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Statistical agencies often collect sensitive data for release to the public at aggregated levels in
the form of tables. To protect confidential data, some cells are suppressed in the publicly
released data. One problem with this method is that many cells of interest must be suppressed
in order to protect a much smaller number of sensitive cells. Another problem is that the
covariates used to aggregate and level of aggregation must be fixed before the data is released.
Both of these restrictions can severely limit the utility of the data. We propose a new
disclosure limitation method that replaces the full set of microdata with synthetic data for use
in producing released data in tabular form. This synthetic data set is obtained by replacing
each unit’s values with a weighted average of sampled values from the surrounding area.
The synthetic data is produced in a way to give asymptotically unbiased estimates
for aggregate cells as the number of units in the cell increases. The method is applied to the
U.S. Bureau of Labor Statistics Quarterly Census of Employment and Wages data, which is
released to the public quarterly in tabular form and aggregated across varying scales of time,
area, and economic sector.

Key words: Cell suppression; contingency tables; synthetic data; confidentiality; multiple
imputation; nearest neighbor.

1. Introduction

Statistical agencies often collect data under a confidentiality agreement and are bound

to protect the identity and/or the provided information of individual respondents.

To accomplish this, a disclosure limitation method (DLM) is chosen to protect the

sensitive data while allowing the provided data set to retain as much of the utility of the

original data as possible. Because quantifying the level of protection and the utility a given

DLM provides is difficult (Lambert 1993), comparing DLMs (and thus choosing a

method) is not straightforward. Indeed, the level of protection offered by a DLM usually

depends on characteristics of the data being published and is usually only quantified with

certain restrictions on how the data can be accessed (see, for example Wasserman and

Zhou 2010). Measures of the utility, on the other hand, often depend on the intended

purpose of the data.
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Sometimes, the sensitive information is collected with the intent to provide data only at

certain aggregated levels in a way that still protects the sensitive data. For instance, income

may be collected at the household level, while only the mean wages by geographic

location such as state or county are reported; or an individual’s opinion on a given topic is

collected, but only percentages by gender and age category are reported.

When disseminating the data through published tables, cell suppression (CS) is one

DLM that is often used by statistical agencies to protect the data of individual respondents.

This method requires that cell entries deemed risky be withheld (usually because they

represent only a few units or have estimates dominated by one or two large units).

Protecting the privacy of responders using CS comes at the cost of withholding values of

aggregated cells for which the data was intended to provide information. Often, this results

in statistics for the gross aggregates being published, while more refined aggregates are

suppressed. Depending on the sample size and level of refinement desired, this usually

leads to tables with many holes, reducing the utility of the published data. In addition to the

holes in the table resulting from the cell suppressions, CS requires an even larger number

of secondary cell suppressions when the data is published as hierarchical contingency

tables with more than one dimension.

Take, for example, complex data releases such as the Quarterly Census of Earnings

and Wages (QCEW) published by the Bureau of Labor Statistics (BLS). The QCEW aims

to provide time-series data with multiscale aggregations (by area and industry

classifications). In order to protect against disclosure risks that arise from additive

relationships within a table, additional (secondary) cell suppressions are required. Cox

(1995) provides background on secondary cell suppressions and a solution to the problem

of selecting these cells. Though these secondary suppressions are necessary, they further

reduce the utility of the provided data. Over sixty percent of the possible QCEW table cells

are suppressed.

Additionally, assuming that all of the risks of disclosure are accounted for through

primary and secondary cell suppressions is problematic. For example, the BLS

consistently applies both primary and secondary cell suppressions, yet additional risks still

arise from the additive relationships in the table along with serial correlation. Holan et al.

(2010) showed that it was possible to impute many of the suppressed values within one

percent accuracy. Their approach takes advantage of the additive relationships of the

QCEW tables (multiscale aggregations) and the serial correlation of the longitudinal data.

Another limitation of the CS method is that the cells defined by the published

contingency tables must be fixed by the statistical agency in advance. This limits the

potential utility of the data by preventing the release of different cells when other variables

are available for further conditioning. For example, an agency may release tables of wages

aggregated across only industry and occupation while area data is also available.

For these reasons, the BLS has considered replacing CS with another method for

protecting the data (Yang et al. 2012). Any chosen DLM would have to protect the

sensitive values (employment count and wages) while allowing for the publishing

of total estimates for cells defined by industry, area, and ownership. The published

estimates for the main cells with high-level of aggregation should be close to the true

collected totals, while sufficiently protecting cells representing few establishments.

Ideally, the new method would not require any cell suppressions and would allow
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estimates for user-defined cells. In addition, the employment and wage trends, which

are very important for users of QCEW data, would be preserved by the estimates

obtained from the new method.

One way to accomplish this might be to use a synthetic data approach on the microdata

where the synthetic data is generated from random draws from a specified distribution.

Using synthetic data to deal with disclosure limitation was proposed by Rubin (1993).

Using a synthetic approach, the agencies can provide (or allow users to produce) any

requested slice of the data, allowing them to produce any contingency table, without fear

of disclosing confidential information.

Fully synthetic data approaches usually focus on trying to produce a data set with a

distribution that matches the distribution of the observed microdata as closely as possible

in order to allow valid inference while protecting sensitive information. A model is

estimated using the sampled data and then values for the entire population (including

sample values) are produced using draws from the estimated model distribution. The data

obtained for either the entire population or for a sample from these random draws

is released to the public (Reiter 2002; Reiter 2004; Reiter and Raghunathan 2007; and

Graham et al. 2009).

Since the identity of units contained in the sample is generally unknown, the synthetic

values could be as close to the true values as possible without risk of disclosure. However,

the QCEW is a census of establishments, the location and identity of most establishments

is already public knowledge, so the chosen DLM will have to protect the data without the

benefit of anonymity. Because all population values are known, a model could be obtained

that produces synthetic values very close to the true values, providing good utility, but not

much protection. In addition, these synthetic approaches have the potential to impose

associations between the data that do not exist, while reducing or eliminating legitimate

associations (Graham et al. 2009). Eliminating this possibility or even the perception of

this possibility is a major concern for the production of official statistics.

A related approach is to instead publish the true values with values masked by adding

a random noise factor (Fuller 1993; Evans et al. 1998). A complication to applying this

approach to establishment data is that the distribution of establishment wages and

employment are extremely skewed, making it impossible to use the same noise factor for

all establishments. Yang et al. (2012) determine that it is not possible to directly apply a

standard noise model of Evans et al. (1998) to the QCEW data because of the inherent

skewness of establishment data. In an attempt to modify the method, they propose three

different noise factors (multiplicative as well as additive). Unlike the original method of

additive noise, this new procedure results in biased marginal totals. To correct for this, a

raking procedure is used to guarantee unbiased marginal totals. The cumulative effect of

these adjustments on each value becomes unclear and could potentially result in removing

the noise from some sets of establishments.

We propose a simple, more specialized DLM (data smearing), which is guaranteed to

protect an individual’s sensitive data by replacing it with an average value of surrounding

units. This allows users to obtain aggregated estimates for any cell, which under a set

of given conditions is shown to be asymptotically consistent. To accomplish this, the

proposed method relies on a sampling scheme and a weighted estimator to divide the data

for a sampled unit among its nearest neighbors. Essentially the method acts to “smear” the
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data of each unit around an “area” defined by a unit’s characteristics so that each

individual unit’s data is replaced by data that represents an area’s average.

Advantages of this method include those of the synthetic approaches since all microdata

values will be replaced, without the risk of disclosure or inducing nonexistent relationships

among variables. However, the data released under this method no longer represents the

microdata, but instead an average of the data of surrounding units, so the data no longer

has the distribution of the original data but can be used only for providing statistics that are

functions of totals.

The remainder of the article is organized as follows. Section 2 presents the proposed

method and contains a discussion of some properties of the method. Section 3 contains

results from an application of the method to QCEW microdata, while Section 4 includes

a discussion of the results and mentions future areas of research.

2. The Proposed Disclosure Limitation Method

Suppose a data set consists of elements ui ¼ ðYi;XiÞ and is indexed by the set

U ¼ {i ¼ 1: : :N}, where Yi are the protected variables and Xi is a vector of unprotected

auxiliary data. We assume these vectors include the data used to form cells of a table for

release to the public. For example, the sensitive variables in the QCEW are the total

employment and total wages paid, while the auxiliary information includes the

establishment’s industry and geographic location.

In this article, we assume that Yi contains the sensitive information of the i-th unit.

Since QCEW represents a census of establishments, the establishment’s identity and

inclusion in the sample must be considered known. Therefore a disclosure limitation

procedure for the QCEW must account for this. This is in contrast to the situation of

protecting sample data, where a disclosure limitation procedure can often exploit the fact

that the identity of units that have been included in the sample is unknown. Therefore,

sensitive sample data can be released for an individual unit as long as there are enough

units in the population with similar characteristics to mask their identity or if

characteristics are changed slightly.

2.1. Description of the Method

The first step in the procedure, is to define a metric k�k on the data elements which will

determine the distance between each unit dðui; ujÞ ¼ kui 2 ujk. We use this distance

function to find the k-nearest neighbors for each element in the population. In case of ties,

we include a small real-valued noise variable to be used in the distance function. These

neighbors define the units the method will use to select a sample in order to produce

an average value. A neighborhood is found for each unit in the population. Neighborhoods

are defined so that the units contained within them are likely to be included in the

aggregate cells to be produced from the estimates. For example, the metric may include

geographic location and industry when applying the procedure to business surveys.

Dummy variables are used to handle categorical variables like industry and political

borders by assigning “penalties” to units not in the same category. For instance, one could

add a n-mile “penalty” to the geographic distance between units that are not in the same

state. That is, if statei is the state in which unit i is located and geoðui; ujÞ is the geographic
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distance between units i and j in miles, then the distance between units i and j defined by

the metric is

dðui; ujÞ ¼ geoðui; ujÞ þ n {statei–statej}

where {�} is the indicator function and n [ ½0;1Þ. A value of n , 1 would allow the

“smearing” over categories while n ¼ 1 would require that neighbors be in the same

category.

The next step of the procedure is to find the k-nearest neighbors for each unit. That is,

for each i [ U, define ri as the smallest real number such that the set

{j – i [ U j kuj 2 uik # ri}

has k elements. Note that ri exists for every i [ U, as long as k # N, and we assume that in

most practical situations k ,, N. We define Kði Þ as the k-nearest neighborhood of unit i,

Kði Þ ¼ {j – i [ U j kuj 2 uik # ri}:

To make sure that the data for each element is spread out among enough other units,

we extend the k-nearest neighborhood K(i ) to be the k-network, Kði Þ, defined by also

including every unit j for which unit i is a k-nearest neighbor. Formally,

Kði Þ ¼ Kði Þ< {j j i [ Kð jÞ}:

Figure 1 illustrates why extending the network could be necessary for some

establishments. In this example, units j, k, and l are in K(i ), but i is not in K( j ), K(k),

or K(l ). In fact, there are no units in the population shown that contain unit i in their

k-nearest neighborhood. The completed network ensures that the information of unit i gets

represented in the other synthetic units produced by the method.

For each i [ U, draw a random sample of size n # k from unit i 0s network, Kði Þ. For

example, for the applications of the method in this article, we used a simple random

sample without replacement (SRSWOR). Let djði Þ ¼ 1 if unit j is selected in the sample

from Kði Þ which will be used to protect element i, and 0 otherwise. To produce a fully

synthetic data set, we replace Yi for each unit i [ U with the weighted average

~Yi ¼ wiYi þ

j[Kði Þ

X
wjdjði ÞYj; ð1Þ

i

j

k
l

Fig. 1. Illustration shows K(i ), the k-nearest neighbor of unit i in the population, where k ¼ 3.
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for a given fixed set of weights {wi j i [ U}. The properties of the method depend on the

choice of weights. We will present a choice of weights which are shown to produce

asymptotically consistent estimates for cells satisfying certain conditions.

Note that the sampling is done to give an extra level of protection by not allowing users

to guess the members included in the unit’s network; however if the network is defined

large enough, this would not be necessary. Instead, defining the synthetic value as a

weighted average of every unit in the network would remove this uncertainty from the

synthetic value. Another way to remove some of this uncertainty is to produce a number

(m . 1) of synthetic values for each unit i ð ~Yi1; ~Yi2; : : : ; ~YimÞ independently and use the

average of these as the synthetic value

~Yi ¼
ð ~Yi1 þ ~Yi2 þ : : :þ ~YimÞ

m
: ð2Þ

Alternatively, the multiple sets of imputed values can be released directly to allow the

user to estimate the variance of any estimates produced using the synthetic value. By

releasing multiply-imputed synthetic values for each establishment, the agency would

be giving a data user some indication of the reliability of each estimate being produced.

In addition, a referee pointed out that the variance of the synthetic values could be

controlled by defining ~Yi ¼ aYi þ ð1 2 aÞ �Yi. This would give the data providers another

option to provide more accurate estimates, and all the consistency properties described

below hold for synthetic values defined this way or by Equations (1) or (2). However, a

would have to be chosen carefully to balance the added utility with a loss of protection.

2.2. Properties of the Method

The required aggregated data for the released tables are produced using these

new synthetic values. The differences in the values and the properties of the synthetic

data that is produced depend on the distance function defined by the agency and the

moment structure of Yi in the k-nearest networks. Therefore, the protection that is

afforded the individual units depends on the distance function and the set of networks

it produces. The protection also depends on the other parameters of the method,

including the value of k, the size of the sample n selected from the k-networks, and the

set of weights.

Now we define the notation used to investigate some of the theoretical properties of

the synthetic data produced by the proposed method. First, define any subset of units

C # U to be a closed area if it is equal to

�C ¼
i[C
< Kði Þ: ð3Þ

The circle in Figure 2 displays a hypothetical user-defined area that is an example of a

closed area. Note that given any subset C, there exists a closed area that contains C. We

will use �C to denote the smallest of these.

Let jKði Þj denote the total number of units in Kði Þ. The following property of the

method states that if we define the weights in Equation (1) correctly, then the cells in

the table will be unbiased for large enough levels of aggregation. That is, the expected

value of the aggregated value of a cell produced from the synthetic values will be equal
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to the aggregated value of the cell using the original microdata, if the cell defines a

closed network using the given distance function. The original microdata are considered

fixed values and the expectation is with respect to the random samples from the

k-networks.

The number of times a given unit’s value is used to produce different synthetic values

depends on the size of the unit’s network and the probability of selection used in the

sampling process. With this in mind, we show in the next result, that if we select a weight

for each unit that is the inverse of the expected number of times the unit’s value will appear

in other synthetic values, then we will get unbiased cell totals for those cells defined by

closed networks.

Lemma 2.1 If a cell C is a closed area and the weights, wi used in Equation (1) are

defined as

wi ¼ 1þ n

j[Kði Þ

X 1

jKð jÞj

0

@

1

A
21

; ð4Þ

Fig. 2. Illustration with hypothetical establishments in a given location and the k-nearest network that would

result from these establishments if k ¼ 2. The circle representing a selected area is an example of a closed area.

Every establishment in the closed k-network is included in the selected area.
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then the synthetic data produced from the method satisfies

E
i[C

X
~Yi

2

4

3

5 ¼
i[C

X
Y i:

Proof

From Equation (1)

i[C

X
~Yi ¼

i[C

X
wiYi þ

i[C

X

j[Kði Þ

X
djði ÞwjYj: ð5Þ

Note that for any i and j if j [ Kði Þ, then i [ Kð jÞ, by the definition of a nearest

network. Also, since C is a closed area, if i [ C, then for all j [ Kði Þ, j [ C. Therefore,

we can re-write the sum in Equation (5) as

i[C

X
~Yi ¼

i[C

X
wiYi þ

i[C

X

j[Kði Þ

X
dið jÞwiYi ¼

i[C

X
1þ

j[Kði Þ

X
dið jÞ

0
@

1
AwiYi:

Since each sample from the k-networks is drawn using a SRSWOR,

E½dið jÞ� ¼ njKð jÞj
21
;

so the expectation of Equation (5) is

i[C

X
1þ

j[Kði Þ

X
E½djði Þ�

0
@

1
AwiYi ¼

i[C

X
1þ n

j[Kði Þ

X 1

jKð jÞj

0
@

1
AwiYi:

The proof follows by substituting Equation (4) for wi.

A

Note, that if the neighborhood of unit i does not contain any units that have an extended

neighborhood, then ;j [ Kði Þ; jKð jÞj ¼ k. This means that the weight for unit i given by

Equation (4) is simply 1=ðnþ 1Þ.

The result of Lemma 2.1 applies only to table cells that are closed areas. In general

we can expect that many cells of interest will not necessary be closed areas. The next

result states that we can still expect to obtain reasonable estimates for any area as long as

most of the data of the area being estimated are contained in a closed area.

Define the boundary of area C as the set ›C ¼ C 2 C. This is the set of elements that

contribute information to the estimate of area C, but are not located in the area. Property

2.1 states that the ratio of the area total estimated using the synthetic data over the total

estimated using the real data asymptotically goes to one as long as the data in the interior

of the area of interest increases sufficiently fast compared to the data in the boundary.

Property 2.1 Assume jYi 2 E½ ~Yi�j , M , 1 for all i. If j›ðCÞj ¼ oð
P

i[C Y iÞ and

that the weights are defined by Equation (4), then the synthetic data produced from the
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method satisfies

jCj!1
lim

i[C

X
Y i

0
@

1
A

21

E
i[C

X
~Yi

2
4

3
5 ¼ 1:

Proof By the definition of the boundary and Lemma 2.1

E
i[C

X
~Yi

2
4

3
5 ¼ E

i[C

X
~Yi

2
4

3
52 E

i[›C

X
~Yi

2
4

3
5

¼

i[C

X
Yi 2 E

i[›C

X
~Yi

2

4

3

5 ¼
i[C

X
Yi þ

i[›C

X
Yi 2 E

i[›C

X
~Yi

2

4

3

5

¼
i[C

X
Yi þ

i[›C

X
Yi 2 E½ ~Yi�
� �

:

Since

i[›C

X
Yi 2 E½ ~Yi�
� �

# Mj›Cj

we can divide by
P

i[C Yi to get the result.

A

Figures 3 and 4 give examples of two different user-defined areas. Figure 3 is an

illustration of an area that is likely to satisfy the condition j›ðCÞj ¼ o
P

i[C Yi

� �
. On the

other hand, the area shown in Figure 4 has a boundary that would likely grow faster than

the contained area as the area expands. The difference is that the first area is a sphere in the

coordinates used to define the metric whereas the second area is a very elongated shape

with respect to those coordinates.

3. Application to QCEW Data

The Bureau of Labor Statistics (BLS) Quarterly Census of Employment and Wages

(QCEW) program aims to publish a near census of wage and employment data for every

industry at the national, state, county and metropolitan statistical area (MSA) levels.

Industry is defined by the establishment’s assigned six-digit code from the North

American Industrial Classification Systems (NAICS). The codes are organized

hierarchically, where higher digit codes aggregate to fewer digit codes. For instance,

the three-digit industry codes 423 (merchant wholesales, durable goods), 424 (merchant

wholesalers, nondurable goods), and 425 (electronic wholesale markets) aggregate to the

two-digit industry code 42 (wholesale trade).

The QCEW collects the number of employees on the payroll of an establishment each

month and the total payroll of an establishment every quarter. Every quarter, QCEW

publishes employment and wage data in tabular form aggregated across varying cells

defined by these location and industry categories. Less aggregated-level data can only be

published if disclosure restrictions are met. Currently, over 60% of the possible cells are
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suppressed as a result of the current use of CS as the DLM for QCEW. In addition,

requested aggregate estimates for areas not published cannot easily be accommodated

under CS without risk of disclosure. Using the proposed data smearing DLM, all currently

produced cells as well as any requested cells could be published with varying degrees of

accuracy without risk of disclosure.

Table 1 shows an example table of one month employment totals (second month of the

quarter) for four quarters of QCEW employment data. The table was produced for one

industry comprised of three sub-industries over a given MSA. The original QCEW table

(top) was produced using the original data for the given MSA for the three industries

and their aggregates. The table represents data for roughly 80, 2, and 58 establishments,

respectively, for the three industries each quarter.

The same table (bottom) was produced using synthetic values obtained from the data-

smearing method with parameter values of k ¼ 3, n ¼ 3, m ¼ 5. The method provided

synthetic data that produced a table with values close to the original (all within 1% of the

true values) for cells represented by more than two establishments and for the aggregate

series and the annual totals. Unsurprisingly, the cells that differ the most are for

the middle sub-series, which of course are composed of the smallest number of

establishments. This row would be suppressed under the CS method currently used

Fig. 3. The circle is an example of a selected area that is not closed but likely to satisfy the conditions of

Property 2.1. Though there is one establishment in the closed k-network that has been excluded from the selected

area, the number of establishments from the closed k-network that are included in the selected area are likely to

dominate the total estimate for the selected area.
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by the BLS. In addition, another row (probably row three) would be suppressed as the

secondary suppression.

The metric used to produce Table 1 used longitude and latitude of each establishment

to find the geographical distance geoð�Þ between establishments and the six-digit industry

classification code,
dðui; ujÞ ¼ geoðui; ujÞ þ n {ind6i–ind6j}; ð6Þ

where n ¼ 1, and ind6i is the six-digit industry code for establishment i. Defining the

metric in this way, we are forcing the algorithm to pair establishments with the same

industry classification in close geographic proximity to one another. This could also be

achieved by applying the algorithm to industries with the same six-digit industry code

separately and using only the geographical distance between establishments.

Next we illustrate the method by applying it to one month of QCEW employment

data for all (non-government-owned) establishments, over all industries, across the entire

country. Again we use parameter values of k ¼ 3, n ¼ 3, m ¼ 5, and the metric given by

Equation (6). The weights are defined by (4). As we mentioned earlier, the statistical

agency could produce multiple (m . 1) synthetic data sets for publication, but the results

Fig. 4. The selected area is an example of an area that is not closed and unlikely to satisfy the conditions of

Property 2.1 because the number of units in the network located outside the selected area is larger than the

number of units contained in the area. The values from the establishments in the closed k-network that have been

excluded from the selected area are likely to be at least of equal magnitude to the values from the establishments

that are included in the selected area. Therefore, the estimated total for the selected area could be biased using

the synthetic data.
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below are focused on one synthetic data set using Equation (2), the average of the five

independent draws. A comparison of the true and the synthetic values presented in Figure 5

shows that synthetic values produced are highly correlated to the true values. The very

small values are inflated while larger values tend to be decreased by the method.

The data-smearing approach acts like a synthetic approach to disclosure limitation in the

sense that it replaces each value at the microlevel with a synthetic value. Unlike many

synthetic data approaches to disclosure limitation, this current method does not attempt to

match the distribution of the synthetic data to that of the original data. Because we are

replacing individual values with the mean value of a surrounding area, extreme values

are replaced by values closer to the middle of the distribution. Though the two distributions

are similar, this figure illustrates the tendency of the method to shift the true values toward

the mean. For instance, the new synthetic distribution has a smaller proportion of units with

the smallest value. As an example, Figure 6 displays the distribution of total employment

Table 1. Example of a 2010 QCEW employment table for one MSA for

establishments in a given industry code composed of three sub-series. The first

table (Top) was produced using the true values while the second table (Bottom)

used the synthetic values. Totals for each of quarter-1 through quarter-4 are

displayed for the series and each sub-series along with the annual totals. For this

MSA, the table is based on data from roughly 180, 2, and 58 establishments in the

three industrial sub-series, sub1, sub2, and sub3, respectively

Industry qrtr-1 qrtr-2 qrtr-3 qrtr-4 a-total

Series 1 2,600 2,899 3,022 2,599 11,120
Sub1 1,981 2,256 2,382 1,957 8,576
Sub2 32 33 37 33 135
Sub3 587 610 603 609 2,409

Industry qrtr-1 qrtr-2 qrtr-3 qrtr-4 a-total

Series 1 2,622 2,929 3,062 2,589 11,202
Sub1 1,989 2,271 2,420 1,947 8,627
Sub2 42 38 40 34 154
Sub3 591 620 602 608 2,421

Real

Sy
nt

he
tic

Fig. 5. Relationship between true values (x-axis) and synthetic values ( y-axis) with the line y ¼ x.
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for all establishments in the population in a specific industrial classification. As the

figure shows, the synthetic values do not have the same distribution as the real values.

Therefore, relying on individual microlevel data for statistical analysis would be very

problematic. This is as it should be, since we are protecting the individual values.

The choice of parameters, k, n, and m affects the level of protection as well as how

closely the synthetic values represent the real values. Larger k values will smear the value

of a given establishment over a wider area. The value of n, and more particularly n/k will

affect the variance between each of the m imputed values, with larger values giving

smaller variances. By using a large value for m (which we recommend) and the estimator

defined by Equation (2), this variance (and the protection derived from the sampling)

could be virtually eliminated. The data of individual units would still be protected as long

as n $ 2. A value of n $ 2 ensures that the data published for an individual establishment

will be the average of at least two other units. In our evaluations of the method, we found

that when using even moderate values of m, varying parameter values had a relatively

small impact on the overall estimates compared to changing the metric. We proceed by

investigating the impact of the metric on the method.

Using the synthetic values obtained from the smearing method, we computed

aggregated employment counts ej for every two, four, and six-digit industry level.

The metric given by Equation (6) was designed to give accurate answers for all industrial

classifications, so we would expect estimates of total employment aggregated by industry

classifications to be close to the true estimates. For each cell estimate produced, we

calculate the percent relative difference (PRD) 100 * ð~ei 2 eiÞ=ei between the synthetic

value ~ei and the true value ei.

Employment
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Fig. 6. Histogram of true (dark grey) and synthetic (light grey) employment values for establishments in a given

industry and state.
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Figure 7 displays boxplots of the PRD for each cell estimate over different quantiles of

cell sizes, where size is the number of establishments. The top graph gives the results for

the two-digit industry level aggregates, the middle graph shows the four-digit level and the

bottom graph the result for the six-digit level. As expected, the estimates produced using

the synthetic values are all close to the true cell totals. The cells aggregated to the two-digit

industry level are within 0.5% of the true value for all 24 cells. This is not surprising
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Fig. 7. Boxplots of the percent relative differences for the synthetic values of industry totals compared to the

true values. The boxplots are given for different quantiles of area size (number of establishments representing the

industry total). The top graph is of quantiles of errors for all the two-digit industry code totals, the middle graph is

of quantiles of errors for all four-digit industry code totals, and the bottom graph is for all six-digit totals. All

graphs represent percent relative errors for the synthetic values using the metric given by Equation (6).
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since the smallest cell size is 14,652 at this level of aggregation. However, the method

produced estimates close to the true values, even at the six-digit industry level of

aggregation. Indeed, 99% of the cells have less than a 4.5% difference. This is despite the

fact that the smallest 1% of the cells have fewer than 22 establishments.

The situation is very different however, when we consider cells aggregated by state

and industry. The top graph in Figure 8 shows the same boxplots of the PRD by quantile

of cell size for cells aggregated by state to the two-digit industry level. The cell

estimates are not nearly as good for state estimates, even at this high level of

aggregation. Though a handful of these cells have fewer than five establishments, 99%

have more than 18 so the method should be expected to produce reasonable estimates for

most of these cells.

Because state was not included in the metric, there is no penalty for choosing neighbors

that are across a state border. Therefore, it should be expected that many synthetic data

values represent averages of establishments over more than one state, which biases state-

level estimates. However, after adding state to the metric (6), the state-level estimates were

still not very good, even though the penalty was rather high (100 miles) for being in a

different state.

This is because of the hard restriction that the establishments in a neighborhood must all

be in the same industry to the six-digit level. At the six-digit level of aggregation more

than 18.1% of state industry cells have fewer than four establishments. This means that the

method is forced to use at least one establishment from another state to produce

the synthetic values for each of these cells (no matter how large the penalty). This biases

the estimates of both states.

Instead we replace the metric given by (6) with

dðui; ujÞ ¼ geoðui; ujÞ þ n1 {ind4i–ind4j} þ n2 {ind5i–ind5j} þ n3 {ind6i–ind6j}

þ n4 {statei–statej}; ð7Þ

where ðn1; n2; n3; n4Þ ¼ ð1; 50; 10; 100Þ, and indt is the tth-digit industry code. This new

metric replaces the hard restriction that all industries match to the six-digit level with one

at the four-digit level. In addition, there are 50 and ten-mile penalties for not matching at

the five and six-digit industry levels respectively. There is a 100-mile penalty for being in a

different state.

The percentage of state industry cells with less than 4 establishments drops from 18.1%

at the six-digit level to 7.4% at the four-digit level. Therefore, we would expect the values

given by the method using the metric (7) to continue to give accurate cell estimates

aggregated to the four-digit industry level, while giving improved state-level industry

estimates. The bottom graph in Figure 8 shows the same boxplots for cells aggregated by

state to the two-digit industry level as the top graph, but instead using this new metric. This

shows that the cell estimates for the state two-digit industry level are indeed improved;

95% of all the estimates are within 4% of the true value. There are still a number of

estimates that are significantly off, but this is to be expected given that there are a number

of small cells for some states even at the two-digit industry level.

Figure 9 gives the results for the same two, four and six-digit industry level

aggregates as Figure 7 for the new metric given by Equation (7). The results show that

the estimates for the two and four-digit industry level aggregates remain close to the
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true values under this new measure. However, as we would expect, since the penalty

for not matching industry code at the six-digit level is small, many of the estimates at

the six-digit industry level are no longer accurate. This demonstrates that the data

provider would only be able to give assurances for marginals being controlled for by

the metric. However, as long as the interior of the cells being estimated were large
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Fig. 8. Boxplots of the percent relative differences for the synthetic values of two-digit industry totals by state

compared to the true values. The boxplots are given for different quantiles of area size (number of establishments

representing the two-digit industry state total). The top graph is of quantiles of percent relative errors for the

synthetic values using the metric given by Equation (6) while the bottom graph uses metric given by Equation (7).
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compared to its boundary, the estimates produced should be increasingly accurate the

larger the cell, as stated in Property 2.1.

4. Discussion

We have introduced a new disclosure limitation method, “data smearing.” The method is

intended to allow the release of a synthetic data set that can be used to produce accurate

contingency tables while protecting the data of individual units. Though the method
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Fig. 9. Boxplots of the percent relative differences for the synthetic values of industry totals compared to the

true values. The boxplots are given for different quantiles of area size (number of establishments representing the

industry total). The top graph is of quantiles of errors for all the two-digit industry code totals, the middle graph

is of quantiles of errors for all four-digit industry code totals, and the bottom graph is for all six-digit totals.

All graphs represent percent relative errors for the synthetic values using the metric given by Equation (7).
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was demonstrated on census data in this article, the method will work equally well for

sample data.

Unlike other synthetic data approaches, the method focuses on producing accurate

contingency tables rather than trying to match the distribution of the original data. The

released data for each unit has the intuitive interpretation of representing the average value

for the units in the surrounding neighborhood. Neighborhoods are defined by the metric

chosen by the agency releasing the data and can be shared with the data users. Importantly,

the tables can be user defined after the data set has been released. Additionally, the data

from each unit is guaranteed to be protected in that the value assigned to every unit is the

average value of at least n þ 1 units.

We demonstrate the method using QCEW employment data using two different metrics.

One metric is defined to connect units within the same six-digit industrial classification

that are in close geographical proximity. The second metric tries to connect units within

the same state that are in close geographical proximity and have matching industrial

classification codes to at least the first four digits. The relative performance of the two

metrics shows that the accuracy of a contingency table produced using the synthetic data

from this method is highly dependent on the variables included in the metric.

The proposed DLM has performed well during the initial testing on the QCEW data set.

It has been shown to produce accurate aggregated cell estimates on cells for which the

metric was designed. However, this article attempts only to introduce the method. There is

much further testing to be done and properties of the method yet to be explored as well as a

number of possible extensions of the method. These and other questions are sure to be the

subject of future research.
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