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We compare two general strategies for performing statistical disclosure limitation (SDL)
for continuous microdata subject to edit rules. In the first, existing SDL methods are applied,
and any constraint-violating values they produce are replaced using a constraint-preserving
imputation procedure. In the second, the SDL methods are modified to prevent them from
generating violations. We present a simulation study, based on data from the Colombian
Annual Manufacturing Survey, that evaluates the performance of the two strategies as applied
to several SDL methods. The results suggest that differences in risk-utility profiles across
SDL methods dwarf differences between the two general strategies. Among the SDL
strategies, variants of microaggregation and partially synthetic data offer the most attractive
risk-utility profiles.
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1. Introduction

Public-use microdata offer many benefits, for example, enabling researchers and policy

makers to perform in-depth statistical analyses, students to learn skills in data analysis, and

citizens to understand their society. However, public-use microdata also carry disclosure

risks: intruders who intend to misuse the information may be able to identify respondents or

learn values of sensitive attributes from the public data. Statistical agencies recognize this

risk and typically alter the microdata prior to release using one or more statistical disclosure

limitation (SDL) techniques. Ideally, the SDL reduces disclosure risk to an acceptable level

with low impact on data utility (Willenborg and De Waal 2001; Hundepool et al. 2012).

As collected, microdata often include implausible or impossible values, for example

arising from multiple forms of survey error (Groves 1989) such as reporting and

measurement error. Agencies prefer not to release such faulty values and so undertake a

process usually referred to as “edit and imputation” (De Waal et al. 2011). Agencies

identify faulty values via prespecified constraints, called edit rules or simply edits.
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Examples of edit rules for continuous microdata, such as data from economic censuses or

surveys, include range restrictions (V1 # a), ratio constraints (V1 # bV2), and balance

constraints (V1 þ V2 ¼ V3). When a record fails a set of edits, agencies typically select

some fields to replace with imputed values so that all constraints are satisfied (Fellegi and

Holt 1976).

To date, assessment of disclosure risks and subsequent SDL have been largely

disconnected from edit and imputation in practice. Typically editing is performed by one

organizational unit, which then transfers the data to another unit that performs SDL.

Interaction between the editing and SDL processes is minimal, and sometimes is entirely

absent. Indeed, those performing the SDL may not even be aware of constraints that the

edited data must respect.

The extant literature offers two general strategies for integrating SDL and editing. The

first approach is to apply existing SDL methods and then remove any resulting edit

violations; this is illustrated in Shlomo and De Waal (2005; 2008). Essentially, edit

violations engendered by SDL are treated in the same way as those resulting from

measurement error. The second approach is to use an SDL method that does not produce

edit violations; this is illustrated in Torra (2008). Many SDL methods as typically applied

do not guarantee edit preservation; however, as we illustrate, some SDL methods can be

modified to do so. To our knowledge, these two general strategies have not been compared

in terms of impacts on data quality and disclosure risk.

In this article, we make such comparisons by implementing the strategies for several

SDL procedures for continuous microdata. We apply the procedures to continuous

microdata from the 1991 Colombian Annual Manufacturing Survey. The results of the

simulation suggest that, when both strategies are feasible, there is little difference in the

risk-utility profiles of edit-after-SDL (first approach) and edit-preserving SDL (second

approach) procedures. Indeed, the differences in the profiles across approaches are

swamped by differences among SDL methods. We also discuss the relative merits of the

SDL techniques, although we view the evidence from the simulations as more suggestive

than complete.

The remainder of the article is organized as follows. In Section 2, we describe several

SDL methods and corresponding approaches to generate masked values satisfying edits. In

Section 3, we present results of the simulation study and compare the suggested methods

under a risk-utility framework. In Section 4, we conclude with a discussion of future

research questions.

2. SDL Methods in the Presence of Edit Rules

As in Reiter (2005), let yil be the collected value of variable l for unit i, for l ¼ 0, : : : , p

and i [ D, where D denotes the collected data for the n sampled units. Let yi0 be the

unique unit identifier, which, if it is informative, must be excluded from the final released

data. Suppose that yi ¼ {yi1, : : : ,yip} satisfies all constraints or has been corrected to do so

prior to SDL. For each i [ D, let yi be partitioned as ðyA
i ; y

U
i Þ, where yA

i is a vector of

variables available to intruders in external data files, and yU
i is a vector of variables

unavailable to intruders except in the released data file, Drel. To prevent disclosure, the

agency uses SDL to alter the values of yA
i before releasing Drel. Let ~yA

i denote the masked
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values of yA
i , so that Drel after SDL comprises ~yi ¼ ð~y

A
i ; y

U
i Þ for all n records on the file.

For simplicity, we assume that the intruder knows yA
i without any measurement error.

In general, it is challenging for agencies to determine which variables comprise yA
i and

which comprise yU
i . When this distinction is unclear, arguably the agency should treat all

variables as needing disclosure treatment.

2.1. Summary of Selected SDL Methods

In this section, we review the set of SDL methods for continuous microdata that we

employ in our simulation, which includes rank swapping, adding noise, variants of

microaggregation, and partially synthetic data. We describe each method briefly and refer

readers to Hundepool et al. (2012) for further details. Of course, there are more variations

on these methods, as well as additional SDL methods. We do not claim that these are a

subset of best or most appropriate methods for the data at hand; however, they do serve to

help us evaluate the two general strategies for SDL with editing.

Rank swapping (Moore 1996) is a special form of data swapping under which some

attribute values are switched between pairs of similar records. Rank swapping is

implemented as follows. For each variable l in yA
i , we sort {y1l, : : : ,ynl} by its magnitude;

let {y(1)l, : : : ,y(n)l} denote the ordered values. Let 0 , tswap , 100 be a prespecified

parameter. Two cases y(i )l and y( j )l are randomly selected, and then swapped only if

ji 2 jj , ntswap/100. As tswap increases, the intensity of data protection increases but, in

general, the data utility decreases.

Adding noise (Kim 1986; Sullivan and Fuller 1990; Tendick 1991) introduces random

errors to selected values deemed at high risk of disclosure; for example, set ~yA
i ¼ yA

i þ 1i.

A straightforward implementation is to draw random noise from a normal distribution,

1i , Nð0; tnoiseS
A
Þ, where SA is the sample covariance of {yA

1 ; : : : ; y
A
n }. The agency

sets the parameter tnoise to control the intensity of perturbation. To increase data

utility, Shlomo and de Waal (2008) suggest perturbing data within control strata, in

which the agency (i) defines Q subgroups of records {Dq :q ¼ 1, : : : ,Q}, for example,

by grouping records into quintiles of some variable, (ii) generates random noise 1i ,

N
�
mq

�
1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 t2

cnoise

p �
=tcnoise;Sq

�
where mq and Sq are the sample mean and the

sample covariance of records {yA
j : j [ Dq} and 0 , tcnoise # 1 is the parameter to control

the amount of random noise, and (iii) replaces yA
i with ~yA

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 t2

cnoise

p
yA

i þ tcnoise1i.

We refer to this variation as controlled adding noise.

Microaggregation (Defays and Nanopoulos 1993; Domingo-Ferrer and Mateo-Sanz

2002) replaces original values with group averages. Using a clustering algorithm, the

original records yi are partitioned into clusters Gg, each with a fixed size. For each i [ Gg,

we replace yA
i with the group mean ~yA

mic;i ¼
P

k[Gg
yA

k =tmic, where tmic ¼ jGgj, the

cardinality of Gg. Larger cluster sizes result in greater data perturbation. To construct

clusters, one can project data onto a single dimension, for example, using the first principal

component or the sum of z-scores (Fayyoumi and Oommen 2010). Alternatively, one

can find the clusters using a heuristic based on Euclidean distances between records.

For example, in multivariate fixed-size microaggregation (Domingo-Ferrer and
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Mateo-Sanz 2002), the algorithm starts with finding the two records yr and ys farthest

apart. The first cluster contains yr and the tmmic 2 1 records closest to yr, and the second

cluster contains ys and the tmmic 2 1 records closest to ys. The third and fourth clusters are

formed in a similar fashion starting from the two farthest-apart records among the

remaining n 2 2tmmic records. This repeats until fewer than 2tmmic records do not belong

to the clusters. These remaining records form a new cluster.

Oganian and Karr (2006) suggest microaggregation with adding noise, which blends the

clustering and perturbative effects of the two previous techniques. We set ~yA
i ¼ ~yA

mic;i þ di,

where ~yA
mic;i is masked by microaggregation and di , Nð0;S*Þ. Oganian and Karr (2006)

suggest using S* ¼ S
A

2 ~S
A

mic (if this matrix is positive definite, and otherwise a positive

definite approximation to it), where ~S
A

mic denotes the sample covariance of

{~yA
mic;1; : : : ; ~y

A
mic;n}. A variant of the method is using controlled noise with microaggrega-

tion (Shlomo and De Waal 2008): (i) define five subgroups by quintiles Dq where

q ¼ 1, : : : , 5, (ii) partition records i [ Dq into cluster Gq;g with size of tcmic, (iii) replace yA
i

with the group mean ~yA
cmic;i ¼

P
k[Gq;g

yA
k =tcmic, and (iv) produce final masked records by

adding random noise, ~yA
cmicn;i ¼ ~yA

cmic;i þ di where di , Nð0;S*Þ and S* is the difference

between the sample variance of {yA
j : j [ Dq} and the sample variance of {~yA

cmic;j : j [ Dq}.

We refer to this method as controlled microaggregation with adding noise. We note that

the original paper of Shlomo and de Waal (2008) presents microaggregation for data with

balance constraints; our version does not use the balance constraints.

Partially synthetic data (Rubin 1993; Little 1993; Reiter 2003) comprise the original

n records with sensitive values replaced by multiple imputations. The imputations are

generated from models estimated from the original data. The multiple copies enable data

analyses to reflect imputation uncertainty appropriately. The additional data sets also offer

more information for intruders to attempt identifications; see Reiter and Mitra (2009) and

Drechsler and Reiter (2008) for further discussion of this issue.

2.2. Approaches to SDL in the Presence of Edit Rules

Both edit-after-SDL and edit-preserving SDL have potentially appealing features. Edit-

after-SDL allows agencies to use existing SDL procedures and established edit-imputation

procedures, including handling balance edits, without worrying about combining them. This

may facilitate production operations when all edits are done in one step. On the other hand,

edit-preserving SDL can reduce an agency’s workload, since the masked data automatically

satisfy the constraints. We now describe how one can implement these two strategies for the

SDL methods outlined in Subsection 1. We note that, in some settings, it may be possible

to use edit-preserving SDL for some constraints and edit-after-SDL for other constraints

(e.g., Shlomo and De Waal 2008); we do not consider such mixed strategies here.

2.2.1. Approach I: Edit-After-SDL

In this approach, an agency first applies an SDL method to the collected data. Any post-SDL

records that violate the constraints are deleted or “repaired” ex post facto. The agency treats

any SDL-generated edit violations as if they were faulty values. This involves an error
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localization step, for example, using the methods of Fellegi and Holt (1976), followed by

replacing the localized errors with imputations that respect constraints. For example, one

could use sequential regression imputation (Van Buuren and Oudshoorn 1999;

Raghunathan et al. 2001), imputation from joint distributions (Geweke 1991; Tempelman

2007; Coutinho et al. 2011; Kim et al. 2014b), or in some settings hot-deck imputation

(Bankier et al. 1994; Shlomo and De Waal 2005; Coutinho and De Waal 2012; Coutinho

et al. 2013). As examples of this strategy, Shlomo and De Waal (2008) apply several SDL

methods and correct edit-failing records via an edit-imputation procedure based on linear

programming; and Cano and Torra (2011) propose adding random noise followed by

swapping the noise values of edit-failing records until all records pass edit constraints. We

note that neither of these approaches is theoretically guaranteed to preserve all edits.

To implement edit-after-SDL, we propose to use a model-based imputation method

which guarantees that all edit-corrections result in records that lie in the feasible region, for

example, the restricted support of yi that satisfies all inequality constraints. Specifically, we

adopt the multivariate imputation method proposed by Kim et al. (2014b), which is based on

mixtures of multivariate normal distributions and is therefore flexible enough to describe

complex distributional features. Let Y represent the feasible region. Using K . 1 mixture

components – see Kim et al. (2014b) for discussion of setting K – we assume that

f ðyijQ1; : : : ;QKÞ /
XK

k¼1

wkNðyijmk;VkÞIðyi [ YÞ: ð1Þ

Here, for each of the K mixture components, wk is the probability (or weight) of the

component, ðmk;VkÞ is the component mean vector and covariance matrix, and

Qk ¼ ðwk;mk;VkÞ. After performing SDL, we identify each record with ~yi � Y, blank its

~yA
i , and replace ~yA

i with values generated from the posterior predictive distribution,

f ðyA
i jD;YÞ. We refer readers to the Appendix for the specifications of the prior distributions

and details of Markov chain Monte Carlo (MCMC) steps. We note that the imputation

engine of Kim et al. (2014b) does not automatically extend to handle balance constraints,

although it can be modified to do so (Kim et al. 2014a). We also note that agencies can ensure

only integer values are released by rounding each imputed value to the nearest integer

(we did not do this in our simulation).

2.2.2. Approach II: Edit-Preserving SDL

It is possible to modify some SDL techniques to ensure the masked data satisfy all

constraints. A general strategy is to draw candidate masked values repeatedly until they

satisfy all edit rules. This rejection sampling approach can be readily applied for SDL

methods based on randomization, particularly when edit rules are based on sets of linear

inequalities. For example, an agency that adds noise to variables can generate 1i (or d i )

repeatedly until the drawn ~yi satisfies the edit rules. We note that rejection sampling

approaches can have various negative impacts on data quality. For example, the

distribution of the random noise for points near the boundary of the feasible region is not

likely to be symmetric, which could result in bias. We also note that balance edits can be

difficult to satisfy with rejection sampling.
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For SDL methods not entailing randomization, rejection sampling is difficult to

implement. Rejection sampling is not possible for typical implementations of

microaggregation, since no randomization is involved in microaggregation, except

possibly in clustering heuristics. Rejection sampling is generally inappropriate for

partially synthetic data, since the model itself should account explicitly for the constrained

support (the feasible region). Instead, we use the imputation engine of Kim et al. (2014b),

heretofore used exclusively for missing data, as a synthesizer that guarantees the released

synthetic values satisfy all edit constraints.

3. Simulation Study

We use a subset of 6,521 establishments from the 1991 Colombian Annual Manufacturing

Survey data comprising seven numerical variables: number of skilled employees (SL),

number of unskilled employees (UL), wages for skilled employees (SW), wages for

unskilled employees (UW), value added (VA), material used in products (MU), and capital

(CP). We assume that these records are error-free. As edit rules, we introduce linear

constraints typical of those used to edit business survey data (Winkler and Draper 1996;

Thompson et al. 2001; Hedlin 2003). Table 1 displays the range restrictions, and Table 2

displays the ratio constraints. The introduced constraints are data derived and

hypothetical; they are not actual constraints derived from the domain knowledge of

economic experts.

To simplify presentation, we mask only three of the seven variables – number of skilled

employees, number of unskilled employees, and capital – and leave the remaining

variables unaltered. We work with the natural logarithms of all variables. While not

necessary, this improves computation in the mixture model used for imputations, as the

model needs a smaller number of mixture components. Additionally, log transformations

are often useful in statistical inference models with skewed economic data (Petrin and

White 2011). To avoid new notation, we let yi and ỹi represent the vectors of natural

logarithms of the seven variables in D and Drel, respectively. Thus, yA
i comprises the three

log-transformed values ð yiSL; yiUL; yiCPÞ.

We use the SDL procedures outlined in Section 2 on the log-transformed values yi, using

multiple values of the disclosure parameters when possible. These include adding

noise (Noise) with tnoise [ {0.16, 0.25, 0.36, 0.49}, rank swapping (Swap) with

tswap [ {1, 5, 10}, microaggregation based on principal components clustering (Mic)

Table 1. Description of variables in the 1991 Colombian Annual Manufacturing Survey with data-derived

range restrictions

Variable Label Range restriction

Skilled labor SL 0.9–400
Unskilled labor UL 0.9–1,000
Wages paid to skilled labor SW 300–3,000,000
Wages paid to unskilled labor UW 600–4,000,000
Real value added VA 50–1,000,000
Real material used in products MU 10–1,000,000
Capital CP 5–1,000,000
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with tmic [ {2, 3, 5}, microaggregation based on principal components clustering

followed by adding noise (MicN), and multivariate fixed-size microaggregation (MMic)

with tmmic [ {3, 10, 15, 30}. We also examined variable-size microaggregation (Solanas

and Martnez-Balleste 2006; Domingo-Ferrer et al. 2008); the results were essentially

indistinguishable from MMic with tmmic ¼ 3 and thus are not reported here. We also use

two methods of Shlomo and de Waal (2008), including controlled adding noise (cNoise)

with tcnoise [ {0.10, 0.30, 0.50} and controlled microaggregation with adding noise

based on principal components clustering/subgrouping (cMicN) with tcmic [ {2, 3, 5}.

We generate partially synthetic data (Synt) by replacing all of yA
i with draws from the

model of Kim et al. (2014b). For partially synthetic data, we use only a single draw of the

parameters from a converged Markov chain to generate one realization of Drel; in practice,

we recommend using multiple draws and releasing multiple data sets to enable variance

estimation, provided that doing so does not increase risks unacceptably.

For procedures involving randomness, we generate 20 masked data sets from different

random seeds. For the microaggregation procedures (Mic and MMic), we use only one

masked data set since these methods are deterministic. As evident in Table 3 and

illustrated in Figure 1, all the perturbative SDL methods except MMic3 and MMic10

result in edit violations when applied without edit-preserving modifications. Adding noise

with the larger values of tnoise pushes many yi outside the boundary of Y, resulting in the

largest number of edit violations. Rank swapping also produces many edit violations, even

with the fairly tight swapping range of tswap ¼ 10. Microaggregation and multivariate

Table 2. Data-derived ratio edits (V1=V2 # b) for the 1991 Colombian Manufacturing Survey

V2

V1 SL UL SW UW VA MU CP

SL 1 20 0.01 0.01 0.1 0.3 2
UL 50 1 0.1 0.005 0.3 5 5
SW 20000 100000 1 50 300 500 1000
UW 66666.7 10000 100 1 200 5000 5000
VA 10000 20000 10 10 1 200 700
MU 50000 100000 33.3 100 100 1 1000
CP 20000 10000 10 16.7 100 100 1

Table 3. Numbers of records that violate edit rules across the 20 replications (or single realizations for Mic

and MMic) after implementing perturbative SDL methods

Method Mean % % Mean % Method Mean %

Noise16 157.8 2.5 Mic3N 84.1 1.3 Mic2 4.0 0.1
Noise25 255.4 4.0 Mic5N 116.2 1.8 Mic3 5.0 0.1
Noise36 406.2 6.3 cMic2N 54.8 0.8 Mic5 15.0 0.2
Noise49 614.8 9.6 cMic3N 83.1 1.2 MMic3 0.0 0.0
cNoise10 7.6 0.1 cMic5N 116.1 1.8 MMic10 0.0 0.0
cNoise30 27.9 0.4 Swap01 5.6 0.1 MMic15 1.0 0.02
cNoise50 48.1 0.7 Swap05 45.1 0.7 MMic30 2.0 0.03
Mic2N 53.5 0.8 Swap10 134.2 2.1
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fixed-size microaggregation result in only a few masked records that violate the

constraints. This is because microaggregation generally moves values away from

boundaries and hence towards the feasible region. In fact, if we had applied micro-

aggregation to all variables in yi, the resulting records always would be inside Y due to its

convexity. Since we replace only each yA
i , we cannot guarantee that ~yi [ Y . As a general

conclusion, we note that the number of edit violations increases with the amount of

perturbation for every class of SDL methods.

We next seek to correct any edit violations using the two general strategies. For edit-

after-SDL, we replace all values of yA
i of edit-failing records with draws from the

imputation model outlined in Subsection 2.2.1. For edit-preserving SDL, we use the

rejection sampling scheme of Subsection 2.2.2 for all methods involving randomness. For

rank swapping with tswap ¼ 10, we did not obtain a Drel without edit violations even after

1,000 independent replications of swapping. Each Drel had at least 99 out of 6,521 records
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Fig. 1. Illustrative example of how SDL can result in violations of linear constraints. Top-left panel shows

pre-SDL data for the log(SL) and log(SW). The variables SL, UL, and CP are masked by adding noise with

tnoise ¼ 0.16 (Noise16, top-right panel), rank swapping with tswap ¼ 10 (Swap10, bottom-left panel), and

microaggregation of tmic ¼ 3 with adding noise (Mic3N, bottom-right panel). Solid circles indicate records that

satisfy edit rules and “ £ ” indicate records that violate constraints, i.e., ~y i � Y
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that violated the constraints, suggesting that waiting for a constraint-preserving, rank-

swapped data set for this procedure in this simulation design is hopeless.

As measures of disclosure risk, we use the percentage of linked criterion of

Domingo-Ferrer, Mateo-Sanz, and Torra (2001). First, we compute the distances

di;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

X
ðyA

il 2 ~yA
jlÞ

2

s
; ;i; j ¼ 1; : : : ; n;

where l [ (SL, UL, CP). For each i, we find the record j that achieves the minimum value

of di,j. When yi0 ¼ yj0, that is, the record in Drel can be linked correctly to D based on

matching the available variables, we let tð1Þi ¼ 1 and otherwise let tð1Þi ¼ 0. We then define

one risk measure as PL1 ¼
Pn

i¼1 tð1Þi =n £ 100. Similarly, we let tð2Þi ¼ 1 when the correct

link for record i in D has either the smallest or second smallest value among all the di,j,

and tð2Þi ¼ 0 otherwise. We define a second risk measure as PL2 ¼
Pn

i¼1 tð2Þi =n £ 100, the

percentage of records for which the correct link is among the two closest matches.

Finally, we define a third risk measure, PL3, as the percentage of records for which the

correct link is among the three closest matches.

We use two measures of data utility: an approximate Kullback-Leibler (KL) divergence

(Kullback and Leibler 1951) of Drel from D, and the propensity score (Uprop) utility

measure suggested by Woo et al. (2009). For KL, we use a closed-form expression based

on a normality assumption,

KL ¼
1

2
tr ðS

rel
Þ21S

n o
þ �yrel 2 �y
� �T

ðS
rel
Þ21 �yrel 2 �y
� �

2 p 2 log
jS

rel
j

jSj

 !" #

; ð2Þ

where �y and S are the sample mean and the sample covariance of {y1; : : : ; yn} in D, and

�yrel and Srel are the corresponding statistics of {~y1; : : : ; ~yn} in D rel. For Uprop, we first

concatenate Drel and D, and add an indicator variable whose values equal one for all

records in Drel and equal zero for all records in D. Using the concatenated data, we

estimate the logistic regression of the indicator variable on all seven variables (after log

transformations), including main effects and all interactions up to third order; that is, we fit

log
pi

1 2 pi

� �
¼ b0 þ

X7

a¼1

balogYia þ
a;b

X
bablogYialogYib

þ
a;b;c

X
babclogYialogYiblogYic:

For i ¼ 1, : : : , 2n, we compute the set of predicted probabilities p̂i. The utility measure is

Uprop ¼
1

2n

X2n

i¼1

p̂i 2
1

2

� �2

:

Values of Uprop near zero represent high data utility, since they imply we are not able to

distinguish between D rel and D.
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Table 4 displays the average values of KL, Uprop and PL1 –– PL3 over the replicates for

each method. When methods are implemented with both strategies, the risk-utility profiles

are fairly similar across the two strategies. This is not overly surprising, since these SDL

methods typically generate only a modest number of edit violations in these data.

Nonetheless, for these methods, the edit-after-SDL version does slightly outperform the

edit-preserving SDL version, generally offering both lower risk and higher utility.

This results largely from the imputations, which are generally of higher quality than the

repeated draws from the rejection sampling scheme.

In Table 4, the differences in the risk-utility profiles across the two ways of dealing with

edit violations are dwarfed by differences in the profiles across the classes of SDL

methods. This suggests that the choice of SDL method is more important than the strategy

for correcting edit violations.

Figure 2 displays a risk-utility (R-U) map (Duncan and Stokes 2004; Gomatam et al.

2005; Cox et al. 2011) for all realizations of D rel and the most competitive procedures,

using Uprop as the utility measure and PL1 as the risk measure. The risk-utility frontier

consists of candidate releases with no other candidate to their “southwest.” The R-U

frontier includes the variants of microaggregation with adding noise (MicN), which have

the lowest levels of disclosure risk, and partially synthetic data (Synt), which has the

maximum level of data utility and a low level of disclosure risk. Several variants of MMic

are close to the frontier (and would be on the frontier but for Synt and Swap10), generally

having high utility for reasonable disclosure risks.

4. Concluding Remarks

Based on our studies, there appear to be no appreciable differences between the strategies

of edit-after-SDL and edit-preserving SDL, at least when both are possible. Hence,

arguably, agencies can choose an SDL procedure without too much consideration of how

they will ensure the released data satisfy all edits, at least when the SDL method does not

generate a large number of edit violations. Microaggregation with adding noise,

multivariate fixed-size microaggregation and partially synthetic data were the most

effective strategies in our simulations. The last method has the additional advantage that

the synthesis methodology can be used to impute missing data values and implement

edit-preserving SDL simultaneously, following the two-stage approach described in

Reiter (2004).

An intriguing aspect of the editing–SDL “disconnect” is whether edited values should

be protected in the same way as original reported data. This point, perhaps, is more subtle

than it may seem initially. One interpretation is that a statistical agency promises to protect

whatever information the subjects provide, even if that information is believed, or known

to be, erroneous. Under this logic, edited and imputed values are not respondent

information (i.e., they have been imputed rather than reported) and therefore might be

treated differently during SDL. Another view is that the agency is also charged with

protecting its best estimate of actual values, as opposed to reported values, which implies

that edited and imputed values do require SDL. To our knowledge this issue remains

unresolved and, indeed, largely unaddressed. We believe that in the long run, the most

desirable approach is one that fully integrates editing, imputation and SDL.
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Finally, we note two somewhat technical issues. First, some statistical agencies do not

always include edit and imputation flags in released data. The risk and utility

consequences of doing this are unexplored. The underlying issue is one of transparency

(Karr 2009; Cox et al. 2011). Second, our research to date has not touched the role of

weights, which was addressed to some extent in Cox et al. (2011). Weights themselves

may pose disclosure risk (e.g., of unreleased values of design variables), but are generally

ignored in all three of the editing, imputation and SDL processes. Some editing

procedures, such as seeking additional information from “large” and low–weight

respondents, consider weights implicitly. Some implementations of data swapping can

accommodate weight constraints. Indexed microaggregation (Cox et al. 2011) is able to

protect risky weights. However, by any measure, much more work remains than has been

carried out so far.

Appendix: The Joint Multivariate Imputation Using Normal Mixtures

For imputations of faulty values, we use the joint multivariate normal method developed in

Kim et al. (2014b) and described in Section 2. The likelihood function in (1) can be

re-expressed with latent variables zi by

f ðyijzi;m;VÞ / Nðyijmzi
;Vzi
ÞIðyi [ YÞ

and

Prðzi ¼ kÞ ¼ wk; k ¼ 1; : : : ;K:

I. Noise
6

5

4

3

U
pr

op
 ×

 1
00

2

1

0

0.0 0.5 1.0
PL1

1.5 2.0

Mic5N

Mic3N

Mic2N

Mic2

MMic30
MMic15 MMic10

Synt Swap10

Noise36

Noise25

Noise16

I. Swap
I. MicN
I. Mic
II. Noise
II. MicN
II. Synt
MMic

Fig. 2. Risk-utility map with the SDL methods. The solid line indicates the risk-utility frontier. The open symbols

represent edit-after-SDL approaches, and the solid symbols represent edit-preserving SDL approaches. Smaller

values of PL1 and Uprop represent the higher levels of data protection and data utility. Note that the plot does not

include cMicN’s because the results are very similar to those of MicN. The other methods whose results are not

shown in the plot have high risk and/or low utility
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Following Lavine and West (1992), we assume the prior distributions,

mk jVk , Nðm0; h
21VkÞ; Vk , IWðz;FÞ

where F ¼ diagðf1; : : : ;fpÞ, and fj , Gammaðaf; bfÞ for j ¼ 1, : : : , p. Here, IW

denotes the inverse Wishart distribution and Gamma(a,b) denotes the Gamma distribution

with mean a/b. For flexible modeling of the component weights, we adopt the stick-

breaking representation of a truncated Dirichlet process (Sethuraman 1994; Ishwaran and

James 2001):

wk ¼ vk
g,k

Q
ð1 2 vgÞ for k ¼ 1; : : : ;K

vk , Betað1;aÞ for k ¼ 1; : : : ;K 2 1; vK ¼ 1

a , Gammaðaa; baÞ:

In the simulation study, we follow Kim et al. (2014b) and set m0 ¼ 0, h ¼ 1, z ¼ p þ 1,

af ¼ bf ¼ 0:25, aa ¼ ba ¼ 0:25 and K ¼ 40.

To facilitate the estimation of m and V, we use a data-augmentation technique

developed by O’Malley and Zaslavsky (2008). The data augmentation supposes a larger,

hypothetical sample YN ¼ {Yn, YN2n} where Yn is the set of yi [ Y following the

likelihood in Equation (1) and YN2n consists of the values from outside of Y, so that

f ðYN jQ1; : : : ;QKÞ ¼
YN

i¼1

XK

k¼1

wkNðyijmk;VkÞ;

where Qk ¼ ðmk;Vk;wkÞ. Given the augmented sample YN, the parameters Qk ¼

ðwk;mk;VkÞ can be sampled via Gibbs sampling. Setting f (N) / 1/N as suggested by

Meng and Zaslavsky (2002) and O’Malley and Zaslavsky (2008), the conditional density

of the size of YN2n is distributed as

N 2 n j n;Q1; : : : ;QK ;Y , Negative Binomial n; 1 2 hQðYÞ
� �

;

where

hQðYÞ ¼
ð

{y:y[Y}

XK

k¼1

wkNðyjmk;VkÞdy:

The MCMC algorithm for sampling from this distribution relies on the following steps.

1. For k ¼ 1, : : : , K, draw Vk , IWðzk;FkÞ and mk , N ðm*
k ;Vk=ðNk þ hÞÞ where

m*
k ¼ ðNk �yk þ hm0Þ=ðNk þ hÞ, zk ¼ z þ Nk,Fk ¼ F þ Sk þ ðm

*
k 2 m0Þðm*

k 2 m0Þ
0=

ð1=Nk þ 1=hÞ. We calculate the sample mean �yk and the sample covariance Sk

from the error-free, pre-SDL values Yn ¼ fyi; i ¼ 1; : : :; ng and the drawn

auxiliary values YN2n by �yk ¼
P

{i;zi¼k} yi=Nk where Nk ¼
PN

i¼1 Iðzi ¼ kÞ and

Sk ¼
P

{i;zi¼k}ðyi 2 �ykÞðyi 2 �ykÞ
0.

2. For k ¼ 1, : : : , K 2 1, draw vk , Beta 1þ Nk;aþ
P

g.k Ng

� �
. Set vK ¼ 1.

Compute wk ¼ vk

Q
g,k ð1 2 vgÞ.
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3. Update F ¼ diagðf1; : : : ;fpÞ by drawing fj , Gamma af þ zK=2; bfþ
�

PK
k¼1 V

21
kð j;jÞ=2Þ for each j ¼ 1, : : : , p, where V21

kð j;jÞ is the jth diagonal element

of V21
k .

4. Draw a from Gamma aa þ K 2 1; ba 2 log wK

� �
.

5. For i ¼ 1, : : : , n, sample zi , Categoricalðw*
i1; : : : ;w

*
iKÞ where

w*
ik ¼ wkNðyijmk;VkÞ=

XK

g¼1
wgNðyijmg;VgÞ

h i
:

6. Sample ðN; ZN2n; YN2nÞ jointly from their full conditional distribution as follows.

Let cin ¼ cout ¼ 0.

6.1. Draw z* , Categoricalðw1; : : : ;wKÞ.

6.2. Draw y* , Nðm*
z ;Vz *Þ.

6.3. If y* [ Y, set cin ¼ cin þ 1.

6.4. If y* [ Y c, set cout ¼ cout þ 1, yn þ cout ¼ y*, and znþcout
¼ z*.

6.5. Repeat 6.1 through 6.3 until cin¼ n.

Let N ¼ nþ cout. Now, YN2n ¼ {yn þ 1; : : : ; yn þ cout} and ZN2n ¼ {znþ1; : : : ;

znþcout}.

7. To update the replacement draws of the faulty values, we use a Hit-and-Run

sampler (Chen and Schmeiser 1993). In the initialization step, we propose a starting

value ~yAð0Þ
i such that ðyU

i ; ~y
Að0Þ
i Þ [ Y, for example by using rejection sampling or

an extreme-points approach (see Kim et al. 2014b). At any MCMC iteration t $ 0,

we update the current value ~yAðtÞ
i (which replaces the faulty ~yA

i ) with the following

steps.

7.1. Draw a direction d* uniformly from the surface of the j~yA
i j-dimensional unit

sphere centered at the origin.

7.2. Draw a signed distance l* from the uniform distribution on J,

J ¼ l : yU
i ; ~y

AðtÞ
i þ ld*

� �
[ Y

	 


7.3. Accept or reject the proposal ~yA*
i ¼ ~yAðtÞ

i þ l*d* with the acceptance probability

ri, where

ri ¼ min 1;
f ðyU

i ; ~y
A*
i jQzi

Þ

f ðyU
i ; ~y

AðtÞ
i jQzi

Þ

" #

:
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