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An extensive set of diagnostics for linear regression models has been developed to handle
nonsurvey data. The models and the sampling plans used for finite populations often entail
stratification, clustering, and survey weights, which renders many of the standard diagnostics
inappropriate. In this article we adapt some influence diagnostics that have been formulated
for ordinary or weighted least squares for use with stratified, clustered survey data. The
statistics considered here include DFBETAS, DFFITS, and Cook’s D. The differences in the
performance of ordinary least squares and survey-weighted diagnostics are compared using
complex survey data where the values of weights, response variables, and covariates vary
substantially.
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1. Introduction

Linear regression models and estimators are often applied to analyze complex survey

data using the pseudo maximum likelihood (PML) method (e.g., Binder 1983; Skinner

et al. 1989).

A sample is considered to be informative when an unweighted model fitted to the

sample data is different from the model fitted to the full population (Chambers and Skinner

2003). In such a case, using survey weights in PML estimation accounts for the

informativeness. Using the sample weights in the regression estimator not only allows

the analysts to account for the design features which govern the data collection process,

but also provides a limited type of robustness to model misspecification (Pfeffermann

and Holmes 1985; DuMouchel and Duncan 1983; Kott 1991). The sandwich estimator,

the Taylor Series linearization estimator (Binder 1983; Fuller 2002), or some type of

replication estimator (Wolter 2007) is often employed to obtain both design- and model-

consistent variance estimators for the regression parameters. The analyses in this article

cover the case in which survey weights are used in regression analysis. If the design is

actually noninformative, the diagnostics developed here still apply even though the

weights could, in principle, be omitted from model estimation.

Limited attention has been given to diagnosing the adequacy of working models and,

more specifically, to detecting outlying and influential observations for regressions using
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complex survey data. Different threads of research cover locating and trimming extreme

sample weights (Potter 1988, 1990), controlling the effect of outliers on the estimation

of descriptive population statistics, and constructing outlier-robust estimation techniques

(Chambers et al. 1993; Chambers 1996; Zaslavsky et al. 2001). Henry and Valliant (2012)

review much of this literature. Diagnostics for regression models fitted from survey data

are a more recent development. Korn and Graubard (1999) and Elliott (2007) introduced

techniques for the evaluation of the quality of regressions on complex survey data. Li and

Valliant (2009, 2011a, 2011b) examined leverages and methods of identifying influential

single observations and groups of observations in single-stage samples. Liao and Valliant

(2012a, 2012b) looked at condition indexes and variance inflation factors for linear

regressions. In this article we will extend the work of Li and Valliant (2011a) for single-

stage samples to samples that use stratification and clustering. We adapt the standard

diagnostics – DFBETAS, DFFFITS, and Cook’s D – to linear regression models fitted to

clustered survey data.

Section 2 specifies the sample design we study, the model that will be used, and

a variance estimator that is useful when developing diagnostics. Section 3 presents some

diagnostics for identifying single observations that may be influential in fitting a model.

Residuals, DFBETAS, DFFITS, and Cook’s D are adapted for models fit using stratified,

clustered data. In the fourth section, the new diagnostics are illustrated using a data set

taken from a large U.S. household survey. Section 5 forms the conclusion.

2. Model Specification and Variance Estimation

To formulate regression diagnostics for clustered survey data, models will be used.

Suppose the population contains h ¼ 1; : : : ;H strata, i ¼ 1; : : : ;Nh clusters in stratum

h, and k ¼ 1; : : : ;Mi units in cluster hi. A two-stage stratified sample of units is selected

with nh clusters or primary sampling units (PSUs) sampled at the first stage in stratum

h with replacement (although without-replacement is more common in practice, a with-

replacement formulation has the advantage of producing simpler design-based variance

formulas that are more informative for the analyses in this article). The total number of

sample clusters is n ¼
PH

h¼1nh. Let mhi be the number of sampled units in the (hi )th

cluster, m ¼
PH

h¼1

P
i[sh

mhi, with sh being the sample of clusters in stratum h, and whik be

the sample weight of the kth unit in the (hi )th cluster. The average number of sample

units per sample cluster is �m ¼ m=n. Suppose that xhik is a p-vector of explanatory

variables for unit k in cluster hi and that a variable Yhik collected in the survey follows the

linear model:

Yhik ¼ xT
hikbþ 1hik

CovMð1hik; 1h 0i 0k 0 Þ ¼

s2 h ¼ h 0; i ¼ i 0; k ¼ k 0

s2r h ¼ h 0; i ¼ i 0; k – k 0

0 otherwise

8
>><

>>:

ð1Þ

This model posits that all units have a common variance and the intracluster correlation,

r, is the same for all clusters. Units in different clusters are uncorrelated. In practice, r is
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usually positive and can be estimated using analysis of variance (ANOVA) or related

methods. The survey-weighted (SW) estimator of b can be written as

b̂SW ¼
XH

h¼1 i[sh

X

k[shi

X
A21xhikwhikYhik ¼

XH

h¼1 i[sh

X
A21XT

hiWhiYhi

with shi being the sample of units from cluster hi, and

Xhi ¼ the mhi £ p matrix of the xhik for the mhi sample units in cluster hi;

Whi¼ the mhi £ mhi diagonal matrix of survey weights for sample units in sample

cluster hi;

Yhi ¼ the mhi-vector of Yhik’s for sample units in cluster hi, and

A ¼
XH

h¼1 i[sh

X
XT

hiWhiXhi:

For later use we also define XT
h ¼ ðX

T
h1; : : : ;X

T
hnh
Þ, XT ¼ ðXT

1 ; : : : ;X
T
HÞ, and

Wh ¼ blkdiag Whið Þi[sh
. Under (1) the model variance of b̂SW is

varM b̂SW

� �
¼
XH

h¼1 i[sh

X
A21XT

hiWhi varMðYhiÞWhiXhiA
21 ð2Þ

¼
XH

h¼1 i[sh

X
A21XT

hiWhi ð1 2 rÞs2Imhi
þ rs21mhi

1T
mhi

� �
WhiXhiA

21

where Imhi
is the mhi £ mhi identity matrix and 1mhi

is a vector of mhi 1s. To test the

significance of b̂SW or its components, the sandwich estimator in Binder (1983) or the

linearization estimator in Fuller (2002) is typically used. Both of these have design-based

and model-based justifications. In fact, the sandwich estimator is approximately model

unbiased under a model more general than (1), in which the errors are correlated within

each cluster but the particular form of the correlation is unspecified (e.g., see Valliant et al.

2000, chap. 9). However, to motivate cutoff values for identifying extremes based on the

diagnostics in Section 3, the form of the variance in (2) is useful. Estimates of the compo-

nents of (2) are needed, and a workable approach is to use purely model-based estimators.

To that end, define b̂OLS ¼
PH

h¼1

P
i[sh

A21
OLSXT

hiYhi with AOLS ¼
PH

h¼1

P
i[sh

XT
hiXhi to be

the ordinary least squares (OLS) estimator of b, and ehik ¼ Yhik 2 xT
hikb̂OLS to be

the residual calculated from the OLS estimator. Using these residuals, define

P̂ ¼
1

n

XH

h¼1 i[sh

X 1

mhi 2 1k[shi

X
ehik 2 �ehið Þ2

Q̂ ¼
XH

h¼1 i[sh

X
mhi �ehi 2 �ehð Þ2

.
n 2 1ð Þ

D̂ ¼ m 2
h

X

i[sh

X
m2

hi

.
m

0

@

1

A

,

n 2 1ð Þ;
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where �ehi ¼
P

k[shi
ehik=mhi and �eh ¼

P
i[sh

P
k[shi

ehik=
P

i[sh
mhi. Using P̂, Q̂, and D̂, we

can formulate estimators as:
bð1 2 rÞs2 ¼ P̂

ð3Þ

drs2rs2 ¼ ðQ̂ 2 P̂Þ=D̂

:

These are similar to the estimators in Valliant et al. (2000, sec. 8.3.1) for a common-

mean model. Showing that they are model-unbiased for rs2 and 1 2 r
� �

s2 is

straightforward. Another alternative is to use ANOVA or restricted maximum-likelihood

methods in, for instance, SASw proc varcomp or proc mixed or Stataw xtmixed

or the lmer function in the R package lme4 (Bates et al. 2012).

When drs2rs2 andbð1 2 rÞs2 are available, the estimated variance of b̂ under Model (1) can

be constructed as

vMðb̂SW Þ ¼
h

X

sh

X
A21XT

hiWhi
b
ð1 2 rÞs2Imhi

þdrs2rs21mhi
1T

mhi

� �
WhiXhiA

21 ð4Þ

This variance estimator is highly dependent on the working model and is not robust

to departures from that model. Because of its nonrobustness, a sandwich or replication

estimator is preferred for actually estimating the variance of b̂SW . However, (4) does have

some advantages in determining cutoffs for diagnostics, as described subsequently.

There are alternatives to the estimators of rs2 and 1 2 r
� �

s2 in (3). Pfeffermann et al.

(1998) proposed the probability-weighted iterative generalized least squares (PWIGLS)

estimator to obtain consistent estimates of the population variance parameters s2
U and rU ,

i.e., the parameters that would be estimated from a census. The PWIGLS estimator, which

assumes that the sampling probabilities for both stages phi and pkjhi, or equivalently their

inverses, whi and wkjhi, are known, is adapted from the standard iterative generalized least

squares procedure by analogy with PML. Alternative inflation-type estimators using the

two-level sample weights have also been considered (Longford 1995; Graubard and Korn

1996). However, Korn and Graubard (2003) later showed that these estimators can be

severely biased when the sampling is informative. They proposed a new set of estimators

for variance components that would be approximately unbiased regardless of the sampling

design. The limitation of these estimators is that they require knowledge of the second-

order inclusion probabilities of the observations. In many surveys, analysts will not know

the value of whi, wkjhi, or the joint inclusion probabilities. Consequently, we use the

estimators in (3) which are always feasible.

3. Identifying Single Influential Observations

The diagnostic tools presented here are designed to measure the discrepancy in estimated

regression coefficients and fitted values, between fitting linear models with and without

potentially influential points.

3.1. Residuals

Residuals, which can be used to filter points with outlying Y values, usually are

standardized to have unit model variance. For clustered sampling and its corresponding
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model (1), we can divide ehik by ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂þ Q̂ 2 P̂

� �
D̂21

q
; see (3). Generally, the

standardized residuals are referred to the standard normal distribution to identify extreme

points. If the ehik are not normal, the Gauss inequality (Pukelsheim 1994) is useful for

setting a cutoff value.

Gauss Inequality: If the distribution of a random variable X has a single mode at m0,

then P X 2 m0j j . rf g # 4t2=9r 2 for all r $
ffiffiffiffiffiffiffiffi
4=3

p
t, where t2 ¼ E X 2 m0

� �2
h i

.

Suppose that under Model (1), in addition to having a mean of 0, the residuals have a

mode of zero. Based on the Gauss Inequality with r ¼ 2s, the absolute value of a residual

has a probability of about 90% of being less than twice its standard deviation, and with

r ¼ 3s, it has a probability of about 95% of being less than three times its standard

deviation. If we rescale the residuals by a consistent estimate ŝ of s, either r=ŝ ¼ 2 or 3

can be used to identify outlying residuals, depending on an analyst’s preference.

3.2. DFBETAS

The standard DFBETAS statistic (Belsley et al. 1980) measures the change in the estimate

of b when a single unit is removed from the sample. The statistic is also standardized so

that it can be referred to a standard normal distribution to determine which values are

extreme enough to deserve scrutiny. First, note that (2) can be written as

varM b̂SW

� �
¼ s2

XH

h¼1 sh

X
ChiRhiC

T
hi ð5Þ

where Rhi ¼ ð1 2 rÞImhi
þ r1mhi

1T
mhi

h i
and Chi ¼ A21XT

hiWhi with ( jk)th element

cj;hik ( j ¼ 1; : : : ; p; k ¼ 1; : : : ;mhi). The correlation r could be estimated as

r̂ ¼ 1þ P̂D̂= Q̂ 2 P̂
� �� �

or by some other model-based alternative. The variance

estimator is then

vMðb̂SWjÞ ¼ s2

h

X

sh

X�
cj;hi1: : :cj;himhi

�
1 r̂

. .
.

r̂ 1

0

B
B
B
@

1

C
C
C
A

�
cj;hi1: : :cj;himhi

�T

¼ s2

h

X

sh

X Xmhi

k¼1

c2
j;hik þ r̂

Xmhi

k–k 0

cj;hikcj;hik 0

 !

:

To measure the difference in each estimated coefficient after the (hik)th unit is deleted,

we define b̂SW hikð Þ as the parameter estimate after deleting unit k in cluster hi. The

difference between the full sample estimate and the delete-one estimate, b̂SW hikð Þ, can be

found as

DFBETAhik ¼ b̂SW 2 b̂SW hikð Þ ¼
A21xhikehikwhik

1 2 ~hhik;hik

;

where ~hhik;hik ¼ xT
hikA21xhikwhik is the leverage of the (hik)th unit, which is the

kth diagonal element of the matrix Hhii ¼ XhiA
21XT

hiWhi (see, e.g., Miller 1974;
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Valliant et al. 2000, sec. 9.5). The DFBETAS statistic, which is standardized, is

constructed as

DFBETAShik;j ¼
cj;hikehik= 1 2 ~hhik;hik

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Mðb̂SWjÞ

q
ð6Þ

¼
cj;hik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sh

X Xmi

k¼1
c2

j;hik þ r
Xmi

k–l
cj;hikcj;hil

� �r ·
ehik

s
·

1

1 2 ~hhik;hik

:

Note that for actual calculations, a more robust sandwich or replication estimator of

var M b̂SWj

� �
would be used in the denominator of (6). Using the diagonal element of (5) in

the denominator of DFBETAShik;j allows us to motivate a heuristic cutoff for identifying

extremes.

In order to define a cutoff, some simplifications are needed. If the population and sample

sizes from each cluster are bounded by �M and �m, then whik ¼ O N=n
� �

. If the xs are

bounded, Chi ¼ O n21
� �

elementwise and the first term of (6) has order n21=2. Under the

same conditions, ~hhik;hik ¼ O n21
� �

, and a rough cutoff after applying the Gauss inequality

to ehik would be 2=
ffiffiffi
n
p

or 3=
ffiffiffi
n
p

.

A slightly more fine-tuned cutoff is obtained as follows. Following the developments in

Scott and Holt (1982) as extended by Liao and Valliant (2012b), the model variance of

b̂SW can be written as

varM b̂SW

� �
¼ s2 XT WX

� �21
G

where G ¼
PH

h¼1

P
i[sh

XT
hiWhiRhiWhiXhi

h i
XT WX
� �21

. The matrix G is a generalized

design effect that measures the factor by which the model variance differs from that of

weighted least squares when all units are uncorrelated. Under Model (1), we have

i[sh

X
XT

hiWhiRhiWhiXhi ¼ s2 1 2 r
� �

XT
h W2

hXh þ r
i[sh

X
mhiX

T
BhiW

2
hiXBhi

2

4

3

5:

where XBhi ¼ m21
hi 1mhi

1T
mhi

Xhi with 1mhi
being a vector of mhi 1s. If the sample is self-

weighting so that whik ; w, then under Model (1) G can be written as

G ¼ ws2
h
Ip þ ðM 2 IpÞr

i

where M ¼
P

i[sh
mhiX

T
BhiXBhi

� �
ðXT XÞ21 and Ip is the p £ p identity matrix. If we

assume that the sample size within every cluster is mhi ¼ �m and that the vector of

covariates for every element in cluster hi is the same, xhik ¼ �xhi, with some algebra it
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follows that

i[sh

X
mhiX

T
BhiXBhi ¼ �m

h

X

sh

X
�xhi �x

T
hi

XT X ¼
h

X

sh

X
�xhi �x

T
hi:

Using these results, M reduces to �mIp. In these special circumstances, the model

variance of the survey-weighted least squares estimator is

varMðb̂SW Þ ¼ s2ðXT XÞ21 Ip þ r £ diagð �m 2 1ÞIp

� �
:

The model variance of the jth coefficient of b̂SW , which is needed for DFBETAShik;j,

is then

var Mðb̂SWjÞ ¼ s2ðXT XÞ
21

jj ½1þ ð �m 2 1Þr�

where ðXT XÞ
21
jj denotes the jth diagonal element of ðXT XÞ21. Assuming the xs are

all bounded, the order of magnitude of each element of ðXT XÞ21 is n21. Thus

varM b̂SWj

� �
¼ O n21

� �
1þ �m 2 1ð Þr
� �

. Using cj;hik ¼ O n21
� �

, the first term in (6) is

cj;hik=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Mðb̂jÞ

q
< O nð Þ 1þ �m 2 1ð Þr

� �	 
21=2
. As a result, a somewhat more refined

cutoff value for DFBETASik; j is 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1þ �m 2 1ð Þr
� �q

or 3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1þ �m 2 1ð Þr
� �q

.

3.3. DFFITS

Multiplying the DFBETA statistic by the xT
hik vector, we obtain the measure of change in

the (hik)th fitted values due to the deletion of the (hik)th observation,

DFFIThik ¼ Ŷhik 2 ŶhikðhikÞ ¼
~hhik;hikehik

1 2 ~hhik;hik

:

The variance of the predicted value is

varM Ŷhik

� �
¼ xT

hikvarM b̂SW

� �
xhik

¼ s2

i 0[s

X Xmhi 0

k 0¼1

~h
2

hik;hi 0k 0 þ r
Xmhi 0

k00–k 0

~hhik;hi 0k 0
~hhik;hi 0k00

 !

:

The DFFITS statistic is formulated as

DFFITShik ¼
~hhik;hikehik= 1 2 ~hhik;hik

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var M Ŷhik

� �q

We can make approximations analogous to the ones used for DFBETAS in order to

justify a cutoff for DFFITS. Based on (7) for the special case of mhi ¼ �m and xhik ¼ �xhi, we

have vM Ŷik

� �
¼ xT

ik XT X
� �21

Ip þ diag �m 2 1ð Þr
� �

xik. Each element of XT X is the sum of

m elements, and, if each x is bounded, is O mð Þ. The variance var M Ŷik

� �
is a sum of
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p elements; thus vM Ŷik

� �
¼ O p=m

� �
1þ �m 2 1ð Þr
� �

. Since the average leverage is p=m, a

rough value on
~hhik;hik= 12~hhik;hikð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var M Ŷhikð Þ
p is

p=m
12p=m

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
m

1þ �m 2 1ð Þr
� �q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= n �m 1þ �m 2 1ð Þr

� �	 
q
,

assuming that the number of sample units, m, is much larger than the number of

regressors, p. Thus a heuristic cutoff for the DFFITS statistic is k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=n �m 1þ r̂ �m 2 1ð Þ

� �q

with k being 2 or 3.

3.4. Modified Cook’s Distance

Under the working Model (1), a quadratic statistic that measures the effect on the entire

b̂SW vector of dropping the kth element in cluster hi can be constructed as

EDhik ¼ b̂SW 2 b̂SW hikð Þ
� �T

var b̂SW

� �� �21
b̂SW 2 b̂SW hikð Þ
� �

where b̂SW hikð Þ is the parameter estimate after deleting unit k in cluster hi and var b̂SW

� �
is

any of the variance estimators discussed in Section 1. To determine a heuristic cutoff value

for EDik, we use the model variance varM b̂SW

� �
under (1) and write the statistic as

EDhik ¼
ehik

s

� �2 1

1 2 ~hhik;hik

� �2
whikxT

hik XT WRWX
� �21

xhikwhik

where the matrix R is block diagonal with 1 on the diagonal and r off the diagonal in

each block (cluster); the dimension of block hi is mhi £ mhi. If the number of units within

each sampled PSU, mhi, is bounded, whikxT
hik XTWRWX
� �21

xhikwhik ¼ O n21
� �

, and

using similar reasoning to that employed in Subsections 3.1 and 3.2, we arrive at a

rough value for EDhik of p n �m 1þ r̂ �m 2 1ð Þ
� �� �21

. Therefore, in the clustered sampling

case we can compare
ffiffiffiffiffiffiffiffiffiffiffi
EDhik

p
with the cutoff value 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=n �m 1þ r̂ �m 2 1ð Þ

� �q
or

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=n �m 1þ r̂ �m 2 1ð Þ

� �q
. A more convenient form is found by standardizing EDhik and

taking its square root. Based on the classic Cook’s Distance, we term this the Modified

Cook’s distance:

MDhik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �m 1þ r̂ �m 2 1ð Þ
� �	 


EDhik=p

q

and compare MDhik to 2 or 3.

Table 1. Quantiles of variables in NHANES regression of systolic blood pressure on age, BMI, and blood lead

Quantiles

Variables 0% 25% 50% 75% 100%

Systolic BP 82 102 108 114 146
Age 20 22 24 27 29
BMI 14.42 22.84 26.43 31.62 61.68
Log(Leadþ1) 0.18 0.47 0.64 0.83 3.75
Survey Weight 698.39 3,576.69 11,467.06 31,094.18 103,831.17
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4. Case Study: NHANES

In this section, we examine a regression of systolic blood pressure on the logarithm of

blood lead level, age, and body mass index using a subset from the National Health and

Nutrition Examination Survey (NHANES) 1999-2002. The subset used in this study has a

sample size of 810, consisting of Mexican-American females aged 20 to 29. This sample

does not have very skewed Y and X values, but involves clustering and stratification in the

sampling design with a set of large and greatly varying sample weights. There are n ¼ 57

PSUs nested in H ¼ 28 strata, all but one of the strata having 2 PSUs. The average cluster

size �m is 14.21 persons. When applied to a clustered data set, the variance estimators in the

survey-weighted diagnostic statistics need to take the design into account and the cutoffs

Age
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Fig. 1. Bubble plots of systolic blood pressure versus three auxiliary variables for NHANES data. The areas of

the bubbles are proportional to sample weights

Age

O
L

S 
re

si
du

al
s

BMI

O
L

S 
re

si
du

al
s

20 22 24 26 28 30 10 20 30 40 50 60 0 1 2 3 4

Log(Lead+1)

Age BMI

20 22 24 26 28 30 10 20 30 40 50 60 0 1 2 3 4

Log(Lead+1)

O
L

S 
re

si
du

al
s

–20

0

20

40

–20

0

20

40

–20

0

20

40

–20

0

20

40

–20

0

20

40

–20

0

20

40

SW
 r

es
iu

da
ls

SW
 r

es
iu

da
ls

SW
 r

es
iu

da
ls

Fig. 2. OLS and SW residuals versus three auxiliary variables for NHANES data. Horizontal reference lines

are drawn at zero
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for some of the statistics contain an estimate of r, which in Model (1) describes the

correlation between the observations within the same cluster. The illustrative calculations

in this study do not account for the fact that Mexican-American females are a domain

within the full population whose sample size is random. This will tend to make SW

variance estimates smaller than they would be if the domain feature was accounted for.

Table 1 gives the quantile values of the variables and sample weights used in the

regression. Besides demonstrating the skewness and large range of sample weights, the

table also shows that the distributions of BMI and the logarithm of the blood lead are

skewed to the right. Since the minimum of the originally measured blood lead level is as

small as 1, we added 1 to blood lead level before taking the logarithm to generate positive

transformed values. (Adding 1 is often done to avoid taking the log of zero; this step was

not strictly necessary here.) Note that using the untransformed value of blood lead would

have resulted in more extreme X values. However, this type of modeling has previously

been done using the log transformation (see Korn and Graubard 1999), and we follow that

precedent here. Figures 1 and 2 respectively display plots of systolic blood pressure and

residuals versus the three auxiliary variables. Table 2 reports the parameter estimates of

the regressions with and without weights. The SW estimators produced slightly larger

intercept and slightly smaller slope of BMI than the OLS ones. Both methods agree that

Table 2. OLS and SW parameter estimates from NHANES regression

OLS Estimation SW Estimation

Independent Variables Coefficient SE t Coefficient SE t

Intercept 94.91*** 3.11 30.55 99.79*** 4.72 21.16
Age 0.02 0.11 0.14 20.15 0.17 20.87
BMI 0.45*** 0.05 9.23 0.44*** 0.07 5.88
Log(Leadþ1) 1.03 0.99 1.04 0.89 1.28 0.70

*** Significant at level 0.001
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age and blood lead do not have significant effects in determining the systolic blood

pressure. Therefore, in the following diagnostic analysis, we will only focus on the

changes in the estimated coefficient of BMI.

For comparison, we applied both the OLS and the new SW diagnostic statistics,

including leverages, residuals, DFBETAS, DFFITS, and modified Cook’s distance, to the

regression estimation. Since the sample weights were not separately provided at cluster

level and at unit level, the parameters r and s2 in Model (1) were estimated using purely

model-based estimators. Utilizing the VARCOMP procedure in SAS, we obtained r̂ ¼

0:033 and ŝ2 ¼ 82:09. The design effect was estimated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r̂ �m 2 1ð Þ
p

¼ 1:2. For the
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SW diagnostics, a strict criterion, 2, was used to construct cutoffs. For example, the cutoff

of DFBETAS is 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �m 1þ r̂ �m 2 1ð Þ
� �q

. The solid reference lines in the subsequent

figures were drawn at the cutoff values of 2; dotted reference lines using the looser

criterion of 3 are also drawn in the same graphs.

Figures 3 through 5 display the comparisons between the OLS and the SW diagnostic

statistics. The range of the weights in the NHANES data set is extremely wide, with a

minimum of 698.39 and a maximum of 103,831.17. Hence the SW diagnostics tend to

identify more influential observations with large weights, whereas the OLS diagnostics

tend to detect more points with small weights. The leverage plot (Figures 3), DFBETAS

plot (Figure 4), and the modified Cook’s distance plot (Figure 5) clearly show that the

“identified by SW only” areas contain many big bubbles, but the “identified by OLS only”

areas are filled with small dots. The residual plot is an exception in which the OLS and the

SW residuals are very similar. This is mainly because none of the Y and X values in the

data set are extremely outlying.

Table 3 numerically reports the weight discrepancies between the observations uniquely

identified by either OLS or SW diagnostics. The leverage and modified Cook’s distance

are more sensitive to extreme sample weights compared to other diagnostic statistics.

They tend to detect more influential points for survey data than the OLS approaches.

Analysts may want to consider raising the cutoff values for these statistics in order not to

overidentify influential points.

Table 3. Number of outliers identified and associated weight ranges for NHANES data

Outliers identified
by OLS only

Outliers identified
by SW only

Diagnostic statistics Counts Weight range Counts Weight range

Leverage 24 (875.5, 13,085.8) 85 (16,929.6, 103,831.2)
Residual 1 (2,730.1, 2,730.1) 8 (1,791.1, 36,955.3)
DFBETAS(BMI) 25 (1,773.5, 2,3677.5) 12 (32,451.1, 103,831.2)
DFFITS 21 (994.9, 17,366.9) 28 (2,9617.1, 103,831.2)
Modified Cook’s D 21 (994.9, 17,366.9) 35 (21,194.0 103,831.2)

Table 4. Estimated slopes of BMI from full sample and reduced samples by different diagnostic approaches

for NHANES data

OLS estimation SW estimation

BMI SE t BMI SE t

Full sample 0.45*** 0.05 9.23 0.44*** 0.07 5.88
Leverages 0.39*** 0.06 6.86 0.43*** 0.08 5.23
Residuals 0.47*** 0.04 10.50 0.47*** 0.06 8.19
DFBETAS (BMI) 0.49*** 0.05 9.51 0.46*** 0.05 8.83
DFFITS 0.47*** 0.05 9.76 0.45*** 0.05 8.51
Modified Cook’s D 0.47*** 0.05 9.76 0.44*** 0.05 8.74

*** Significant at level 0.001
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The parameter estimates after outliers were removed are listed in Table 4. The

difference between the OLS and SW estimates and the two diagnostic schemes is trivial.

The removal of observations with large DFBETAS of BMI causes the largest change in

the estimated slope of BMI. The SW estimates seem to be less affected by the removal of

influential points than the OLS ones. Unlike the SMHO data analyzed in Li and Valliant

(2011a), the NHANES data set does not contain many obviously extreme points, and

outlying Y values can be large or small relative to other points. Hence the deletion of the

identified outliers does not move the regression line dramatically.

5. Conclusion

By incorporating survey weights and design features, we constructed survey-weighted

diagnostic statistics for clustered samples that are extensions of the conventional OLS

diagnostics. Survey-weighted diagnostics may identify different points than OLS

diagnostics as influential. An observation with moderate Y and x values may not be

identified as influential by OLS approaches, but may be recognized as influential by SW

methods if it is assigned an extreme sample weight. The diagnostics can serve as a guide to

which points may be unusual. However, a diligent analyst should examine these points in

detail to decide whether they are data entry errors, legitimate values that do not follow a

core model, or can be explained in some other way, such as having extreme weights.

The techniques based on single-case deletion presented here may not function

effectively when some outliers mask the effects of others. The modified forward search

method (Atkinson and Riani 2000, 2004; Li and Valliant 2011b) is a partial solution to this

problem since it can successfully identify an influential group of points whose members

are not influential when examined singly.

A final caveat to the use of the diagnostics studied here is that some points may appear

to be influential because the regression model itself is misspecified. Deleting them would

be a mistake if the ability is lost to recognize that the model should be respecified, for

example, as quadratic. Thus good practice will require using a combination of residuals

and the other diagnostics studied here.
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