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We propose a transformation-based approach for estimating quantiles using auxiliary
information. The proposed estimators can be easily implemented using a regression estimator.
We show that the proposed estimators are consistent and asymptotically unbiased. The main
advantage of the proposed estimators is their simplicity. Despite the fact the proposed
estimators are not necessarily more efficient than their competitors, they offer a good
compromise between accuracy and simplicity. They can be used under single and multistage
sampling designs with unequal selection probabilities. A simulation study supports our
finding and shows that the proposed estimators are robust and of an acceptable accuracy
compared to alternative estimators, which can be more computationally intensive.
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1. Introduction

Estimation of quantiles is of considerable interest when measuring income distribution and

poverty lines (e.g. Osier 2009; Verma and Betti 2011; Eurostat 2003; Berger and Skinner

2003). For instance, the median is regarded as a more appropriate measure of location than the

mean when variables of interest, such as income, expenditure, and so on, have highly skewed

distributions, because the median is less sensitive to outliers than the mean. For this reason, the

median is also used by most household wealth surveys, such as the Household Finance and

Consumption Survey (HFCS) carried out by the European Central Bank among the Eurozone

countries. In addition, quantile estimation has many practical applications, for example, when

measuring poverty (e.g. Osier 2009; Eurostat 2012; Eurostat 2003).

In sample surveys, auxiliary information is often used at the estimation stage to improve

the estimation of target parameters. The use of auxiliary information has been studied

extensively for estimation of means and totals. However, it has no obvious extensions to

the estimation of quantiles. In this article, we propose a transformation-based approach for

estimating quantiles, which takes into account of the auxiliary information.

We consider a finite population U ¼ {1; : : : ; i; : : : ;N} containing N units. Let

y1; : : : ; yN denote the values of a variable of interest, y, and x1; : : : ; xN denote the values

of an auxiliary variable, x. Our proposed approach can be easily extended to several

auxiliary variables. A sample s of size n is selected randomly from U according to
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a sampling design. We consider a design-based approach where the yi and xi are fixed

(nonrandom) quantities and the sampling distribution is specified by the sampling design.

The aim is to estimate the population quantile

Ya ¼ F 21ðaÞ; ð1Þ

where F 21(�) is the inverse of the population distribution function

FðtÞ ¼
1

N i[U

X
dð yi # tÞ

and 0 , a , 1. The function d(�) takes the value 1 if its argument is true and 0 otherwise.

Throughout this article, we define the inverse of any function Gð�Þ by

G21ðaÞ ¼ inf {t : GðtÞ $ a}.

A customary estimator for Ya is obtained by substituting F(t) by its estimator into (1).

For example, the ‘Hájek type’ estimator of Ya is defined by

bYYp;a ¼ bFF
21

p ðaÞ; ð2Þ

where bFFpðtÞ is the Hájek (1971) estimator defined by

bFFpðtÞ ¼
1

bNN i[s

X 1

pi

dð yi # tÞ ð3Þ

with bNN ¼
P

i[s p
21
i , where pi denotes the first-order inclusion probability of unit i.

A wide range of estimators exists for the distribution function Fð�Þ, some of which use

auxiliary information (see Section 2).

The proposed approach consists in inverting the distribution function at baa reg rather than

at a. The quantity baa reg, defined in (19), takes the auxiliary information into account. The

proposed estimators can be justified by using a transformation of the variable of interest.

The proposed estimators depend on the first-order inclusion probabilities. The proposed

estimators can be calculated even if we only know the auxiliary variables for the sampled

units, as long as the population quantile of the auxiliary variable is known.

In Section 2, we define estimators of the distribution function that can be found in

the literature, and which can be used to estimate a quantile. In Section 3, we introduce

the proposed estimators for a quantile. In Section 4, we give regularity conditions under

which the proposed estimators are consistent. In Section 5, we compare the

proposed estimators with alternative estimators via simulation. We also investigate the

empirical properties of a bootstrap variance estimator. This article concludes with some

discussions in Section 6.

2. Estimators of Quantiles

An exhaustive review of estimators of the distribution function and quantiles can be found

in Dorfman (2009).
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By substituting the design weights in (3) with calibration weights, we obtain the

following naı̈ve estimator

bFFwðtÞ ¼
1

bNNw i[s

X
widð yi # tÞ; ð4Þ

where bNNw ¼
P

i[s wi. The wi denote the regression weights calibrated with respect to the

population total of the auxiliary variable. The estimator of Ya based on these calibration

weights is given by bYYw;a ¼ bFF
21

w ðaÞ.

The model-based estimator of the distribution function suggested by Chambers and

Dunstan (1986) is based on the following heteroscedastic regression model

yi ¼ bxi þ n ðxiÞui; ð5Þ

where b is an unknown parameter, n ðxiÞ is a known function of x and the ui are

independent and identically distributed random variables with zero mean. The distribution

function estimator proposed by Chambers and Dunstan (1986) is

bFFcdðtÞ ¼
i[s

X
dð yi # tÞ þ

1

nj[U2s

X

i[s

X
d uni #

t 2 bnxj

n ðxjÞ

� �2
4

3
5; ð6Þ

with

bn ¼
i[s

X x2
i

n2ðxiÞ

2
4

3
5

21

i[s

X yixi

n2ðxiÞ
; uni ¼

yi 2 bnxi

nðxiÞ
:

The Chambers and Dunstan (1986) estimator of Ya is given by bYYcd;a ¼ bFF
21

cd ðaÞ.

Rao et al. (1990) proposed the following estimator

bFF†

rkmðtÞ ¼
1

N i[s

X
p21

i dð yi # tÞ þ
i[U

X
bGiGiðtÞ2

i[s

X
p21

i
bGGicðtÞ

0
@

1
A

8
<

:

9
=

;

with

bGGiðtÞ ¼
1

bNN j[s

X 1

pj

d buuj #
t 2 bRRxi

x
1=2
i

 !
;

bGGicðtÞ ¼
j[s

X pi

pij

0
@

1
A

21

j[s

X pi

pij

d buuj #
t 2 bRRxi

x
1=2
i

 !2
4

3
5;

buuj ¼
yj 2 bRRxj

x
1=2
j

; bRR ¼
i[s

X xi

pi

2

4

3

5
21

i[s

X yi

pi

;
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where pij denotes the joint inclusion probability for the units i and j. Since the estimator
bFF†

rkmðtÞ is not always a monotone nondecreasing function, Rao et al. (1990) proposed to use

the following estimator

bFFrkmðtÞ ¼ max eFFrkmð yði ÞÞ : yði Þ # t
� �

; ð7Þ

where the yði Þ’s are the order statistics of the sample yi; i [ sf g and eFFrkmð yði ÞÞ is defined by

the following recursive formula

eFFrkmð yði ÞÞ ¼ max eFFrkmð yði21ÞÞ; bFF
†

rkmð yði ÞÞ
n o

;

with eFFrkmð yð1ÞÞ ¼ bFF
†

rkmð yð1ÞÞ. The Rao et al. (1990) estimator of Ya is given by

bYYrkm;a ¼ bFF21
rkmðaÞ.

Silva and Skinner (1995) proposed the following estimator based on poststratification

bFFpsðtÞ ¼
1

N

XG

g¼1

Ng

bNNg i[s

X 1

pi

dð yi # tÞdði [ UgÞ; ð8Þ

where U1; : : : ;UG are G poststrata partitioning the population, Ng is the size of Ug and

bNNg ¼
P

i[sg
p21

i , with g ¼ 1; : : : ;G. The estimator of Ya is given by bYYps;a ¼ bFF
21

ps ðaÞ.

When the population quantile Xa of an auxiliary variable is known, Rao et al. (1990)

proposed the following ratio estimator of Ya

bYYr;a ¼
bYYp;a

bXXp;a

Xa; ð9Þ

where bYYp;a and bXXp;a are respectively the Hájek estimators of Ya and Xa (see (2)). Rao et al.

(1990) also proposed a difference estimator and showed that bYYr;a has a smaller mean

square error than the difference estimator.

Harms and Duchesne (2006) proposed an estimator of the distribution function based on

a calibration constraint specified by the quantile of an auxiliary variable. This estimator is

denoted by bYYcal;a.

Note that the estimators bYYcd;a, bYYrkm;a and bYYps;a assume that the auxiliary variable is

known for all the units of the population, whereas estimators bYYr;a and bYYcal;a only require

the knowledge of Xa.

3. Proposed Estimators for a Quantile

The proposed estimators are based upon the following idea, which can be illustrated for a

median: if the distribution of the variable of interest is such that the mean equals the

median, the median could be estimated by using an estimator for the mean. We propose to

transform the variable of interest in such a way that the median equals the mean for the

transformed variable. If the transformation is monotone increasing, the median of

the variable of interest can be estimated by inverting the estimate for the mean of the

transformed variable. This method can also be extended to the estimation of any quantile.

The proposed estimators are given by (18) and (20) in Subsection 3.3. In order to justify
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this approach, it is necessary to transform the variable (Subsection 3.1) and to use a

regression estimator (Subsection 3.2).

3.1. A Transformation of the Variables

We propose to transform the variable of interest such that the distribution of the

transformed variable is approximately symmetric. Consider the midpoint distribution

function F +ð�Þ (Nygård and Sandström 1985) defined by

F +ð yÞ ¼
1

2
½Fð y2Þ þ Fð yÞ�: ð10Þ

The quantity Fð y2Þ is the left-hand limit, that is, Fð y2Þ ¼ limt!y 2 FðtÞ. Alternatively,

F +ð yÞ ¼ N 21
P

i[U ½dð yi , yÞ þ 0:5dð yi ¼ yÞ�. Note that 0 , F +ð yiÞ , 1 for all i [ U.

If the population quantile Ya is the parameter of interest, we consider the following

transformed values

y*
a;i ¼ Cð yiÞ þ zk; ð11Þ

where Cð yiÞ ¼ f21ðF +ð yiÞÞ and f21ð�Þ is the inverse of the cumulative distribution

function fð�Þ of a normal N(0, 1); that is,

fð yÞ ¼
1

ð2pÞ1=2

ðy

21

exp
2t 2

2

� �
dt:

The quantity zk ¼ f21ðkÞ is the k-th quantile of a normal N(0, 1) distribution, with

k ¼ ðdaNe 2 0:5Þ=N. Note that k can be approximated by a for large populations, as

k ! a when N ! 1. The quantity a is the level of the quantile Ya considered.

In the definition of Cð yiÞ, we use (10) instead of F(t) because the function f21ð�Þ is not

defined on 0 and 1. Note that the transformation Cð yiÞ does not depend on the choice of a.

This function maps the quantiles of the distribution of y with the quantile of the standardised

normal distribution N(0, 1). Note that Cð yiÞ can be estimated with or without auxiliary

variables.

The following Lemma gives the relationship between the population quantile Ya and the

following population mean of the transformed variable

Y
*
a ¼

1

N i[U

X
y*
a;i:

Lemma 1 We have that Ya ¼ C21ðY
*
aÞ, where the function C21ð�Þ is the inverse of

function Cð�Þ defined in (11)

The proof is given in Appendix A.

The transformed values in (11) depend on population values, which would need to be

estimated. We propose to estimate y*
a;i by its substitution estimator given by

byy*
a;i ¼

bCCð yiÞ þ zk;
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where bCCð yiÞ ¼ f21ðbFF +ð yiÞÞ. The function bFF +ð�Þ is the empirical midpoint estimator of the

distribution function (10). This estimator is given by

bFF+ð yÞ ¼
1

2
½bFFð y2Þ þ bFFð yÞ�; ð12Þ

where bFFð�Þ is a consistent estimator of Fð�Þ. In this article, we propose to use the Hájek-type

estimator (3) in (12). However, we could use (6), (7) or (8) instead of (3). This may give a

more efficient estimator.

The auxiliary variable may be transformed in the same way. When the values xi are

known for the entire population, we propose to use the following transformation.

x*
a;i ¼ CxðxiÞ þ zk; ð13Þ

where CxðxiÞ ¼f21ðF+
xðxiÞÞ, F+

xðxÞ ¼ ½Fxðx
2Þ þ FxðxÞ�=2 and FxðtÞ ¼N 21

P
i[U dðxi # tÞ:

Note that the values of x*
a;i cannot be calculated if we only know the sampled values of the

auxiliary variable, as the function Fxð�Þ is unknown in this situation. If this is the case, we

propose the transformation

bxx*
a;i ¼

bCCxðxiÞ þ zk; ð14Þ

where bCCxðxiÞ ¼ f21ðbFF+

xðxiÞÞ and bFF+

xðxÞ ¼ ½
bFFxðx

2Þ þ bFFxðxÞ�=2. The function bFFxð�Þ may be

any estimator of the distribution function FxðtÞ. In this article, we propose to use the Hájek

(1971) estimator of Fxð�Þ (see (3)).

3.2. The Regression Estimator

We propose to estimate Y
*
a using a regression estimator (e.g. Cassel et al. 1976, 1977),

which uses the auxiliary information. This estimator is defined by

�y*
reg;a ¼ �y*

a þ
bbbx X

*
a 2 �x*

a

� �
; ð15Þ

where �y*
a ¼ N 21

P
i[s p

21
i byy*

a;i, X
*
a ¼ N 21

P
i[U x*

a;i, �x
*
a ¼ N 21

P
i[s p

21
i x*

a;i, with

bbbx ¼
i[s

X 1

piq
2
i

x*
a;i 2 �x*

a

� 	2

2

4

3

5
21

i[s

X 1

piq
2
i

x*
a;i 2 �x*

a

� 	
byy*
a;i 2 �y*

a

� 	
: ð16Þ

Note that the regression estimator �y*
reg;a assumes that the auxiliary variable is known for

the entire population. When we only know the values of the auxiliary variable for the

sampled units, we propose to use the following regression estimator instead of (15):

�y*
regS;a ¼ �y*

a þ
~bx
bXX*

a 2 bxx*
a

� �
; ð17Þ

where bxx*
a ¼ N 21

P
i[s p

21
i bxx*

a;i and bbbx is given by (16) after substituting x*
a;i by bxx*

a;i.

The control mean in (17) can be obtained as

bXX
*

a ¼
bCCxðXaÞ�

This implicitly assumes that we know Xa. The Estimator (9) and the estimator proposed by

Harms and Duchesne (2006) are also based on this assumption.
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We can observe that the estimators �y*
reg;a and �y*

regS;a are based upon a single auxiliary

variable. The proposed regression estimators can be easily extended to several auxiliary

variables (e.g. Särndal et al. 1992, 225). For this purpose, the various auxiliary variables

may be transformed by using the transformations (13) or (14) suggested for the variable x.

3.3. The Proposed Estimators

Based on Lemma 1, we propose to estimate the quantile Ya by

bYYreg;a ¼ bCC21 y*
reg;a

� �
: ð18Þ

As bCC21ð yÞ ¼ bFF+21ðfð yÞÞ, an alternative expression for the proposed estimator is

bYYreg;a ¼ bFF+21ðbaaregÞ; ð19Þ

where baareg ¼ f y*
reg;a

� �
. This estimator consists in inverting a midpoint distribution

function bFF+ð�Þ at the value baareg, which is adjusted to take into account the auxiliary

variable. Note that if we invert the midpoint distribution function (12) at the value a and if

we use the estimator (3), we obtain an estimator which is approximately equal to the

Hájek-type estimator (2) when bFF+ð�Þ is given by (3).

When we only know the values of the auxiliary variable for the sampled units and when

the population quantile Xa is known, we propose to use a different estimator given by

bYYregS;a ¼ bCC21 y*
regS;a

� �
¼ bFF+21ðbaa regSÞ; ð20Þ

where baa regS ¼ f y*
regS;a

� �
and y*

regS;a is defined by (17).

The proposed estimators are not affected by outliers, because byy*
a;i and x*

a;i are implicitly

based upon the ranks of y and x (see (11)). Note that bYYreg;a ¼ Xa when yi ¼ xi. The

efficiency of the proposed estimators depends on the correlation between y*
i and x*

i rather

than the correlation between yi and xi.

It is worth investigating some properties of the Estimator (19) under equal probability

sampling (pi ¼ n=N). In this case, it can be shown that

y*
reg;a � zk 2 bbbx

1

n i[s

X
CxðxiÞ:

Thus, �y*
reg;a increases monotonically whena increases, because zk is a monotone function of

a, and bbbx and CxðxiÞ do not depend on a. Hence, bYYreg;a1
# bYYreg;a2

when a1 # a2. This is a

desirable property of an estimator of a quantile. Provided that bbbx . 0, we have that baareg . a

when
P

i[s CxðxiÞ is negative; that is, when the sample contains small xi values. In this case,

the estimate based on a (e.g. (2) with (3)) is likely to have a negative error. By using a level

baa reg larger that a, we should reduce this error. Furthermore, as the adjustment,

bbbxn21
P

i[s CxðxiÞ, does not depend on a, the proposed estimators are likely to be good for

some a, but not for any a. The simulation study in Section 5 investigates this features.

The rescaled bootstrap variance estimator (Rao et al. 1992) can be used to estimate the

variance of the proposed estimators. A confidence interval for the point estimator can be
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also computed using the rescaled bootstrap confidence interval (the histogram approach).

In Subsection 5.1, we evaluate the empirical performance of this variance estimator and

this confidence interval.

4. Design Consistency

Consider the following regularity conditions:

jbYYa 2 Yaj ¼ Opðn
21=2Þ; ð21Þ

�y*
reg;a 2 Y

*
a








 ¼ Opðn

21=2Þ� ð22Þ

Conditions (21) and (22) mean that bYYa and �y*
reg;a are

ffiffiffi
n
p

-consistent. Isaki and Fuller (1982)

and Robinson and Särndal (1983) gave conditions under which (22) holds. Francisco and

Fuller (1991) established the consistency of bYYa. Furthermore, the fact that the y*
a;i can be

considered as values generated from a normal distribution speaks in favour of (22).

As bFF+21ð�Þ is a nondifferentiable function, we need to assume that this function

converges to a differentiable function in order to prove the consistency. We assume that

there exists a quantile function Qð�Þ which is twice differentiable, and such that

jej,oðn 21=2Þ

sup jbFF+21ðaþ eÞ2 bFF+21ðaÞ2 Qðaþ eÞ þ QðaÞj ¼ opð1Þ: ð23Þ

This condition can be justified by Bahadur (1966) Lemma (see also Serfling 1980, Lemma

E, p. 97).

Theorem 1 Under assumptions (21), (22) and (23), the proposed estimator bYYreg;a isffiffiffi
n
p

-consistent, as jbYYreg;a 2 Yaj ¼ Opðn
21=2Þ.

The proof of Theorem 1 is given in the Appendix B. In addition, bYYreg;a is asymptotically

unbiased when jbYYreg;a 2 Yaj is uniformly bounded, as in this situation, the convergence in

probability of bYYreg;a to Ya implies that the expectation of bYYreg;a converges to Ya (Lehmann

1999, 53).

It can be shown that the second estimator (20) is also consistent by assuming that (22)

holds for �y*
regS;a.

5. Simulation

In this section, the proposed estimators bYYreg;a and bYYregS;a (see (18) and (20)) are compared

numerically with alternative estimators described in Section 2. The alternative estimators

considered are: bYYp;a (see (2)), bYYw;a (see (4)), bYYcd;a (Chambers and Dunstan 1986), bYYrkm;a

(Rao et al. 1990), bYYps;a (Silva and Skinner 1995), bYYr;a (see (9)) and bYYcal;a (Harms and

Duchesne 2006).

The proposed Estimators (19) and (20) are based on the midpoint distribution function

(12), which could be based on any estimator of Fð�Þ. For example, we can use the

Estimators (3), (6), (7) or (8). The Estimators (6), (7) and (8) use auxiliary information and

are therefore expected to be more accurate than (3). In our simulation study, we considered

the worst-case scenario when the proposed estimators are based upon the Hájek-‘type’
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distribution function bFFpðtÞ defined by (3). In terms of simplicity, the proposed estimators

should be obviously based upon (3).

The simulation study is based on several populations which are briefly described as follows.

The sugar population consists of N ¼ 338 sugar cane farms where y denotes the gross value of

canes and x is the total cane harvested. The sugar population was used by Chambers and

Dunstan (1986), Rao et al. (1990) and Silva and Skinner (1995). The population of

municipalities (Särndal et al. 1992, 652) consists of N ¼ 284 municipalities, where the

variable of interest is the population size of the municipalities in 1985. We considered two

auxiliary variables: (i) the number of conservative seats in municipal council (population

MUN-1); and (ii) the total number of seats in municipal council (population MUN-2). We

considered the Hansen et al. (1983) population (population HMT), which is N ¼ 14,000 units

generated from a bivariate gamma population (see also Rao et al. 1990). Finally, the last

population is based on a random subset of N ¼ 2,000 individuals from the 2012 Spanish

Statistics on Income and Living Conditions (ES-SILC) Survey (Eurostat 2012). The ES-SILC

provides information on income, poverty, social inclusion and living conditions for a sample

of households and individuals. We considered the equivalised net income as the variable of

interest and the tax on income contributions as the auxiliary variable. A brief descriptive

analysis of the various populations is given in Table 1.

For each simulation, 1,000 samples were selected to compute the empirical relative bias

RB ¼ ðE½bYYa�2 YaÞ=Ya and the empirical relative root mean square error RRMSE ¼

MSE½bYYa�
1=2=Ya of an estimator bYYa, where E½�� and MSE½�� denote respectively the

empirical expectation and mean squared error. Simple random sampling and stratified

random sampling were used to select the samples. The population quantiles Y0.05, Y0.25,

Y0.5, Y0.75, and Y0.95 are the parameters of interest.

Table 2 reports the empirical relative bias (RB) under simple random sampling. The

RBs of the proposed estimators are of a reasonable range compared with the RBs of the

alternative estimators, which can be larger than 10 percent in some cases. With the MUN-1

and MUN-2 populations, some estimators of Y0.25 can have a large positive RB. Note that

the proposed estimators tend to have large RB when the skewness of y is large and a is

small or large. With a ¼ 0.05 or 0.95, the proposed estimators and the alternative

estimators can have large positive RB, especially when a ¼ 0.95. For example, this is the

case of the estimator bYYcal;a for the Sugar, MUN-1 and MUN-2 populations and when

a ¼ 0.95. The simulation results indicate that the estimator bYYcal;a can be severely biased.

The estimators bYYw;a and bYYp;a have similar RBs. Studies from the existing literature

Table 1. Descriptive statistics of the variables of interest of the populations considered: r is the population

correlation coefficient between y and x, r * is the population correlation coefficient between y * and x *, and gy and

gx are respectively the population skewness coefficients of y and x.

Pop. Y0.05 Y0.25 Y0.5 Y0.75 Y0.95 r r* gy gx

Sugar 34886 57585 80009 117159 204745 0.89 0.84 2.4 2.3
MUN-1 6 10 16 31 84 0.61 0.70 8.2 1.2
MUN-2 6 10 16 31 84 0.69 0.87 8.2 1.4
ES-SILC 13368 17970 22000 27700 42524 0.69 0.62 1.8 3.1
HMT 0.55 1.25 2.23 3.86 7.53 0.76 0.78 2.0 1.4
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(Dorfman 2009) indicate that the Chambers and Dunstan estimator, bYYcd;a, can have a large

bias. This estimator is based on a superpopulation model. Dorfman (2009) indicates that

when the superpopulation model holds, this estimator tends to be very accurate. When the

super population model does not hold, the estimator has an inevitable bias. This is the

reason why we observe a large RBs for this estimator in Table 2. The large RB corresponds

to situations when the superpopulation model does not hold.

The efficiency of the estimators is measured by the empirical relative root mean square

errors (RRMSE) which are reported in Table 3. We observe that the proposed estimators

perform well in all situations expect when a ¼ 0.95. However, we observe that the

alternative estimators also have large RRMSE in this situation. Note that the proposed

estimators are based upon the Hájek distribution function (3). We notice a clear

Table 3. RRMSE (%) of estimators of Ya under simple random sampling.

Population a bYYp;a
bYYw;a

bYYcd;a
bYYps;a

bYYrkm;a
bYYreg;a

bYYr;a
bYYcal;a

bYYregS;a

Sugar 0.05 17.7 17.7 15.0 18.2 16.4 18.1 16.6 17.8 18.6
(n ¼ 30) 0.25 11.6 12.5 6.6 9.7 9.2 9.3 10.7 9.4 9.4

0.50 12.0 11.2 9.8 9.6 9.3 9.4 10.6 10.4 10.5
0.75 14.3 13.1 15.3 10.9 10.3 11.4 11.2 12.6 12.5
0.95 26.0 22.1 54.9 27.8 31.7 42.6 17.8 35.3 51.3

Sugar 0.05 13.8 13.1 12.9 12.5 12.2 12.1 14.0 12.6 12.9
(n ¼ 60) 0.25 8.2 8.0 4.6 6.2 6.2 6.3 7.7 6.2 6.4

0.50 8.3 7.6 6.0 6.5 6.1 6.2 7.3 7.0 7.1
0.75 8.9 7.7 7.3 6.4 5.9 6.6 7.0 6.9 6.8
0.95 12.4 12.0 29.0 14.3 13.7 18.2 12.9 27.1 28.1

MUN-1 0.05 19.5 19.5 33.3 17.8 19.1 18.3 25.9 18.2 18.7
(n ¼ 50) 0.25 12.2 12.1 13.3 14.0 12.0 14.0 18.7 15.8 18.4

0.50 14.8 15.5 34.7 15.2 13.3 13.3 14.1 14.4 13.0
0.75 17.1 15.3 29.5 14.9 12.4 17.8 14.0 14.4 13.5
0.95 29.6 29.4 55.7 33.8 38.7 52.7 29.2 92.4 92.2

MUN-2 0.05 18.6 18.6 21.4 22.5 18.2 17.3 18.2 19.4 16.8
(n ¼ 50) 0.25 12.7 12.7 23.8 23.0 11.1 13.8 12.9 25.7 19.1

0.50 14.4 14.9 22.5 26.1 12.3 11.9 12.4 12.6 11.0
0.75 16.7 16.3 15.4 26.0 13.2 12.1 13.1 32.6 15.3
0.95 28.0 28.0 26.7 77.9 28.0 58.4 23.7 76.9 83.7

HMT 0.05 11.7 11.5 55.1 11.3 12.1 11.4 19.6 11.8 12.7
(n ¼ 200) 0.25 8.0 7.6 6.0 6.5 6.2 6.5 7.7 8.0 6.9

0.50 7.5 6.8 11.2 5.9 5.8 5.9 6.4 7.5 6.3
0.75 7.2 6.3 11.9 5.7 5.5 5.7 6.4 7.2 6.1
0.95 9.9 9.1 11.9 9.6 8.9 9.9 9.3 9.9 11.0

ES-SILC 0.05 8.3 8.1 11.4 7.8 7.8 7.9 8.4 8.1 9.1
(n ¼ 100) 0.25 3.7 3.6 4.4 3.4 3.3 3.4 3.9 3.6 3.6

0.50 4.0 3.8 2.7 3.3 3.3 3.3 3.8 3.6 3.6
0.75 4.7 4.2 6.1 4.0 3.6 3.8 4.7 4.1 4.1
0.95 10.6 10.1 18.7 10.4 10.2 11.3 11.0 10.5 12.8
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improvement between the proposed estimators and the Hájek estimator (2), because the

RRMSEs of the proposed estimators are usually smaller than the RRMSEs of the Hájek

estimator bYYp;a. In other words, there is a clear improvement when using baareg instead of a,

except when a ¼ 0.95 and 0.25 with the MUN-1 and MUN-2 populations. The proposed

estimators can be more efficient than the alternative estimators, especially when a ¼ 0.50

and 0.75. We also observe that bYYreg;a is generally more efficient than bYYregS;a.

We also conducted another series of simulations using stratified simple random

sampling. The conclusions derived from this simulation study are similar. The results of

this simulation study are not presented in this article.

We now investigate the conditional relative biases of the proposed estimator bYYreg;a

given the sample means of the auxiliary variable. For this purpose, the 1,000 selected

samples were ordered according to the mean of the auxiliary variable. Then this ranking

was used to create 20 groups of 50 observations each. Conditional relative biases were

then obtained by calculating the RB for each of the 20 groups.

Figure 1 displays the conditional relative biases of the estimators of the first quartile under

simple random sampling from the Sugar population. We observe that the Hájek-type

estimator clearly exhibits the worst conditional performance with a linear trend as the group

mean of x increases. The conditional RB of the proposed estimator and the Rao et al. (1990)

estimator does not seem to be correlated with the group mean of x. The Rao et al. (1990)

estimator has a bias which is slightly smaller than the bias of the proposed estimator. Figure 2

displays the conditional relative biases of the estimators of the median under simple random

sampling from the MUN-1 population. The conditional relative bias of the proposed estimator

and the Rao et al. (1990) estimator does not seem to be correlated with the group mean of x.
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Fig. 1. Conditional relative biases (%) of estimates of Y0.25 under simple random sampling from the sugar

population when n ¼ 30.
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The proposed estimator is biased and bYYrkm;a is approximately unbiased. This explains

why bYYrkm;a shows under- and overestimation in Figures 1 and 2, otherwise bYYrkm;a would

not be approximately unbiased. We observe an overestimation for all groups of mean for

the proposed estimator, because this estimator has a small non-negligible bias.

The proposed transformation-based approach seems to perform well for estimating

the central quantiles. In particular, results derived from simulation studies indicate that the

proposed estimators have a good performance for the median. In this situation, the proposed

estimators clearly outperform the Hájek estimator, especially when the conditional bias is

taken into consideration. In addition, the proposed estimators perform well if they are

compared to the various existing methods. For instance, although the proposed estimators

can be slightly biased, they seem more efficient than the simpler alternatives bYYr;a (the ratio

estimator) and bYYcal;a (Harms and Duchesne 2006). The values of RRMSE of the proposed

estimators are comparable to the values of RRMSE of the more sophisticated estimator
bYYrkm;a (Rao et al. 1990). These conclusions hold also in the situation where only population

quantiles of the auxiliary variable are known. However, the proposed estimators can have

large biases for the tail quantiles, specially when a ¼ 0.95. In this situation, the Hájek

estimator appears more robust compared to all the more complex approaches.

5.1. Variance Estimation and Confidence Intervals

We propose to estimate the variance of the proposed point estimators using the rescaled

bootstrap variance estimator (Rao et al. 1992). Rao and Wu (1988) showed that the

rescaled bootstrap variance estimator is a consistent estimator for the variance when the
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Fig. 2. Conditional relative biases (%) of estimates of Y0.5 under simple random sampling from the MUN-1

population when n ¼ 200.
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sampling fraction is small. A confidence interval can be computed using the rescaled

bootstrap confidence interval (the histogram approach). In this section, we evaluate the

empirical performance of this variance estimator and this confidence interval. A set of

10,000 independent simple random samples were selected.

We used the ES-SILC and HMT populations defined in Section 5. In addition, we used

artificial populations with variables of interest generated from log-normal distributions.

Auxiliary variables correlated with the variable of interest are randomly generated. We

consider the following correlation coefficients: 0.5, 0.7 and 0.9. The sample size

considered is n ¼ 200. The sampling fractions considered are n=N ¼ 0:01; 0:014 and 0.05.

In Table 4, we have the empirical relative biases of the rescaled bootstrap variance

estimator. We observe larger relative biases when the sampling fraction is 0.05. The bias

does not seem to be affected by the correlation or the level a. In Table 5, we have the

Table 4. Empirical relative bias (%) of the rescaled bootstrap variance estimators under simple random

sampling when n ¼ 200. The column r gives the correlation between the auxiliary variable and the variable of

interest.

a ¼ 0.25 a ¼ 0.50 a ¼ 0.75

Population r
n

N
bYYreg;a

bYYregS;a
bYYreg;a

bYYregS;a
bYYreg;a

bYYregS;a

ES-SILC 0.69 0.01 8.0 7.3 12.6 9.5 18.0 18.9
0.05 13.3 11.7 24.4 23.8 14.8 11.9

Log-Normal 0.50 0.01 13.1 11.0 5.6 5.4 6.1 0.6
0.05 23.0 17.6 18.4 16.8 12.9 10.5

0.70 0.01 2.1 6.7 14.4 12.0 8.4 6.5
0.05 17.5 10.5 15.1 13.3 14.2 18.2

0.90 0.01 4.4 10.7 3.4 8.1 17.8 12.6
0.05 22.4 20.6 17.4 19.8 28.9 24.5

HMT 0.76 0.014 8.0 16.9 7.4 4.1 7.5 9.5

Table 5. Coverage rates (%) of the 95 percent rescaled bootstrap confidence interval (the histogram approach)

under simple random sampling when n ¼ 200.The column r gives the correlation between the auxiliary variable

and the variable of interest.

a ¼ 0.25 a ¼ 0.50 a ¼ 0.75

Population r
n

N
bYYreg;a

bYYregS;a
bYYreg;a

bYYregS;a
bYYreg;a

bYYregS;a

ES-SILC 0.69 0.01 94.6 94.7 93.8 93.7 94.5 93.9
0.05 94.6 94.9 95.8 95.9 95.1 95.2

Log-Normal 0.50 0.01 96.0 95.7 94.7 94.4 93.7 93.4
0.05 96.2 96.4 95.7 95.6 96.3 96.4

0.70 0.01 95.7 96.4 96.9 96.1 95.3 94.7
0.05 97.2 97.1 96.2 94.9 95.2 95.5

0.90 0.01 95.4 96.0 94.2 94.9 96.4 95.7
0.05 95.7 95.5 96.0 96.4 95.3 95.8

HMT 0.76 0.014 93.3 94.8 94.3 93.5 94.6 94.3
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observed coverage rates of the 95 percent rescaled bootstrap confidence interval. All the

coverages observed are close to the nominal level of 95 percent. Based on this limited

simulation study, it seems preferable to consider bootstrap confidence intervals rather than

bootstrap variance, when measuring the accuracy of the proposed estimators.

6. Discussion

The proposed estimators are based on a regression estimator of the population mean,

which is a technique widely used with survey data. The proposed approach can be applied

to many standard surveys. It can be implemented with multistage sampling designs, as the

proposed estimators are based upon first-order inclusion probabilities and a regression

estimator. Alternative estimators proposed by Chambers and Dunstan (1986) and Rao et al.

(1990) can be slightly more accurate than the proposed estimators. However, in order to

compute these alternative estimators, it is necessary to know the auxiliary variable for the

entire population. The Rao et al. (1990) estimator also requires the joint inclusion

probabilities, which can be unknown. The proposed estimators are computationally

simpler because they are free of joint inclusion probabilities, they are based on a regression

estimator and they can be computed when the auxiliary variable is unknown for the

nonsampled units. When the joint inclusion probabilities are known, the accuracy of the

proposed estimators can also be improved by inverting the Rao et al. (1990) estimator of

the distribution function (or any other estimators) rather than the Hájek-type estimator of

the distribution function.

We have considered a regression estimator to take the auxiliary information into

account. Other type of estimators based upon auxiliary information (Huang and Fuller

1978:, Deville and Särndal 1992) can also be used instead of a regression estimator.

The proposed estimators can also be generalised to several auxiliary variables, since a

regression estimator can be easily extended to accommodate this situation. In this article,

the auxiliary variables are used to calibrate toward a population mean. This approach can

be extended to calibration towards more complex population quantities such as means,

quantiles, or variances (e.g. Owen 1991, Chaudhuri et al. 2008, Lesage 2011).

Chen and Wu (2002) proposed a pseudoempirical likelihood approach for estimating

quantiles with auxiliary variables. Berger and De la Riva Torres (2015) proposed an

empirical-likelihood approach for estimating quantiles with auxiliary variables. Empirical

(and pseudoempirical) likelihood approaches are well suited for the estimation of quantiles

with auxiliary variables, especially for the calculation of confidence intervals. It would be

interesting to investigate how an empirical-likelihood approach could be used to derived

confidence intervals for the proposed approach.

Appendix A: Proof of Lemma 1

We have that

Y
*
a ¼

1

N i[U

X
y*
a;i ¼

1

N i[U

X
f21ðF +ð yiÞÞ þ zk; ð24Þ

F +ð yiÞ ¼ Ri; ð25Þ
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where Ri ¼ N 21ðrankð yiÞ2 0:5Þ and rankð yiÞ is the rank of observation yi in the

population and f21ð�Þ is the quantile function of a N(0, 1) distribution. By substituting (25)

into (24), we have that

Y
*
a ¼

1

N i[U

X
f21ðRiÞ þ zk ¼

1

N
ðS,0:5 þ S.0:5 þ S0:5Þ þ zk ð26Þ

with

S,0:5 ¼
i[U

X
f21ðRiÞdðRi , 0:5Þ;

S.0:5 ¼
i[U

X
f21ðRiÞdðRi . 0:5Þ;

S0:5 ¼
i[U

X
f21ðRiÞdðRi ¼ 0:5Þ:

It is clear that S0:5 ¼ 0. Consider a unit i such that rankð yiÞ , ðN þ 1Þ=2. This implies that

Ri , 0:5. Thus

S,0:5 ¼
r,ðNþ1Þ=2

X
f21ððr 2 0:5Þ=NÞ; ð27Þ

S.0:5 ¼
r,ðNþ1Þ=2

X
f21ððN 2 r þ 1 2 0:5Þ=NÞ

¼
r,ðNþ1Þ=2

X
f21ð1 2 ðr 2 0:5Þ=NÞ: ð28Þ

Substituting (27) and (28) into (26), we obtain

Y
*
a ¼

1

N
r,ðNþ1Þ=2

X
f21ððr 2 0:5Þ=NÞ þ f21ð1 2 ðr 2 0:5Þ=NÞ
� �

þ zk: ð29Þ

As the normal distribution is symmetric, we have that f21ð pÞ ¼ 2f21ð1 2 pÞ. Hence the

sum in (29) equal zero. This implies that

Y
*
a ¼ zk: ð30Þ

As F +ðYaÞ ¼ N 21ðrankðYaÞ2 0:5Þ, rankðYaÞ ¼ daNe, and k ¼ N 21ðdaNe 2 0:5Þ, we have

that

F +ðYaÞ ¼ k: ð31Þ

We also have that

F +ðYaÞ ¼ fðf21ðF +ðYaÞÞÞ ¼ fðCðYaÞÞ: ð32Þ

Equations (31) and (32) imply that

fðCðYaÞÞ ¼ k: ð33Þ
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As zk is the kth quantile of a normal N(0, 1) distribution, we have that fðzkÞ ¼ k, which

combined with (33) gives

fðzkÞ ¼ fðCðYaÞÞ�

The last expression implies

zk ¼ CðYaÞ; ð34Þ

as fð�Þ is a bijective function. Combining (30) with (34), we have that CðYaÞ ¼ Y
*
a.

The Lemma follows.

Appendix B: Proof of Theorem 1

As fð�Þ is twice differentiable, a first-order Taylor expansion implies that

f �y*
reg;a

� �
2 f Y

*
a

� �
¼ �y*

reg;a 2 Y
*
a

� �
f Y

*
a

� �
þ Op �y*

reg;a 2 Y
*
a









2

� �
; ð35Þ

where f ð yÞ is the density of a N(0, 1) distribution. Equation (30) implies that

f Y
*
a

� �
¼ fðzkÞ ¼ k. Thus, as k ! a as N ! 1, limN!1f Y

*
a

� �
¼ a and we have that

fð�y*
reg;aÞ2 a ¼ �y*

reg;a 2 Y
*
a

� �
f Y

*
a

� �
þ Opðn

21Þ; ð36Þ

because �y*
reg;a 2 Y

*
a ¼ Opðn

21=2Þ.

As Q(a) is twice differentiable, a first-order Taylor expansion implies that

Q f �y*
reg;a

� �� �
2 QðaÞ ¼ f �y*

reg;a

� �
2 a

� �
Q 0ðaÞ þ Op f �y*

reg;a

� �
2 a









2

� �
;

where Q0ðaÞ ¼ ›QðaÞ=›a. Assumption (22) and (36) imply that

Q f �y*
reg;a

� �� �
2 QðaÞ ¼ �y*

reg;a 2 Y
*
a

� �
f Y

*
a

� �
Q 0ðaÞ þ Opðn

21Þ; ð37Þ

as f Y
*
a

� �
is bounded. Using assumption (23), Equation (37) implies that

bFF+21 f �y*
reg;a

� �� �
2 bFF+21ðaÞ ¼ �y*

reg;a 2 Y
*
a

� �
f Y

*
a

� �
Q 0ðaÞ þ Opðn

21Þ: ð38Þ

As bFF+21 f �y*
reg;a

� �� �
¼ bYYreg;a and bFF+21ðaÞ ¼ bYYa, equation (38) becomes

bYYreg;a ¼ bYYa þ �y*
reg;a 2 Y

*
a

� �
f Y

*
a

� �
Q 0ðaÞ þ Opðn

21Þ

which implies

bYYreg;a 2 Ya ¼ bYYa 2 Ya þ �y*
reg;a 2 Y

*
a

� �
f Y

*
a

� �
Q 0ðaÞ þ Opðn

21Þ:

Thus, the last expression combined with the conditions (21) and (22) implies that

jbYYreg;a 2 Yaj ¼ Opðn
21=2Þ.
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