
1

6
4

9
4

.7
5

1
1

0
.0

0
0

0
0

.0
0

0
0

0
.9

8
7

5
3

.0
1

0
9

.6
2

8
7

1
1

1
.8

8
7

1
0

.0
0

0
0

0
.0

0
0

0
1

.0
0

0
0

k*
A

sy
m

m
et

ri
c

fe
n

ce
s

3
.0

8
8

.3
6

3
9

8
8

.8
1

9
9

0
.0

0
3

1
0

.0
0

3
1

0
.9

8
1

2
4

.0
9

7
.9

8
7

9
9

8
.2

6
6

8
0

.0
0

0
0

0
.0

0
0

0
0

.9
8

7
5

6
.0

1
1

7
.2

3
6

0
1

1
7

.1
6

0
6

0
.0

0
0

0
0

.0
0

0
0

1
.0

0
0

0

(U
,

C
)

H
id

ir
o

g
lo

u
-B

er
th

el
o

t
(0

.3
,

4
)

8
7

.9
9

2
8

8
7

.2
3

6
5

0
.0

0
0

0
0

.0
0

6
3

0
.9

7
8

1
(0

.3
,

1
0

)
1

0
5

.6
0

6
5

1
0

7
.3

5
8

2
0

.0
0

0
0

0
.0

0
0

0
1

.0
0

0
0

(0
.3

,
1

5
)

1
0

5
.6

0
6

5
1

0
7

.3
5

8
2

0
.0

0
0

0
0

.0
0

0
0

1
.0

0
0

0
(0

.5
,

4
)

8
3

.0
8

1
9

8
4

.1
4

6
1

0
.0

0
6

3
0

.0
1

5
7

0
.9

5
6

1
(0

.5
,

1
0

)
1

0
5

.6
0

6
5

1
0

7
.3

5
8

2
0

.0
0

0
0

0
.0

0
0

0
1

.0
0

0
0

(0
.5

,
1

5
)

1
0

5
.6

0
6

5
1

0
7

.3
5

8
2

0
.0

0
0

0
0

.0
0

0
0

1
.0

0
0

0

P
/g

T
o

le
ra

n
ce

li
m

it
s

9
0

/9
0

6
5

.8
6

7
0

6
7

.7
0

8
7

0
.0

1
5

7
0

.0
0

9
4

0
.8

4
6

4
9

5
/9

5
7

0
.1

5
8

2
7

2
.1

8
8

1
0

.0
0

6
3

0
.0

0
9

4
0

.8
9

3
4

Young and Mathew: Ratio Edits 91



reported in Table 4. We see that the resistant fences provide fairly conservative limits.

As such, the proportion of points classified as “good” to “good” is close to or at 1 and this

conservatism is likely not desirable. As the histograms in Figure 1 show, there are clearly

a few ratios above the value of 90 that may be candidates for editing. The robust control

limits and the tolerance interval procedures would flag these values for possible editing,

whereas the other approaches produce fairly conservative limits. Given the ability to better

control Type I and Type II errors with the statistical tolerance intervals, their use here

gives this approach a significant edge over the other procedures.

Scatterplots of the payroll versus the number of employees for each year are given in

Figure 2. As can be seen, each year shows a strong correlation (which is approximately

þ0.93 for each year). Values flagged using the 90/90 and 95/95 tolerance limits are color

coded accordingly. One thing to note is that as the correlation strengthens, the resulting

tolerance limits will be “tighter” around the data.

Results for the other five ratios are similar to those reported for the PR/NE ratios. Hence,

we only focus on the tolerance interval results. Table 5 gives the one-sided tolerance limit

or two-sided tolerance interval results depending on the distributional assumption made.

For the 90/90 limits, approximately 70% to 85% of the data stay within the limits across

years, while for the 95/95 limits, these same percentages range from approximately 80% to

90%. These percentages give an indication of those industries that have essentially

remained stable between 2010 and 2011. If one wants to develop certain summary

statistics between the two years, then those industries that fell outside of the limits in one

or both years could be candidates for editing. Moreover, they could be indicative of

changes that occurred within that particular industry.

6. Discussion

The criterion used in developing a statistical tolerance interval indicates that it is a natural

choice for computing bounds that can be used to perform ratio edits; that is, in order to flag

ratios that are inconsistent or problematic. In our work, we have demonstrated this in the

2011 PR/NE ratio

D
en

si
ty

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

20 40 60 80 100
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Fig. 1. Histograms of the PR/NE ratios for (a) 2010 and (b) 2011. The dashed line represents the 5% trimming

threshold and the solid line is the Weibull density curve fit to the trimmed data
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case of the normal distribution (where the problematic ratios can appear in either tail of the

distribution) and in the case of the Weibull distribution (where the problematic ratios appear

only in the right tail). A comparison with other ratio edit procedures shows that the statistical

tolerance-interval approach has a significant edge over the existing procedures in terms of

controlling Type I and Type II errors. The approach also depends on an initial level

of trimming. As noted in Section 1, there is no clear guidance on choosing a percentage of

trimming to perform, so one should seek input from a subject-matter expert. Our approach

can certainly be adopted for other distributions; see Krishnamoorthy and Mathew (2009) for

details on the development of tolerance intervals for a variety of distributions.

We also acknowledge that the ratio editing process is often complex and includes numerous

rules that are typically dependent on the type of survey. Moreover, ratio editing at the

microlevel and macrolevel often use different approaches, with the latter setting not as well

studied in the literature. We illustrated the statistical tolerance interval approach on ASM

data at the macrolevel, but the approach is applicable to the microlevel setting. We are not

suggesting a panacea for setting ratio edit tolerances in all survey settings; however, we are

suggesting that statistical tolerance intervals can be useful in informing ratio editing processes.

We note that both of the variables used in the computation of a ratio can have values that

are outliers, and yet the ratio will not be flagged as an outlier. This can obviously happen

when values of both variables are too small or too large, so that the outlyingness gets

cancelled when we take the ratio. A simple example is if a small business reports 400 trillion

dollars in payroll for ten million employees, then the PR/NE ratio would be consistent with

those displayed in Figure 1. In view of this, it is essential to have outlier detection methods

that are applicable to bivariate data, or to multivariate data when data are available on several

variables. A Mahalanobis distance based outlier detection method (cf. Franklin et al. (2000)

and Thompson (2007)) may not adequately flag the outliers, since the outlyingness of a single

variable (or a few variables) may be cancelled out by the magnitudes of the other variables.

We believe a rectangular tolerance region that provides simultaneous tolerance intervals on

each variable is required. Such a tolerance region is currently under investigation.

2010 number of employees
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Fig. 2. Scatterplots of the payroll (in $1,000) versus the number of employees for (a) 2010 and (b) 2011. The

triangles are values greater than the 95/95 upper tolerance limit, while the plusses and triangles are values

greater than the 90/90 upper tolerance limit
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