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This article considers the familiar but very important problem of how to estimate the mean
squared error (MSE) of seasonally adjusted and trend estimators produced by X-11-ARIMA
or other decomposition methods. The MSE estimators are obtained by defining the unknown
target components such as the trend and seasonal effects to be the hypothetical X-11 estimates
of them that would be obtained if there were no sampling errors and the series were
sufficiently long to allow the use of the symmetric filters embedded in the programme, which
are time invariant. This definition of the component series conforms to the classical definition
of the target parameters in design-based survey sampling theory, so that users should find
it comfortable to adjust to this definition. The performance of the MSE estimators is assessed
by a simulation study and by application to real series obtained from an establishment
survey carried out by the Bureau of Labor Statistics in the U.S.A.
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1. Introduction

In this article, we consider estimation of the mean squared error (MSE) of seasonally adjusted

and trend estimators produced by X-11-ARIMA or other decomposition methods. In

particular, we compare the MSE of estimators obtained by application of X-11-ARIMA with

the MSE of estimators obtained by fitting state-space models that account for correlated

sampling errors. We define the target seasonally adjusted and trend components to be the

hypothetical X-11 estimates of those that would be obtained in the absence of sampling errors

and if the time series under consideration was sufficiently long for application of the

symmetric filters embedded in the original X-11 procedure, which are time invariant. This

definition of the component series conforms to the classical definition of target finite

population parameters in design-based survey sampling theory. In fact, in one variant of the

proposed definition, the target components are shown to be linear combinations of finite
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population means or totals. The MSE of X-11-ARIMA and state-space model estimators are

defined with respect to this definition.

We estimate the MSE by conditioning on the target components, thereby accounting for

possible conditional bias in estimating them. The results are illustrated by use of simulated

series and by application to real series obtained from an establishment survey carried out

by the Bureau of Labor Statistics (BLS) in the U.S.A. The latter results also contrast

the performance of our proposed MSE estimators with estimators proposed by Bell and

Kramer (1999).

2. Target Components, Bias and MSE of X-11-ARIMA Estimators

2.1. Target Components

We begin with the usual notion that an economic time series, Yt; t ¼ 1; 2; : : : can be

decomposed into a trend or trend-cycle component Tt, a seasonal component St, and an irregular

component It; Yt ¼ Tt þ St þ It. Here we consider the additive decomposition, but the results

of this article can be generalized to the multiplicative decomposition Yt ¼ Tt £ St £ It by

applying the log transformation and employing similar considerations to those in Pfeffermann

et al. (1995). In practice, it is often the case that the series Yt is unobserved and the available

series consists of sample estimates, yt, obtained from repeated sample surveys. Consequently,

the series yt can be expressed as the sum of the true population value, Yt, and a sampling error,

1t. More generally, the observed series can be viewed as the sum of a signal, Gt, and an error, et;

yt ¼ Gt þ et, where the signal, and hence the error, may be defined in two alternative ways:

GE1. Gt ¼ Tt þ St, et ¼ It þ 1t. In this case et is the combined error of the time series

irregular term and the sampling error (Pfeffermann 1994);

GE2. Gt ¼ Tt þ St þ It, et ¼ 1t. In this case the irregular term is part of the signal, and

et is the sampling error (Bell and Kramer 1999)

We assume without loss of generality that the series started at time 21 , tstart , 1, but

yt is only observed for the time points t ¼ 1; : : : ;N, such that

yt ¼ Gt þ et; t ¼

unobserved

tstart; : : : ; 0
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

;

yt observed

1; : : : ;N
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

;

unobserved

N þ 1; : : : ;1
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

It is assumed also that under both definitions of the signal, et is independent of G ¼

{Gt; t ¼ tstart; : : : ;1} for all t, with EðetÞ ¼ 0, VarðetÞ , 1, although in practice the

sampling error, and in particular the variance of the sampling error, sometimes depends

on the magnitude of the signal.

The X-11-ARIMA program first forecasts and backcasts the time series under

consideration based on an ARIMA model fitted to the observed series, and then applies a

sequence of moving averages (linear filters) to the series augmented by the forecasts and

backcasts. It follows that the X-11-ARIMA estimators of the trend and the seasonal

components can be approximated as,

T̂t ¼
X
N2t

k¼2ðt21Þ

wT
ktytþk; Ŝt ¼

X
N2t

k¼2ðt21Þ

wS
ktytþk; ð2Þ
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where the coefficients wT
kt

� �

, wS
kt

� �

are defined in general by the program options for the

observed time interval t ¼ 1; : : : ;N, by the ARIMA model used to forecast and backcast

the series and by the number of backcasts and forecasts. However, at the central part of

the series, the filters in (2) are time-invariant and symmetric; wT
kt ¼ wT

k , wT
2k ¼ wT

k for

aT , t # N 2 aT ; wS
kt ¼ wS

k , wS
2k ¼ wS

k for aS , t # N 2 aS, where aT ; aS are defined

by the X-11-ARIMA program options. The length of the symmetric filters is thus

2aT þ 1 ð2aS þ 1Þ. For example, for the default X-11-ARIMA options,

aS ¼ 84; aT ¼ 90, but aS, for example, may be as low as 70 or as high as 149 when

using other options. Note that in the central part of the series the X-11-ARIMA estimators

are the same as the X-11 estimators with no ARIMA extrapolations, such that the

symmetric filters only depend on the X-11 program options and not on the ARIMA

extrapolations.

Remark 1. The use of X-11-ARIMA also involves ‘non-linear’ operations such as the

identification and estimation of ARIMA models used for forecasting and backcasting the

original series, and the identification and gradual replacement of extreme observations.

We assume that the time series under consideration is already modified for extreme values,

thus robustifying the variance estimates described in Subsection 2.3. As illustrated in

Pfeffermann et al. (1995) and Pfeffermann et al. (2000), the effects of the identification

and nonlinear estimation of ARIMA models are generally minor.

Definition 1. Assuming tstart , min ð2aT ;2aSÞ and following Bell and Kramer (1999),

we define the trend component at time t to be TX11
t ¼

PaT

k¼2aT
wT

k Gtþk. Analogously, the

seasonal component is defined as SX11
t ¼

PaS

k¼2aS
wS

kGtþk. The target components TX11
t

and SX11
t are thus the hypothetical components that would be obtained by application of

the X-11 symmetric filters to the signal G at time point t, t ¼ 1; : : : ;N: It follows

therefore that the observed series may be decomposed as the sum of the ‘X-11-trend’, TX11
t ,

the ‘X-11-seasonal component’, SX11
t , and the ‘X-11 error’, eX11

t ¼ yt 2 TX11
t 2 SX11

t :

yt ¼ TX11
t þ SX11

t þ eX11
t : ð3Þ

Result 1. For aT , t # N 2 aT , TX11
t ¼ EðT̂tjGÞ and for aS , t # N 2 aS,

SX11
t ¼ EðŜtjGÞ, where T̂t; Ŝt are the X-11-ARIMA estimators defined in (2) and the

expectation is taken over the distribution of the errors {et; t ¼ 1; : : : ;N}, with the signal

G held fixed. It follows therefore from our definition that in the central part of the series,

the X-11-ARIMA estimators T̂t; Ŝt of the trend and the seasonal component are unbiased.

(As noted before, we assume that the observed series is already modified for extreme

values. The identification and estimation of ARIMA models are irrelevant at the center of

the series.)

Remark 2. For X-11 filters aT . aS because the final trend filter is applied after the final

seasonal and seasonally adjusted components are computed. Thus, max ðaT ; aSÞ ¼ aT .

Remark 3 We define the trend and seasonal components to be the (hypothetical) outputs

that would be obtained when applying the symmetric filters to the signal, since the filters at

the non-central parts of the series are asymmetric and depend on the time points with data.
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In particular, the filters applied for a time point t . N 2 aT change every time that a new

observation is added to the series until t # N 2 aT , when the symmetric filter is applied.

As mentioned before, the decomposition (3) has been used by Bell and Kramer (1999)

with the error defined by the sampling error, such that the irregular term is part of

the signal; Gt ¼ Tt þ St þ It (Definition GE2). See Subsection 2.5 for details of their

approach. Note that with this definition, the target values are just linear combinations of

the unadjusted population values of the series, which in most cases are finite population

means or totals, in line with classical survey sampling theory.

2.2. Conditional Bias and MSE of X-11-ARIMA Estimators

The conditional bias, variance and MSE of the X-11-ARIMA estimator of the trend with

respect to the decomposition (3), given the signal, are as follows:

BiasðT̂tjGÞ ¼ E T̂t 2 TX11
t

� �

jG
� �

¼
X
N2t

k¼2ðt21Þ

wT
ktGtþk 2

X
aT

k¼2aT

wT
k Gtþk: ð4Þ

Var½T̂tjG� ¼ E
X
N2t

k¼2ðt21Þ

wT
ktytþk 2 E

X
N2t

k¼2ðt21Þ

wT
ktytþk

�

�

�

�
G

 !" #2�
�

�

�
G

8

<

:

9

=

;

¼ E
X
N2t

k¼2ðt21Þ

wT
ktð ytþk 2 GtþkÞ

" #2�
�

�

�
G

8

<

:

9

=

;

¼ E
X
N2t

k¼2ðt21Þ

wT
ktetþk

 !2
ð5Þ

MSEðT̂tjGÞ ¼ E T̂t 2 TX11
t

� �2
�

�

�

�
G

	 


¼ VarðT̂tjGÞ þ Bias2ðT̂tjGÞ: ð6Þ

Similar expressions hold for the seasonal and seasonally adjusted estimators.

Expressions (4)–(6) are general and apply to any linear estimator with arbitrary

coefficients {wT
kt}, as defined by the X-11-ARIMA options, the ARIMA model used for

extrapolations and the number of forecasts and backcasts. In fact, as will be shown in

Section 3, the Expressions (4)–(6) hold equally for other linear filters, not necessarily

embedded in the X-11-ARIMA program. In the following sections we discuss ways of

estimating the MSE in (6).

2.3. Variance Estimation

Under Definition GE2 of the signal and error in Subsection 2.1, et ¼ 1t is the sampling

error, and by (5),

VarðT̂tjGÞ ¼ E
X
N2t

k¼2ðt21Þ

wT
kt1tþk

 !2

¼
k

X

l

X

wT
ktw

T
ltCovð1tþk; 1tþlÞ:

Similar expressions apply when estimating the seasonal or the seasonally adjusted

component. We assume the availability of estimates of the variances and covariances of

the sampling errors, which enables estimation of the variance VarðT̂tjGÞ and the variance

of any other component estimator.
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Next, consider the estimation of the variance under Definition GE1 of the signal and

error, by which et ¼ It þ 1t. By (5), the variance of the X-11-ARIMA trend estimator is in

this case a linear combination of the covariances vtm ¼ Covðet; emÞ; t;m ¼ 1; : : : ;N.

Following Pfeffermann (1994) and Pfeffermann and Scott (1997), let Rt ¼ yt 2 Ŝt 2 T̂t ¼
PN2t

k¼2ðt21Þ w
R
ktytþk define the linear approximation of the X-11-ARIMA residual term at

time t, where wR
0t ¼ 1 2 wS

0t 2 wT
0t and wR

kt ¼ 2wS
kt 2 wT

kt for k – 0. Then,

VarðRtjGÞ¼E
X
N2t

k¼2ðt21Þ

wR
ktð ytþk 2Eð ytþk

�

�GÞÞ

" #2�
�

�

�
G

8

<

:

9

=

;

¼Var
X
N2t

k¼2ðt21Þ

wR
ktetþk

 !

;

CovðRt;RmjGÞ¼Cov
X
N2t

k¼2ðt21Þ

wR
ktetþk;

X
N2m

l¼2ðm21Þ

wR
lmemþl

" #

¼
k

X

l

X

wR
ktw

R
lmCovðetþk;emþlÞ:

ð7Þ

The residuals Rt are not stationary because of the use of asymmetric filters towards the two

ends of the series. However, let UðmÞ¼ 1
N2m

PN2m
t¼1 CovðRtRt2mÞ; m¼0; : : :;N 21, and

suppose that the errors et¼ Itþ1t are stationary (see Remark 4 below). Then, by (7), the

vector U of the means UðmÞ and the vector V of the covariances

Vk¼Covðet;etþkÞ¼CovðItþ1t;Itþkþ1tþkÞ, k¼0; : : :;N 21 are related by the system of

linear equations,

U¼DV; ð8Þ

where the matrix D is defined by the known weights {wR
kt}. Since the X-11-

ARIMA residuals are known for every t¼1; : : :;N, one may estimate UðmÞ by

~UðmÞ¼ 1
N2m

PN2m
t¼1 RtRt2m. Substituting ~UðmÞ for UðmÞ in (8) enables estimation of V by

solving the resulting equations; see Pfeffermann (1994) and Pfeffermann and Scott (1997).

Note that the use of (8) does not require the availability of estimates of the variances and

covariances of the sampling errors. However, the estimators obtained in this way can be

very unstable since the number of unknown variances and covariances generally equals

the number of equations. A possible solution to this problem is to assume that the

covariances Vk are negligible beyond some lag C and set them to zero, and then solve the

reduced set of equations for V0; : : :;VC. This is a mild ergodicity condition assumed for

the series et. Note that with this assumption it is no longer necessary to consider the

estimates ~UðmÞ for large m. Additionally, when estimates for the autocovariances of the

sampling errors are available, they can be substituted into the vector V and taken as

known, in which case one only needs to estimate the unknown variance and covariances

of the time series irregular terms, It. This reduces the number of unknown covariances

and hence the number of equations very drastically. Note that all these procedures are

basically ‘model free’. See Chen et al. (2003) for a different approach to estimating U

and V. Bell and Kramer (1999) consider model-based estimation of the variance and

covariances of the sampling errors.

Remark 4. The linear equations in (8) can easily be extended to the case of

heteroscedastic sampling errors for which Vtk ¼ Covðet; etþkÞ ¼ LtkVk with known

Pfeffermann and Sverchkov: MSE estimation for X11 estimators 815



coefficients Ltk. Another potential modification consists of utilizing all (or most of)

the equations in (8), and estimating V0; : : : ;VC by a discounted least-squares

procedure.

2.4. Bias and MSE Estimation

Estimation of the conditional bias of the estimator T̂t (or any other linear estimator)

given the signal, and hence the conditional MSE is more involved. We propose to

estimate the bias by estimating the signal and then substituting the estimate in the

right hand side of the bias expression (4). A possible way of estimating the signal is

by application of the programme X-13ARIMA-SEATS (X-13A-S Reference Manual,

Version 0.1 2013). This program is now in common use in many statistical bureaus

around the world (replacing X-12-ARIMA). The programme enables to extract the

models holding for the trend and the seasonal effects from the ARIMA model fitted

to the observed series, and use these models in order to estimate the signal within the

observation period, and forecast and backcast the signal for aT time points with no

observations. Denote by Ĝt the estimated signal for time t, including before or after

times 1; : : : ;N. The bias is estimated as,

Biâs½T̂tjG� ¼ Ê T̂t 2 TX11
t

� �

jG
� �

¼
X
N2t

k¼2ðt21Þ

wT
ktĜtþk 2

X
aT

k¼2aT

wT
k Ĝtþk;

t ¼ 1; : : : ;N:

ð9Þ

Use a similar expression for estimating the bias of the seasonally adjusted estimator.

The SEATS models are obtained by application of canonical signal extraction and under

correct model specification, the estimators have Minimum MSE (MMSE) (Hilmer and

Tiao, 1982).

Remark 5. Wecker (1979) noted that the MMSE signal estimator has a different

spectrum from the true signal and proposed another estimator which preserves the

spectrum of the true signal. Application of this proposal requires external information and

the loss in MSE compared to the use of the MMSE estimator can be large. We do not

consider this estimator in the present article.

A simpler way of estimating the signal, which can be implemented by application of

the X-11-ARIMA programme (or within X-13ARIMA-SEATS), consists of the following

two steps:

(a) Use the ARIMA model fitted by X-11-ARIMA to the original series to augment the

series with aT forecasts and backcasts;

(b) Estimate the signal of the augmented series as,

Ĝt ¼
X

NþaT 2t

k¼2ðt
1
aT 21Þ

w
G;aug
kt y

aug
tþk; t ¼ 2aT þ 1; : : : ;N þ aT : ð10Þ

where y
aug
t ¼ yt if yt is observed, y

aug
t is the forecasted (backcasted) value if yt is not

observed and w
G;aug
kt ¼ w

T ;aug
kt þ w

S;aug
kt , with w

T ;aug
kt ;wS;aug

kt defining the X-11 weights for
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the longer (augmented) series. Substituting the estimated signal (10) into (4) yields

the trend bias estimator, similarly to (9). Similar expressions hold for the seasonal and

seasonally adjusted estimators.

Remark 6. The difference between the two methods of estimating and predicting the

signal described above lies in the linear filters applied to the original series. The first

method uses the optimal filters for extracting the trend and seasonal component under the

ARIMA model fitted to the series. The second method uses the ARIMA model for

backcasting and forecasting the original series (for given model coefficients, the backcasts

and forecasts are linear combinations of the original series), and then uses the original

X-11 filters for estimating the trend and seasonals of the augmented series. The resulting

filters generally differ from the optimal filters.

Having estimated the conditional variance and bias, a conservative estimator of the

conditional MSE defined by (6) is obtained by adding the variance estimator to the square

of the bias, i.e.,

MŜEðT̂tjGÞ ¼ VârðT̂tjGÞ þ Biâs 2ðT̂tjGÞ: ð11Þ

The estimator in (11) is conservative since E½Biâs 2ðT̂tjGÞjG� ¼ E BiâsðT̂tjGÞ
� �

jG
� �2

þ

Var½BiâsðT̂tjGÞjG� . {E½BiâsðT̂tjGÞ�jG}2. The overestimation of the MSE can be

corrected by subtracting an estimate of Var½BiâsðT̂tjGÞjG�. Note that BiâsðT̂tjGÞ is a linear

combination of the signal estimates, Ĝt, which in turn are linear combinations of the

observed series, yt. Thus, BiâsðT̂tjGÞ is a linear combination of the yt’s and hence

Var½BiâsðT̂tjGÞjG� can be estimated similarly to the estimation of Var½T̂tjG� discussed in

Subsection 2.3. The weights defining BiâsðT̂tjGÞ can be obtained similarly to Burck and

Sverchkov (2001) and Findley and Martin (2006) (See Section 3).

Remark 7. The procedure proposed for estimating the bias and MSE of the X-11-

ARIMA estimators raises two valid questions:

i) The predictors of the signal many years ahead, required for estimating the MSE of the

estimators of the component series may be severely biased for time points far away

from the last time point N with an observation, because of possible changes in the

behavior of the signal over time. So how can one rely on these predictors? To answer

this question, note first that even if the signal predictors are biased (given the true

signal), the trend bias estimator in (9) may still be unbiased or only have a small bias.

For example, if E½ðĜt 2 GtÞjG� ¼constant for all t, the bias estimator (9) is unbiased

for the true bias since
PN2t

k¼2ðt21Þw
T
kt ¼

PaT

k¼2aT
wT

k ¼ 1. The same holds when

estimating the bias of the seasonally adjusted estimators (SAE). While this may not

be a realistic scenario, what is more important is that the weights of the symmetric

filters, used to predict the trend and the SAE decay to zero very fast when moving

away from the time point of interest, so that even large biases of the predictors of the

signal for time points far away from the last time with an observation may have little

effect on the bias of the estimator of the bias of the trend or the SAE. Figure 1

shows the central weights of the trend filters used in our simulation study described

in Section 4. The plot of the Basic Structural Model (BSM) filter weights looks like
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a trend filter for a nonseasonal series because there seems to be no seasonal pattern to

the weights, which is counterintuitive. We have no explanation to this behavior of the

weights, but all our checks show that they are correct.

ii) If we believe that we have good predictors of the signal and hence good estimators of

our target trend, why not use these estimates in the first place instead of using the

X-11-ARIMA estimates of the trend? The answer to this question is simple. Our aim

in this article is not to propose new trend or seasonally adjusted estimators. In fact,

the model-based predictors of the trend and seasonal component that we use to

estimate the bias are produced by one of the modules of X-13ARIMA-SEATS,

following the pioneering work of Gómez and Maravall (1996). Rather, our aim is to

develop a method of estimating the conditional MSE of linear estimators such as the

X-11-ARIMA estimators, which are in common use. We may refer to our method of

bias estimation as ‘model-based’.

Remark 8. When the signal is estimated by the MMSE estimator under the models

extracted for the trend and the seasonal component, the estimator of the signal coincides

with the conditional expectation of the signal, given the observed series. In this case the

bias estimator (9) is the conditional expectation of the bias over all possible realizations of

the signal given the observed series.

2.5. Comparison With the Method of Bell and Kramer

As noted before, Bell and Kramer (1999) use a similar definition of the target

components. The authors estimate these components by augmenting the observed series

0.22
X-11 central weights
BSM central weights0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

–0.02

–0.04

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Fig. 1. Central weights applied to the signal for predicting the trend under X-11 and under the basic structural

model (BSM, Section 3)
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with aT MMSE forecasts and backcasts under an appropriate ARIMA model, such that

the symmetric X-11 filters can be applied to the augmented series at every time point t

with an observation. The trend estimator, for example, can be written then as

T̂
BK

t ¼
PaT

k¼2aT
wT

k y
*

tþk, where y
*

tþk ¼ ytþk if ytþk is observed ð1 # t þ k # NÞ, and y
*

tþk

is the forecasted or backcasted value otherwise. The authors focus on VarðT̂
BK

t 2 TX11
t Þ

under the GE2 definition of the signal by which the irregular term is part of the signal,

so that the variance is taken over the distributions of the sampling errors and the

forecast and backcast prediction errors. Notice that since Eðy
*

tþk 2 ytþkÞ ¼ 0 under the

model (unconditional on G),

E T̂BK 2 TX11
t

� �

¼ E
X

aT

k¼2aT

wT
k y

*

tþk 2
X

aT

k¼2aT

wT
k Gtþk

" #

¼ E
X

aT

k¼2aT

wT
k y

*

tþk 2
X

aT

k¼2aT

wT
k ytþk

" #

¼ 0; ð12Þ

such that the estimators of the trend are likewise unbiased unconditionally. However,

when conditioning on the signal, in general E T̂
BK

t 2 TX11
t

� �
�

�

�

�
G

	 


– 0. As is evident

from (4), a bias may also exist even unconditionally when forecasting and backcasting

less than aT observations, depending on the distribution of the signal.

Our approach differs from Bell and Kramer (1999) in three main aspects.

I- Our definition of the MSE and its estimation is not restricted to the case of full

forecasts and backcasts, and it can be applied for any linear estimator of the form
~Ht ¼

PN2t
k¼2ðt21Þhktytþk. In particular, it applies to the case where the seasonally adjusted

and trend components are estimated by use of X-11-ARIMA with only one or two years

of forecasts and backcasts, the common case in practice, or even without ARIMA

extrapolations. It also applies when estimating the components by signal extraction under

appropriate ARIMA models as in X-13ARIMA-SEATS, or by fitting a state-space model

to the series as in Sections 3 and 4.

II- We attempt to estimate the conditional MSE given the signal, even though the signal

is not observed. We believe that many users of seasonally adjusted and trend estimators

would feel most comfortable with the notion that the corresponding target components

are fixed values, which conforms to classical sampling theory under which the target

parameters are functions of the population values, which are viewed as fixed, nonstochastic

quantities. In fact, under definition GE2 of the signal, the target component values are just

linear combinations of the unadjusted population values defining the series, which in most

cases are finite population means or totals. On the other hand, as already stated in Remark 8,

our bias estimators may also be viewed as estimating the unconditional bias over all

possible realizations of the signal under an appropriate model, given the observed series.

III- Our approach is applicable to the case where the signal consists of only the trend and

the seasonal effect, and the time series irregular is part of the error (definition GE1 of the

signal). We mention also that in its present state, the application of Bell and Kramer’s

procedure is not straightforward and requires many intermediate steps. See Bell and

Kramer (1999) and Scott et al. (2012) for details.
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3. Estimation of MSE of Model-Based and Other Estimators of X-11 Components

Consider any other set of component estimators of the form

~Tt ¼
X
N2t

k¼2ðt21Þ

hT
ktytþk; ~St ¼

X
N2t

k¼2ðt21Þ

hS
ktytþk: ð13Þ

Then, similarly to the X-11-ARIMA estimators in Section 2, we can calculate the

conditional bias and MSE with respect to the target X-11 components defined in

Definition 1, yielding the same expressions as in (4)–(6) but with the weights wT
ktðw

S
ktÞ

replaced by the weights hT
ktðh

S
ktÞ. Note that unlike the X-11 estimators, the estimators

defined by (13) are potentially biased when conditioning on the signal, even at the center

of the series.

In the present article, besides X-11-ARIMA estimators, we also consider estimators

obtained by fitting a simple state-space model (see Subsection 4.1). The state-space model

estimates of the seasonal component and the trend for a given time t are again linear

combinations of all the observed values. We calculated the weights defining the

corresponding filters by using the impulse response method (Findley and Martin 2006).

According to this method, the weight of an observation at time t when applying the filter

at time t is computed by applying the model fitted to the observed series to a series

composed of 1 at time t and 0 elsewhere, and then observing the filter value for

time t; t ¼ 1; : : : ;N. Calculation of the weights for all time points of a series of length

N therefore requires running the model N times, each time with a vector observation

defined by a different column of the identity matrix IN . As in Subsection 2.4, in

this case the bias is estimated by estimating the augmented signal Gaug ¼

ðG2aTþ1; : : : ;G0; : : : ;GN ; : : : ;GNþaT
Þ under an appropriate model. The bias and

MSE estimators are obtained similarly to Eqs. (9)–(11).

In a recent article, Tiller (2012) suggested another approach to trend estimation which

consists of applying time series model-based signal extraction to estimate and remove

the sampling errors from the original series, and then applying the X-11-ARIMA trend

filter to the adjusted series. Under definition GE2 of the signal, the use of this approach

reduces to applying the trend filter to the estimated signal under the model. Note that

since the estimated signal is a linear filter and the X-11-ARIMA trend filter is linear as

well, the trend estimators obtained under this approach are again linear combinations of

all the observed values and we may apply our proposed approach to estimate the bias and

MSE of the trend estimators obtained this way.

Remark 9. We have not considered Tiller’s (2012) approach in the simulation study

described below, but Pfeffermann et al. (1998) applied this approach to Labour Force

series in Australia and found that the resulting trend estimators were very similar to the

trend estimators obtained directly under the model.

4. Simulation Study

In this section we apply the estimators considered in Sections 2 and 3 to simulated series,

generated from a state-space model fitted by the Bureau of Labour Statistics (BLS) in the

Journal of Official Statistics820



U.S.A. to the series Employment to Population Ratio in the District of Columbia,

abbreviated hereafter by EP-DC. The EP series is obtained from the Current Population

Survey (the US Labour Force Survey) and it estimates the percentage of employed persons

out of the total population aged 15þ . This is one of the key economic series in the U.S.A.,

produced monthly by the BLS for each of the 50 States and DC. The BLS uses a similar

model for the production of the major employment and unemployment estimates in all the

states of the U.S.A.; see Tiller (1992) for details. In order to assess the performance of

the various estimators, we generated a large number of series from the EP-DC model. The

model depends on 18 estimated hyperparameters but for the present experiment we

consider the hyperparameter estimates as true known parameters.

4.1. Model Fitted to EP-DC Series

The EP-DC series is very erratic: The residual component (calculated by X-11-ARIMA)

explains 55% of the month to month changes and 32% of the yearly changes. A large

portion of the residual component is sampling errors. The series is plotted in Figure 2,

along with the trend estimated under the EP-DC model defined below, and the trend

estimated by X-11-ARIMA with twelve months forecasts when fitting the familiar airline

model ARIMA(0,1,1)(0,1,1), selected by the program. The two trends behave similarly,

but the trend estimated under the EP-DC model is smoother, a phenomenon observed in

many other series. The X-11-ARIMA trend is below the EP-DC trend for most of the time

points, but the average values of the two trends are very close: Av.(trend EP-DC) ¼ 63.11,

Av.(trend X11 ARIMA) ¼ 63.01, Av.(original series) ¼ 63.00.
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Trend BSM

Fig. 2. Employment to Population Ratio in DC (in percentages), Jan2001-Dec2010. Original series and trends

estimated by X-11-ARIMA with 12 forecasts, and by the EP-DC model
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Let yt define, the direct sample estimate for time t and Yt the corresponding true

population ratio such that 1t ¼ yt 2 Yt is the sampling error. The state-space model fitted

to the series yt combines a model for Yt with a model for 1t. The model postulated for Yt

is the basic structural model (BSM, Harvey 1989)

Yt ¼ Tt þ St þ It; It , N 0;s 2
I

� �

; Tt ¼ Tt21 þ Rt21; Rt ¼ Rt21 þ hRt;

hRt , N 0;s2
R

� �

Sj;t ¼ cosvjSj;t21 þ sinvjS
*

j;t21 þ hj;t; hj;t , Nð0;s2
SÞ

S
*

j;t ¼ 2 sinvjSj;t21 þ cosvjS
*

j;t21 þ h
*

j;t; h
*

j;t , Nð0;s2
SÞ;

St ¼
X6

j¼1
Sj;t; vj ¼ 2pj=12; j ¼ 1: : :6:

ð14Þ

The error terms It;hRt;hj;t;h
*

j;t are mutually independent normal disturbances. In this

model, Tt is the trend level, Rt is the slope and St is the seasonal effect. The trend model

approximates a local linear trend, whereas the model for the seasonal effects uses the

traditional decomposition of the seasonal component into eleven cyclical components

corresponding to the six seasonal frequencies. The innovations hj;t;h
*

j;t allow the seasonal

effects to evolve over time.

The model fitted for the sampling errors is AR(15); see Pfeffermann and Tiller (2005)

for the considerations leading to the choice of this model.

The separate models holding for the population ratios and the sampling errors are cast into

a single state-space model. In what follows we refer to the combined model holding for the

observed series yt ¼ Yt þ 1t as the extended BSM (EBSM). Note that the state vector

consists of the trend, slope, seasonal effects and sampling errors. The variances and

covariances of the sampling errors are estimated from the survey micro-data using

a replication approach with a large number of replications. The AR(15) model coefficients are

then estimated by solving the corresponding Yule-Walker equations and they are set to their

estimated values when estimating the population model variances by maximum likelihood.

The variances and AR coefficients used for the present simulation experiment are the same as

in Pfeffermann and Tiller (2005). See that paper for further details on the way we generated

series under the model and for the values of the model variances and AR coefficients.

4.2. Simulation Plan

We generated three sets of 1,000 monthly series of length 300;

{yt;b; t ¼ 1; : : : ; 300; b ¼ 1; : : : ; 1; 000}. The first set was generated by simulating for

every month t a trend value, Tt, a seasonal effect, St, and an irregular term, It, from the

model (14), and a sampling error, 1t, from the AR(15) model, and then adding the separate

components; yt;b ¼ Tt;b þ St;b þ It;b þ 1t;b, b ¼ 1; : : : ; 1; 000. The second set was

obtained from the first set by halving the sampling errors, that is,

yt;b ¼ Tt;b þ St;b þ It;b þ 1t;b=2. The third set was obtained from the first set by doubling

the sampling errors, i.e., yt;b ¼ Tt;b þ St;b þ It;b þ 21t;b. Considering the three data sets

allows an assessment of the effect of the magnitude of the sampling errors on the

performance of the estimators.
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For the present study we employ the definition GE2 of the signal by which

Gt;b ¼ Tt;b þ St;b þ It;b. We computed the default X-11 estimator of the trend and seasonal

component for each simulated signal of length 300, so as to obtain the target X-11

components defined by (3) for the central 180 months. (For the default X-11 estimator

aS ¼ 84; aT ¼ 90, but augmenting the series with only 60 forecasts and backcasts yields

almost identical target components.) We defined the target seasonally adjusted component

as the difference between the original series without sampling error and the target seasonal

component, that is,

TX11
t ¼

X
aT

k¼2aT

wT
k Gtþk; SX11

t ¼
X

aS

k¼2aS

wS
kGtþk; SAX11

t ¼ ð yt 2 SX11
t 2 1tÞ: ð15Þ

Finally, we removed the first and last 60 monthly observations from the simulated

series and applied X-11-ARIMA with twelve and 60 forecasts to the reduced series

of length 180, using the default X-11 filters but setting the ARIMA model as the

airline model ARIMA(0,1,1),(0,1,1) (Remark 10 below). Thus, the X-11-ARIMA

estimators are

T̂
X11

t;b ¼
X
N2t

k¼2ðt21Þ

wT
ktytþk;b; SÂ

X11

t;b ¼ yt;b 2
X
N2t

k¼2ðt21Þ

wS
ktytþk;b; ð16Þ

where the weights {wT
kt}; {wS

kt} are defined by the ARIMA model, the program default

options and the number of forecasts (12 or 60). We also computed the EBSM

estimators, obtained by replacing the weights {wT
kt}; {wS

kt}in (16) by the weights

{hT
kt}; {hS

kt} (Section 3).

Remark 10. In the simulation study we did not select new ARIMA models or

re-estimated the model coefficients for every simulated series. We used the airline

model for all the simulated series and estimated the model parameters once for each

set of series, based on a randomly selected series from the set. Selecting a model and

re-estimating the model coefficients for each simulated series would require new

computation of the filter weights for every series and every model, which is not

feasible in a simulation study with 3,000 series. See Section 3 for the method used

for estimating the filter weights. Notwithstanding, X-13ARIMA-SEATS selected the

airline model as the preferred model for most of the series in all three sets. Moreover,

for series of length 180 (quite typical for monthly economic series), the estimation of

the model coefficients is generally very stable and is not expected to affect the results.

(The sampling error variances and hence the AR(15) model coefficients are taken as

known. The model variances are estimated by MLE, which are known to be

consistent.) We also reiterate the statement made in Remark 3 above that our purpose

in this article is to propose a method of estimating the conditional bias and RMSE of

linear estimators of the proposed target components, and not to search for the most

appropriate model and estimators. In practice, one would let the program select the

model and estimate the unknown coefficients, and then compute the required filter

weights for the particular choice of model and estimates.
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4.3. Computations

Because of space limitations, in subsequent subsections we restrict ourselves to the

estimation of the target trend. Estimation of the MSE of seasonally adjusted estimators

is considered in Section 5. We computed the following statistics:

4.3.1. Conditional Variance of X-11-ARIMA and EBSM Estimators

VT ;X11
t ¼

k

X

l

X

wT
ktw

T
ltCovð1tþk; 1tþlÞ; VT ;EBSM

t ¼
k

X

l

X

hT
kth

T
ltCovð1tþk; 1tþlÞ: ð17Þ

The variances and covariances of the sampling errors are taken as known.

4.3.2. Conditional Bias and Root MSE of X-11-ARIMA and EBSM Estimators

The conditional bias and root MSE (RMSE) for a given signal when estimating the target

trend in Eq. 3 are:

B
T ;X11
t;b ¼

X
N2t

k¼2ðt21Þ

wT
ktGtþk;b 2

X
aT

k¼2aT

wT
k Gtþk;b;

RMSEðT̂
X11

t;b Þ ¼ ½V
T ;X11
t þ ðB

T ;X11
t;b Þ2�1=2:

ð18Þ

The bias and RMSE of the EBSM estimators are obtained in similar manner.

4.3.3. Estimation of Squared Bias and MSE

Denote by B̂
T ;X11

t;b the estimate of the bias, obtained by predicting the unknown signal using

the models extracted for the trend and seasonal effects by X-13ARIMA-SEATS (Eq. 9),

or by predicting the signal using the X-11-ARIMA forecasts and backcasts (Eq. 10).

The RMSE is estimated as,

MŜE
T ;X11
t;b ¼ VT ;X11

t þ
�

B̂
T ;X11

t;b

�2
2 V

�

B̂
T ;X11

t;b

�

;

MŜE
T ;EBSM
t;b ¼ VT ;EBSM

t þ
�

B̂
T ;EBSM

t;b

�2
2 V

�

B̂
T ;EBSM

t;b

�

:
ð19Þ

where V
�

B̂
T ;X11

t;b

�

, V
�

B̂
T ;EBSM

t;b

�

are the variances of the bias estimates, computed similarly

to the variances of the estimators in Eq. 17. As explained in Subsection 2.4, subtracting the

variance of the bias estimator is necessary for unbiased MSE estimation.

4.3.4. Error of Estimators of Squared Bias and RMSE

EBS
B;X11
t;b ¼ ðB

T ;X11
t;b Þ2 2 ½ðB̂

T ;X11

t;b Þ2 2 VðB̂
T ;X11

t;b Þ�;

EM
RMSE;X11
t;b ¼ RMSEðT̂

X11

t;b Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MŜE
T ;X11
t;b

q

:
ð20Þ

Similar expressions apply when using the EBSM estimators.

4.4. Results

The results are summarized in Tables 1–3 and Figures 3–8. The tables show average results

obtained for the three sets of series, for each of the last six months of the reduced series (time
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points 175–180). As stated before, we restrict to estimation of the target trend and we

show the results of estimating the squared bias and the RMSE (Eq. 20). We use

the following abbreviations: ABS is the simulation mean (over 1,000 series) of true

bias2 (average of square of Eq. 18), ARMSE is the simulation mean of the true RMSE

(Eq. 18); Note that the variance of any given estimator is fixed for all simulated series

in a given set, but the signal, and hence the bias, changes from one simulated series to

another. AEBS(9) is the simulation mean of the error in estimating bias2 (Eq. 20) when

the signal is estimated as in (9), AEBS(10) is the simulation mean of the error in

estimating bias2 when the signal is estimated by (10); SDEB(9) and SDEBS(10) are the

standard deviations (SD) of the simulation means AEBS(9) and AEBS(10) respectively.

AEM(9) is the simulation mean of the error of the RMSE estimates (Eq. 20) when the

signal is estimated as in (9), AEM(10) is the simulation mean of the error of the RMSE

estimates when the signal is estimated by (10); SDEM(9) and SDEM(10) are the

standard deviations of the means AEM(9) and AEM(10) respectively.

Figures 3–8 show the means of the true and estimated squared bias and RMSE,

as obtained for the last four years of the series for each of the three sets of series by

Table 1. Means of true squared bias and RMSE, simulation means of error when estimating the squared bias

and RMSE, and SD of simulation means of error as obtained by application of X-11-ARIMA and by EBSM. First

set of 1,000 series, last six months of series

Month Jul Aug Sep Oct Nov Dec

X-11 ARIMA
60 forecasts

ABS 0.020 0.021 0.021 0.035 0.113 0.332
AEBS(9) 0.002 0.002 0.004 0.017 0.084 0.273
SDEBS(9) (0.042) (0.043) (0.044) (0.062) (0.177) (0.508)
AEBS(10) 20.009 20.012 0.009 0.000 0.012 0.022
SDEBS(10) (0.326) (0.333) (0.333) (0.357) (0.508) (0.831)
ARMSE 1.268 1.267 1.265 1.285 1.347 1.457
AEM(9) 0.001 0.001 0.001 0.006 0.030 0.089
SDEM(9) (0.016) (0.017) (0.017) (0.024) (0.062) (0.154)
AEM(10) 20.026 20.026 20.026 20.023 20.008 0.019
SDEM(10) (0.046) (0.048) (0.049) (0.055) (0.090) (0.187)

X-11 ARIMA
12 forecasts

ABS 0.024 0.025 0.026 0.041 0.120 0.343
AEBS(9) 0.018 0.020 0.021 0.035 0.108 0.036
SDEBS(9) (0.035) (0.034) (0.036) (0.060) (0.182) (0.514)
AEBS(10) 20.003 20.001 0.004 0.012 0.019 0.022
SDEBS(10) (0.254) (0.247) (0.241) (0.276) (0.445) (0.774)
ARMSE 1.268 1.274 1.274 1.291 1.352 1.463
AEM(9) 0.007 0.008 0.008 0.013 0.039 0.100
SDEM(9) (0.014) (0.013) (0.014) (0.023) (0.063) (0.154)
AEM(10) 20.008 20.006 20.004 20.001 0.014 0.041
SDEM(10) (0.027) (0.025) (0.023) (0.032) (0.075) (0.176)

EBSM ABS 0.240 0.221 0.209 0.221 0.287 0.441
AEBS(9) 0.010 0.022 0.018 0.001 20.006 0.044
SDEBS(9) (0.396) (0.355) (0.328) (0.358) (0.525) (0.845)
AEBS(10) 20.004 0.038 0.078 0.101 0.097 0.061
SDEBS(10) (0.570) (0.510) (0.493) (0.541) (0.660) (0.852)
ARMSE 1.124 1.149 1.185 1.230 1.286 1.367
AEM(9) 0.005 0.009 0.007 0.001 20.001 0.016
SDEM(9) (0.155) (0.137) (0.125) (0.132) (0.179) (0.265)
AEM(10) 20.067 20.047 20.028 20.024 20.036 20.041
SDEM(10) (0.207) (0.182) (0.172) (0.189) (0.235) (0.312)
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application of X-11-ARIMA and the EBSM. The X-11-ARIMA estimators refer to the

case of twelve months forecasts (generally similar results to the case of 60 months

forecasts). The signal in all the figures is estimated by use of X-11-ARIMA (Eq. 10),

which produces somewhat less biased estimators of the RMSE than the use of Eq. 9,

although occasionally with larger SD (see summary below).

The main conclusions from the simulation study can be summarized as follows:

1. The simulation mean of the errors over all realizations of the signal and the sampling

errors of the 1,000 series in each set, when estimating the true bias of the

estimators are all very close to zero for all the estimators and all three data sets (not

shown in the tables). Thus, our proposed estimators of the bias of the estimators of

the target trend are unbiased unconditionally, although occasionally with large

standard errors.

2. The true ARMSEs of the estimators increase by a magnitude of around two when

increasing the SD of the sampling errors by two. Thus, the ARMSEs in Table 1 are

Table 2. Means of true squared bias and RMSE, simulation means of error when estimating the squared bias

and RMSE, and SD of simulation means of error as obtained by application of X-11-ARIMA and by EBSM.

Second set of 1,000 series, last six months of series

Month Jul Aug Sep Oct Nov Dec

X-11 ARIMA

60 forecasts

ABS 0.020 0.021 0.021 0.035 0.113 0.332

AEBS(9) 0.010 0.011 0.012 0.026 0.098 0.298

SDEBS(9) (0.031) (0.032) (0.034) (0.054) (0.172) (0.501)

AEBS(10) 2 0.007 2 0.009 2 0.006 0.002 0.011 0.017

SDEBS(10) (0.238) (0.248) (0.246) (0.268) (0.427) (0.739)

ARMSE 0.644 0.644 0.644 0.661 0.725 0.851

AEM(9) 0.008 0.008 0.009 0.019 0.064 0.161

SDEM(9) (0.023) (0.024) (0.025) (0.038) (0.101) (0.227)

AEM(10) 2 0.014 2 0.015 2 0.014 2 0.005 0.033 0.104

SDEM(10) (0.042) (0.046) (0.048) (0.057) (0.113) (0.241)

X-11 ARIMA

12 forecasts

ABS 0.024 0.025 0.026 0.041 0.120 0.343

AEBS(9) 0.022 0.023 0.024 0.039 0.115 0.323

SDEBS(9) (0.034) (0.033) (0.035) (0.059) (0.181) (0.512)

AEBS(10) 2 0.003 2 0.001 0.003 0.011 0.016 0.017

SDEBS(10) (0.185) (0.185) (0.180) (0.216) (0.385) (0.693)

ARMSE 0.647 0.651 0.651 0.667 0.731 0.859

AEM(9) 0.017 0.017 0.018 0.029 0.075 0.175

SDEM(9) (0.025) (0.025) (0.026) (0.041) (0.105) (0.229)

AEM(10) 0.007 0.009 0.010 0.019 0.056 0.128

SDEM(10) (0.030) (0.029) (0.029) (0.044) (0.109) (0.239)

EBSM ABS 0.240 0.221 0.209 0.221 0.287 0.441

AEBS(9) 0.160 0.140 0.120 0.120 0.167 0.291

SDEBS(9) (0.279) (0.264) (0.260) (0.260) (0.375) (0.648)

AEBS(10) 2 0.002 0.038 0.076 0.096 0.090 0.052

SDEBS(10) (0.340) (0.330) (0.355) (0.403) (0.494) (0.665)

ARMSE 0.690 0.694 0.717 0.749 0.794 0.871

AEM(9) 0.109 0.092 0.078 0.076 0.099 0.152

SDEM(9) (0.163) (0.153) (0.147) (0.147) (0.195) (0.297

AEM(10) 0.016 0.021 0.0290 0.033 0.035 0.057

SDEM(10) (0.172) (0.166) (0.179) (0.203) (0.248) (0.332)
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around twice the ARMSEs in Table 2, and the ARMSEs in Table 3 are around twice

the ARMSEs in Table 1. The increase in the ARMSEs is somewhat lower for the

EBSM estimators. This outcome is explained by the fact that under the present

simulation setup, the major component of the RMSE is the variance of the estimator,

which of course depends on the variances and covariances of the sampling errors.

(The autocorrelations of the sampling errors are the same for all the three sets.)

3. Interestingly enough, the SD of the mean error when estimating the true RMSE does

not show a similarly stable pattern. For example, the SDEM(9) values in Table 3 with

the largest variance of the sampling errors are, in the case of X-11-ARIMA with 60

forecasts, smaller for the last two months than the corresponding values in the other

two tables. This seemingly odd outcome is explained by the fact that the SD of the

true RMSE (not shown) actually decreases as the variance of the sampling errors

increases. The latter property follows from the fact that for a given estimator and data

set, the variance of the estimator is constant and under general conditions

SD{½bias2 þ var ðest:Þ�1=2} decreases as var ðest:Þ increases (can be shown by

second-order linearization). Note that unlike the variance, which is fixed in a given

Table 3. Means of true squared bias and RMSE, simulation means of error when estimating the squared bias

and RMSE, and SD of simulation means of error as obtained by application of X-11-ARIMA and by EBSM. Third

set of 1,000 series, last six months of series

Month Jul Aug Sep Oct Nov Dec

X-11 ARIMA

60 forecasts

ABS 0.020 0.021 0.021 0.035 0.113 0.332

AEBS(9) 20.042 20.039 20.034 20.025 0.019 0.157

SDEBS(9) (0.121) (0.118) (0.101) (0.126) (0.248) (0.595)

AEBS(10) 20.011 20.016 20.015 20.005 0.012 0.030

SDEBS(10) (0.552) (0.549) (0.552) (0.586) (0.747) (1.122)

ARMSE 2.530 2.530 2.520 2.550 2.651 2.802

AEM(9) 20.008 20.008 20.007 20.005 0.004 0.027

SDEM(9) (0.023) (0.022) (0.020) (0.024) (0.046) (0.102)

AEM(10) 20.051 20.049 20.050 20.052 20.058 20.083

SDEM(10) (0.074) (0.075) (0.075) (0.083) (0.115) (0.206)

X-11 ARIMA

12 forecasts

ABS 0.024 0.025 0.026 0.041 0.120 0.343

AEBS(9) 20.009 20.004 20.002 0.007 0.060 0.209

SDEBS(9) (0.064) (0.058) (0.058) (0.086) (0.209) (0.555)

AEBS(10) 20.003 20.001 0.005 0.014 0.023 0.031

SDEBS(10) (0.429) (0.440) (0.399) (0.441) (0.633) (1.028)

ARMSE 2.525 2.536 2.532 2.557 2.654 2.807

AEM(9) 20.002 20.001 20.000 0.001 0.011 0.036

SDEM(9) (0.012) (0.011) (0.011) (0.017) (0.039) (0.095)

AEM(10) 20.027 20.023 20.021 20.023 20.023 20.054

SDEM(10) (0.044) (0.038) (0.036) (0.044) (0.079) (0.173)

EBSM ABS 0.240 0.221 0.209 0.221 0.287 0.441

AEBS(9) 20.173 20.141 20.082 20.043 20.081 20.173

SDEBS(9) (1.452) (1.200) (0.938) (0.976) (1.473) (2.268)

AEBS(10) 0.006 0.049 0.089 0.107 0.094 0.044

SDEBS(10) (1.186) (0.935) (0.847) (0.879) (1.044) (1.300)

ARMSE 2.090 2.150 2.221 2.301 2.391 2.499

AEM(9) 20.023 20.021 20.011 20.002 20.004 20.010

SDEM(9) (0.291) (0.238) (0.190) (0.193) (0.270) (0.386)

AEM(10) 20.205 20.156 20.116 20.107 20.137 20.178

SDEM(10) (0.321) (0.267) (0.223) (0.224) (0.277) (0.363)
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set, the true bias2 changes from one simulation to another, depending on the random

realization of the signal.

The aforementioned phenomenon with the SD of the mean error when estimating

the true RMSE does not repeat itself when estimating the true squared bias. Thus,

SDEBS(9) and SDEBS(10) are smaller for all estimators and all the months in

Table 2 than in Table 1, and smaller in Table 1 than in Table 3.

4. The estimators of the true squared bias when estimating the signal by forecasting the series

using X-11-ARIMA (Eq. 10) are generally less biased unconditionally (over all

realizations of the signal in a given set) than when estimating the signal by the model

identified by X13ARIMA-SEATS (Eq. 9), particularly in the last two months (November,

December). This outcome may look odd but note that the models used to generate the

series for our simulation study (Eq. 14 for the population values and AR(15) for the

sampling errors) do not combine to the airline model fitted to the data, so that the model

extracted for the trend levels by X13ARIMA-SEATS is not the correct model. On the

other hand, the SD of the mean errors when estimating the squared bias are smaller, and in

most cases much smaller, when estimating the signal by application of Eq. 9 than when

estimating the signal by application of Eq. 10. (Compare the rows SDEBS(9) and

SDEBS(10).) The only exception is in Table 3 when estimating the trend using the EBSM.

5. The conclusions referring to the estimation of the true squared bias generally also apply

to the estimation of the true RMSE, particularly with regard to the SD of the mean of the

estimation errors. (Compare the rows SDEM(9) and SDEM(10).) In general, we find

that our proposed estimators of the RMSE when using the X-11-ARIMA method are
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X-11-ARIMA true

EBSM estimate
EBSM true

Fig. 3. Means of true and estimated squared bias by application of X-11-ARIMA with twelve months forecasts

and EBSM. First set of 1,000 series, last 48 months of data
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unbiased in our simulation study when averaging over all possible realizations of

the signal, except perhaps for the last two time points, although even there, the bias is

never significant using the ordinary t-statistic (the ratio of AEM to SDEM is always

smaller than 1).

6. Finally, by comparing the results obtained for the three estimators we notice that the

ARMSEs are very similar when using the ARIMA estimators with 60 forecasts or

with only twelve forecasts. What we find very interesting is that the EBSM produces

estimators with lower ARMSEs (lower variances), except in the case of the small

sampling errors. As noted before, we used the EBSM for generating the simulated

series, but this only partly explains this outcome because the target trend defined by

Eq. 3 is not the trend generated under the model and we predicted the signal by use of

the airline ARIMA model fitted to the data and not under the EBSM.

Figures 3–8 show the means of the true and estimated squared bias and RMSE as obtained

for the last four years of the series for each of the three sets of series, by application of

X-11-ARIMA with twelve forecasts (using Eq. 10 for estimating the signal) and the

EBSM. The main conclusion from these figures is that the use of X11-ARIMA yields

unbiased estimators of the squared bias and the RMSE, except when estimating the RMSE

for the last two months in the second set with the small sampling errors. The EBSM

estimators seem to be biased, especially in the case of the third set with the large sampling

errors, but as can be seen in the tables, the biases are highly insignificant. As already

mentioned, the true RMSEs of the EBSM estimators are lower than the true RMSEs of the

X11-ARIMA estimators, except for the second set of data with the small sampling errors.
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Fig. 4. Means of true and estimated RMSE by application of X-11-ARIMA with twelve months forecasts and

EBSM. First set of 1,000 series, last 48 months of data
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Remark 11. We emphasize again that although our proposed estimators condition on a

given signal, the results in the tables and figures are unconditional by averaging over the

1,000 realizations of the true signal and the estimators.

5. Application to Current Employment Statistics Series

5.1. Series Considered

In this section we study the performance of the proposed method when applied to real

series. We consider four leading monthly employment series, each spreading over 17 years,

from February 1990 to January 2007. The series are produced by the BLS based on the

Current Employment Statistics (CES) survey, which covers more than 300,000

establishments. The target of interest is the monthly change in employment. The variance

and autocovariances of the sampling errors of the unadjusted estimators are estimated each

month using the balanced repeated replication (BRR) method, with a modification

proposed by Robert Fay, using a factor of 0.5 to reflect the sampling design (see http://

www.bls.gov/web/empsit/cestn2.htm#4). The CES survey has the advantage of having

time-lagged true population figures from the Unemployment Insurance Program (UIP).

Quarterly business tax forms collected by the UIP include monthly employment data

which are assembled first at the state level and then at the national level. The true

population value for March of each year becomes available by the following January and

then all the estimates from March of the previous year up to the current January are
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Fig. 5. Means of true and estimated squared bias by application of X-11-ARIMA with twelve months forecasts

and EBSM. Second set of 1,000 series, last 48 months of data
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benchmarked for the difference between the population and estimated levels in March of

last year. No benchmarking is carried out in the months of February to December of a

current year. The employment estimate for a current month t is computed as a “link-

relative” estimator,

Êt ¼ E0 £ r1 £ r2 £ : : : £ rt; ð21Þ

where E0 is the latest available population value and subsequent subscripts denote months

after the benchmark month. The links rj are ratios between employment estimates in

adjacent months,

rj ¼

X

i[Mj

dijxij

X

i[Mj

di;j21xi;j21

; ð22Þ

where xij represents the number of employees in establishment i at month j, dij is the

survey weight and Mj represents the set of establishments for which the number of

employees is reported for both months j and j 2 1.

In this study we focus on the estimation of the MSEs of seasonally adjusted estimators

(SAE) produced by X-11-ARIMA with 24 months of forecasts, which is the common

routine at the BLS for these series. We focus on SAE since it allows us to compare our

proposed MSE estimators with estimators produced by application of Bell and Kramer’s

(1999) approach, reported in Scott et al. (2012). Traditionally, the CES employment series
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Fig. 6. Means of true and estimated RMSE by application of X-11-ARIMA with twelve months forecasts and

EBSM. Second set of 1,000 series, last 48 months of data
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have been seasonally adjusted multiplicatively. This suggests considering monthly

changes in the log scale,

yt ¼ log ðÊtÞ2 log ðÊt21Þ ¼ log
Êt

Êt21

� �

: ð23Þ

Under the multiplicative decomposition, yt ¼ ð log ðEtÞ2 log ðEt21ÞÞ þ log ð1t=1t21Þ,

decomposing the estimated monthly change as the sum of the population value, Yt ¼

log ðEtÞ2 log ðEt21Þ and a sampling error component, ~1t ¼ log ð1t=1t21Þ.

Remark 12. For the present illustrative study, the input series are the ratios of the

benchmarked estimators. Previous studies show that the ratios of the benchmarked

estimators are very close to the ratios of the unbenchmarked estimators, and in what

follows, we refer to the observed series as the ratios rt. BRR estimates for the variances

and covariances of the sampling errors ~1t of the log ratios, log ðrtÞ, have been produced

and are used for the computations of the various estimators. As stated above, the

benchmarking changes the current estimates, and hence the variances and covariances,

very little.

Following the methodology of the previous sections we fit ARIMA models to log ðÊtÞ

with one regular difference, such that the observed input series has the general form,

yt ¼ ð1 2 BÞ log ðÊtÞ ¼ log ðrtÞ. Furthermore, assuming that the ratios rt fluctuate around 1

and using a Taylor expansion, log ðrtÞ < rt 2 1 ¼ ðÊt 2 Êt21Þ=Êt21. Thus, the seasonally

adjusted values of the series yt ¼ log ðrtÞ can be interpreted as estimating the seasonally

adjusted values of the percentage change in employment, which is the focus of estimation.
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Fig. 7. Means of true and estimated squared bias by application of X-11-ARIMA with twelve months forecasts

and EBSM. Third set of 1,000 series, last 48 months of data
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5.2. Results

We present the results obtained for the last five years of data when applying our proposed

method of RMSE estimation and the method proposed by Bell and Kramer (1999,

hereafter B-K), to the following four series: “Total Employment in Education and Health

Services”; “Total Employment in Manufacturing, Durable Goods”; “Total Employment

in Manufacturing, Nondurable Goods” and “Total Employment in Retail Trade”. Using

standard ARIMA model fitting and diagnostic techniques, we fit the model (1,0,1) (0,1,1)

to the first three series and the model (1,0,0) (0,1,1) to the last series. (The input series is in

all cases yt ¼ log I2
tð Þ). As mentioned above, we used two years of monthly forecasts

when computing the X-11-ARIMA estimator SÂt of the seasonally adjusted value SAt for

time t. The MSE estimator under the proposed method is,

MŜEðSÂtjGÞ ¼ VârðSÂtjGÞ þ Biâs 2ðSÂtjGÞ2 Vâr½BiâsðSÂtjGÞjG�; ð24Þ

with the signal estimated by X-11 ARIMA (Eq. 10, the same as in the Figures 3–8).

See Eq. 15 for the definition of the SA estimator, and Subsection 2.5 for discussion of

the difference between the proposed MSE estimator and the B-K method. We also show the

RMSE estimators obtained under the proposed method when the irregular term is part

of the error (definition GE1 of the signal in Subsection 2.1). As noted before, no B-K estimators

are available for this definition of the signal. In addition, we show the conditional standard

deviations (SD) of the estimators SÂt given the signal GE2 (SQRT of Eq. 5 with respect to the

SAE), and the SD of the original, unadjusted estimators. The last two SDs only account for

the variance of the sampling errors. All the values in the figures are multiplied by 10,000.
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Fig. 8. Means of true and estimated RMSE by application of X-11-ARIMA with twelve months forecasts and
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Fig. 10. Results for Total Employment in Manufacturing, Durable Goods
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It is hard to assess the performance of the various estimators because the true MSEs are

unknown when analyzing real series, but the following points are worth mentioning.

1. The SD of the SAE given the signal GE2, by which the error consists only of the

sampling error without the irregular term, is always smaller than the SD of the

unadjusted estimator. This result is explained by the fact that the SAEs are weighted

averages of the unadjusted estimators with weights that sum to 1.

2. The RMSE estimates given the signal GE1 are always higher than the RMSE estimates

given the signal GE2, which is obvious since under definition GE1 the signal consists

only of the trend and seasonal effect and the irregular term is part of the error.

3. The RMSE estimates given the signal GE2 are literally the same as the B-K SD

estimates in the center of the series (until around time point 168). However, except

for Figure 9 (Total Employment in Education and Health Services), for the last three

years of data the B-K SD estimates are higher than the conditional RMSE estimates

given the signal GE2. As discussed in Subsection 2.5, the two estimators differ in the

definition of the estimators of the SAE (B-K assume that the X-11 ARIMA SAE use

seven years of forecasts whereas in our present application the SAE use only two

years of forecasts), and in the definition of the target MSE (we condition on the actual

signal, whereas the B-K variance is over all possible realizations of the signal under

the ARIMA model fitted to the series, thus accounting for the forecast and backast

prediction errors).

4. Except for Figure 9, The RMSE estimates given the signal GE2 are very close to

the SD of the SAE given the signal GE2, and the bias corrections contribute only

marginally. On the other hand, in Figure 9, the SDs are much smaller than the
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Fig. 11. Results for Total Employment in Manufacturing, Nondurable Goods
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RMSEs in the last two years where the SAE use asymmetric weights, indicating a

significant contribution of the bias corrections.

5. The RMSE estimates given the signal GE1 are slightly higher than the SD of

the unadjusted series in two of the series, but are appreciably lower in the two

other series.

6. Summary

In this article we propose a new method for the estimation of the MSE of X-11-ARIMA

estimators or other linear estimators of the underlying components of a time series. Our

approach has some important advantages over other approaches proposed in the literature.

First, we follow Bell and Kramer (1999) by defining the target component values as the

corresponding X-11 estimators that would be obtained if the series were free of sampling

errors and long enough to permit the use of the symmetric filters embedded in the program.

In other words, the target components are real entities defined as linear combinations of

finite population means or totals over time, in close correspondence to the target values in

classical finite population sampling. In particular, under definition GE2 of the signal, the

target component values are just linear combinations of the unadjusted finite population

values. Interestingly, while the programme X-11 for seasonal adjustment and its previous

and subsequent versions have been in wide use for many decades, the target estimated

values were never defined in a precise form. This is rather unusual in statistics, where an

estimator is defined but not what is estimated. This problem does not exist when using

model-dependent methods where the targets are defined by the model, such as in the BSM,

the Tramo and Seats program (Gómez and Maravall 1996) and in one of the modules of
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Fig. 12. Results for Total Employment in Retail Trade
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X-13ARIMA-SEATS, but purely model dependent estimators are not in common use, at

least not in national statistical offices.

A second notable advantage of our procedure is that for definition GE2 of the signal,

the procedure is basically automatic and does not require new programs or external

intervention beyond what is required for the production of the component estimators

themselves. Thus, the X-13ARIMA-SEATS programme produces the models for the trend

and seasonal components and hence for the signal. These models are then used to estimate

the signal within the observation period and to predict the signal outside the observation

period. The weights required to define the X-11-ARIMA estimators and the bias

estimators (Eq. 9) can be obtained by repeated runs of X-11-ARIMA, as described in

Section 3 and in Burck and Sverchkov (2001). In the case of definition GE1 of the signal,

the application of our procedure additionally requires the estimation of the variances and

covariances of the combined errors or at least the variance and covariances of the

irregular terms (Subsection 2.3), for which an additional program has to be used.

A third important advantage of the procedure is its flexibility in terms of the target values and

the estimators used. It is applicable to the case where the signal consists of only the trend and the

seasonal effect and the time series irregular component is part of the error (definition GE1 of the

signal and error), and to the case where the irregular component is part of the signal, as under

the B-K approach. It is up to the user to decide which definition of the signal is more appropriate.

In addition, the procedure is applicable to any linear estimator with known coefficients.

Finally, and most importantly, we have illustrated the good performance of the

procedure in estimating the true unknown MSEs, as defined in this article.

Taking into account the clear interpretation of the target values and the estimated

MSE and the other advantages listed above, we hope that our proposed procedure will be

experimented with by other users and we shall be happy to receive questions arising from

these experiments.
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