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Large-scale establishment surveys often exhibit substantial temporal or cross-sectional
variability in their published standard errors. This article uses a framework defined by survey
generalized variance functions to develop three sets of analytic tools for the evaluation of these
patterns of variability. These tools are for (1) identification of predictor variables that explain
some of the observed temporal and cross-sectional variability in published standard errors;
(2) evaluation of the proportion of variability attributable to the abovementioned predictors,
equation error and estimation error, respectively; and (3) comparison of equation error variances
across groups defined by observable predictor variables. The primary ideas are motivated and
illustrated by an application to the U.S. Current Employment Statistics program.
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1. Introduction: Temporal and Cross-Sectional Variability of Published Standard

Errors

Large-scale establishment surveys often exhibit substantial temporal or cross-sectional

variability in their published standard errors or relative standard errors. To illustrate,

consider a set of domains j and periods t; j ¼ 1; : : : ; J; t ¼ 1; : : : ; T ; let ujt be a finite

population parameter for domain j at time t; let ûjt be the associated design-based point

estimator; let V̂pðûjtÞ be an estimator of the design variance of ûjt; and define the associated

estimated standard errors

sðûjtÞ ¼ {V̂pðûjtÞ}
1=2

and relative standard errors

rðûjtÞ ¼
sðûjtÞ

ûjt

:

Throughout this article, the subscript “p” denotes an expectation or variance evaluated

with respect to the sample design.

q Statistics Sweden

1 U.S. Bureau of Labor Statistics-Office of Survey Methods Research, PSB 1950 2 Massachusetts Ave. N.E.,
Washington, DC, 20212, U.S.A. Emails: Cho.Moon@bls.gov, Eltinge.John@bls.gov
2 U.S. Bureau of Labor Statistics-Office of Employment and Unemployment Statistics, Washington, DC, U.S.A.
Emails: Gershunskaya.Julie@bls.gov and Huff.Larry@bls.gov
Acknowledgment: The authors thank Ken Robertson for many helpful discussions of the CES and the Associate
Editor for the insightful and constructive suggestions. The views expressed in this article are those of the authors
and do not necessarily reflect the policies of the U.S. Bureau of Labor Statistics.

Journal of Official Statistics, Vol. 30, No. 4, 2014, pp. 787–810, http://dx.doi.org/10.2478/JOS-2014-0048

http://dx.doi.org/10.2478/JOS-2014-0048


Variability of sðûjtÞ and rðûjtÞ can have a substantial practical effect on data users.

Consequently, it is important for survey management to have diagnostic tools to assess

this variability. For that assessment, four sources are of primary interest:

(A) Temporal or cross-sectional differences in the true design variances that are

attributable to changes in factors that can be controlled (to some extent). For example,

let njt equal the realized sample size for domain j at time t. If the variability in sðûjtÞ or

rðûjtÞ were considered large enough to be problematic, and if it were attributable

primarily to variability in njt, then one could consider a design modification that would

reduce variability in njt values.

(B) Differences in the true design variance VpðûjtÞ that are attributable to changes in

factors that can be observed (or estimated from available data) but not controlled. For

example, the true design variance and relative variance may be functions of estimable

parameters of the underlying finite population, for example, functions of the element-

level population variance, and of the true population parameter ujt.

(C) Differences in the true design variance VpðûjtÞ that are attributable to factors that are

neither controllable, nor observable, nor readily estimable. Examples include changes in

VpðûjtÞ that arise from short-term local changes in economic conditions.

(D) Sampling variability of the variance estimator V̂pðûjtÞ. For surveys to which case (D)

applies, one may wish to consider using an alternative to the current variance estimator.

Issues (A) through (D) can arise for both household and establishment surveys. For

establishment surveys, these issues can be especially interesting due to two factors. First,

many survey variables are approximately continuous and have heavily skewed population

distributions. For example, in the establishment survey application considered below,

individual employment counts range from single digits to tens of thousands, but most

population units had counts in the single or double digits. Second, initiation of new sample

units can be expensive and time consuming. To address these issues, many establishment

surveys use a panel structure, and realized sample sizes may vary due to the effects of slow

sample initiation, as well as attrition. This in turn may lead to increased variability in the

true design variances.

The remainder of this article develops methods for exploration of sources (A) through

(D) outlined above. These methods are based on relatively simple parametric models for the

regression of lnðV̂pðûjtÞÞ on predictor variables associated with sources (A) and (B). Such

regression models may be viewed as extensions of generalized variance function models

developed previously in the sample survey literature. Specifically, Section 2 provides a

brief introduction to a case study based on the U.S. Current Employment Statistics

Program. Section 3 develops some notation for the predictors, coefficients and error terms

that will be important for these generalized variance function (GVF) extensions, and

outlines estimation and inference methods for the applicable GVF models. Section 4

considers sources (A) and (B) through evaluation of the extent to which variability in sðûjtÞ

may be associated with variability in observed predictors. Section 5 applies the main ideas

of Sections 3 and 4 to the CES example introduced in Section 2; and also uses estimators of

the equation-error variance to evaluate source (C). Section 6 reviews the main ideas of this

article; discusses conditions under which source (D) may also be of practical importance;

and considers several possible extensions of the methods developed here.
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2. An Example: Monthly Estimation from the U.S. Current Employment Statistics

Program

This article was motivated by variability in the direct standard errors computed for the

U.S. Current Employment Statistics (CES) survey. The CES survey collects data each

month on employment, hours, and earnings from a sample of nonagricultural

establishments. The sample includes approximately 140,000 businesses and government

agencies, covering around 440,000 individual worksites. Approximately 55,000 new

sample units are enrolled in the CES survey each year to account for the establishment of

new firms and to rotate a portion of the sample. When firms are rotated into the sample,

they are retained for two years or more. The active CES sample includes approximately

one third of all nonfarm payroll employees.

The CES design uses a stratified simple random sample of unemployment insurance

(UI) accounts. A UI account is a cluster that may contain single or multiple establishments.

The sample strata or subpopulations are defined by state, industry, and employment size

class, yielding a state-based design. For a given sample size per state, sampling rates for

each stratum are determined through optimum allocations to minimize the overall

sampling error variance of the estimated statewide total private employment. All data on

employment, hours, and earnings for the nation and for states and areas are classified in

accordance with the 2007 North American Industry Classification System (NAICS). See

the BLS Handbook of Methods (U.S. Bureau of Labor Statistics 2011, ch. 2), Butani et al.

(1997) and Werking (1997) for further details.

CES uses a “weighted link relative estimator” of the employment in domain j for

month t. This estimator is computed as the product

ŷjt ¼ xj0R̂jt; ð1Þ

where xj0 is the known Quarterly Census of Employment and Wages (QCEW)

employment total for all establishments in domain j for the benchmark month 0; ŷjt is an

estimator of the unknown true employment total for domain j in month t; and R̂jt is an

estimator of the relative employment growth that took place from benchmark month 0 to

the current month t as detailed in BLS Handbook of Methods (U.S. Bureau of Labor

Statistics 2011) and Gershunskaya and Lahiri (2005). For the current article, the domains

of interest are 14 large industries described in Table 1.

For a given reference month, the CES publishes estimates labeled “first closing”,

“second closing” and “third closing”; the second and third closing estimates use additional

information from respondents not available for the first-closing estimates at the time of

production. All results reported in this article are for sample sizes, point estimates and

variance estimates for the third-closing data. For an additional discussion of the first,

second and third closing for the CES, see Copeland and Valliant (2007).

The CES publishes many estimates of employment changes over time periods of

varying lengths. However, this article will focus attention on only three distinct estimators:

total employment, ŷjt, one-month change, ŷjt 2 ŷj;t21, and one-month relative change

ðŷj;t21Þ
21ŷjt. In the discussion below, the generic term ûjt may represent any of these three

estimators. In addition, the estimates ŷjt; ŷjt 2 ŷj;t21 and ðŷj;t21Þ
21ŷjt and their associated

variance estimates are computed for each month t ¼ 1; 2; : : :; 20. These months
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correspond to March of a given year through October of the subsequent year. However, for

a specified benchmark month 1, only results from the corresponding months 8 through 19

(October through the following September) are included in official third-closing

publications. Consequently, all results presented in this article are based on data from these

reference months 8 through 19.

Figure 1 presents boxplots of monthly realized sample sizes njt for the fourteen

industries in the years 2005–2010. For CES national-level estimators, variance estimators

are computed using balanced half-sample (BHS) methods, with Fay factors (Judkins

1990). These estimators include stratum-level finite population corrections. This article

will use the symbols V̂pjt to denote the BHS variance estimator for domain j and time t.

60 000

50 000

40 000

30 000

20 000

10 000

0
1 2 3 4 5 6 7

Industry
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Fig. 1. Boxplots of the monthly numbers of responding sample units (njt) from years 2005–2010 for each of

industries 1 though 14

Table 1. Description of industries

Industry Description Classification

1 Mining and logging Goods-producing
2 Construction Goods-producing
3 Durable goods manufacturing Goods-producing
4 Nondurable goods manufacturing Goods-producing
5 Wholesale trade Service-providing
6 Retail trade Service-providing
7 Transportation and warehousing Service-providing
8 Utilities Service-providing
9 Information Service-providing
10 Financial activities Service-providing
11 Professional and business services Service-providing
12 Education and health services Service-providing
13 Leisure and hospitality Service-providing
14 Other services Service-providing
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Figure 2 presents boxplots of the natural logarithms of the BHS variance estimates, lnðV̂pjtÞ

for monthly total employment in the specified industries. Note that log-scale differences

lnðV̂1Þ2 lnðV̂2Þ ¼ 1:5; 2:0 and 3.0 correspond to variance ratios ðV̂1=V̂2Þ equal to 4.5, 7.4

and 20.1, respectively, and standard error ratios, ðV̂1=V̂2Þ
1=2 equal to 2.1, 2.7 and 4.5,

respectively. Consequently, the log-scale differences displayed in Figure 2 correspond to

substantial differences on the standard error and variance scales.

To explore these patterns of variability at an industry level, Figure 3 presents a time plot

of njt for construction; Figures 4 and 5 present the corresponding time plots of lnðV̂pjtÞ for

total employment and one-month change respectively. Figures 3 displays “saw-tooth”

patterns due to the periodic initiation of new units and continuing attrition of current units.

In addition, the numbers of respondents njt generally show a marked increase between

October and November of a given year. Similar plots were produced for other industries

such as retail trade but are not shown in the article.

Furthermore, for a given benchmark year, the BHS variance estimator of total

employment tends to increase across months, that is, the variance increases as the

reference month moves farther away from the benchmark month. However, temporal

trends with respect to months are considerably less pronounced in cases of one-month

change and one-month relative change estimators.

3. Model Development, Estimation and Inference for Generalized Variance

Functions

3.1. General Models for the True Design Variance

Due to the temporal variability in the standard errors computed from the BHS method,

sðûjtÞ ¼ {V̂pðûjtÞ}
1=2, the CES program does not currently publish the values of sðûjtÞ as

such. Instead, it publishes temporal medians of these standard errors. However, the CES
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Fig. 2. Boxplots of lnðV̂pjtÞ for monthly estimates of total employment from years 2005–2010, separately for

industries 1–14
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program is interested in exploring the reasons for variability of sðûjtÞ, and in using the

results of that exploration to develop alternative variance estimators.

To begin that exploratory study, let XAjt
be a vector of predictors that can be observed

and controlled; let XBjt
be an additional vector of predictors that can be observed or

estimated but not controlled; define Xjt ¼ XAjt
;XBjt

� �
; define Vpjt ¼ VpðûjtÞ; and consider a

general model

ln Vpjt

� �
¼ gðXjt; gÞ þ q*

jt ð2Þ

where q*
jt is a univariate “equation error” with a mean equal to zero, and g is a

b-dimensional vector of variance function parameters. Note especially that q*
jt represents
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Fig. 3. Number of responding sample units (njt) across years: construction (monthly realized sample sizes for

October 2005 through September 2011)
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Fig. 4. Plot of lnðV̂pjtÞ of total employment across years: construction industry (estimates for October 2005

through September 2011)
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the deviation of logarithm of the true design variance Vpjt from its modeled value gðXjt; gÞ.

Model (2) may be considered a type of generalized variance function, as developed in

Johnson and King (1987), Valliant (1987), O’Malley and Zaslavsky (2005), Wolter (2007,

sec. 7.2), Cho et al. (2002), Cho et al. (2014) and references cited therein. Some previous

authors (e.g., Johnson and King 1987) have also developed generalized variance function

models on logarithmic scales. Use of a logarithmic scale converts multiplicative

relationships to linear relationships, and reduces the effects of extreme values.

Much of the GVF literature has focused on the variances of point estimators ûjt for

population proportions or population totals related to a binary outcome variable; and has

tended to emphasize predictors XBjt
. In addition, much of this literature has used ujt as one

component of the predictor vector XBjt
. The current article, however, considers the more

complex setting in which the point estimator of interest depends primarily on survey

variables that are not binary; it will use predictors XAjt
and XBjt

that are not necessarily

related to the value of ujt, but are related to important features of the sample design or

estimation process.

On a logarithmic scale, one example of Model (2) is

lnðVpjtÞ ¼ g0 þ gA XAjt
þ gB XBjt

þ q*
jt ð3Þ

where g ¼ ðg0; gA; gBÞ, g0 is univariate, gA is 1 £ bA, gB is 1 £ bB, XAjt
is bA £ 1, XBjt

is

bB £ 1, b ¼ 1þ bA þ bB and q*
jt is a random variable with mean equal to zero and variance

equal to s2
q*

jt

.

Before exploring specific forms of the Models (2) and (3), it is useful to add four

comments on the conceptual basis for generalized variance functions. First, these

functions are intended to approximate the true variances of ûjt, considered over the set

defined by j ¼ 1; : : : ; J and t ¼ 1; : : : ; T , and averaging over all of the sources of random

variability considered important for understanding the properties of ûjt. In some of the

original GVF literature, the only source considered was traditional sampling variability.

However, in many cases, practical interest encompasses additional sources of variability,

for example, the effects of nonresponse and measurement error. For these latter
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Fig. 5. Plot of lnðV̂pjtÞ of One-month change across years: construction (estimates for October 2005 through

September 2011)
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applications, one would need to define Vpjt to include the relevant sources of both

sampling and nonsampling error.

Second, practical fitting of Model (2) involves linear or nonlinear regression of the BHS

variance estimators V̂pjt on the corresponding predictors Xjt. Thus it is important for the

BHS estimators V̂pjt to be approximately unbiased for the variance terms Vpjt of interest.

For example, if interest centers on variance terms Vpjt that include the effects of

nonresponse, and of weighting adjustment or imputation used to construct ûjt, then one

would need to use BHS variance estimators V̂pjt that incorporate these effects, for example,

through Rao-Shao adjustments or multiple imputation. Similarly, if one intends to account

for the effects of measurement errors on ûjt, then it would be important to use initial

estimators V̂pjt that account for the combined effects of sampling error and measurement

error, per Wolter (2007, app. D).

Third, similar comments apply to variance function models, such as Model (3), that are

fit following a nonlinear transformation. For these cases, it is important to account for

transformation effects in discussion of unbiased estimation. Valliant (1987) provides a

rigorous conceptual basis for generalized variance functions under some specific

superpopulation models.

Fourth, the choice of approximate predictors XAjt
and XBjt

will depend on specific

features of a given application. Important criteria include availability of the predictors at

the appropriate level of aggregation; potential relevance of the predictors, based on

features of the sampling and estimation process; empirical assessment of the statistical

significance of the coefficients of the predictors in specific models; and related diagnostics

for the goodness-of-fit for the variance function model when specific predictors are

included. The remainder of this article explores these ideas in additional detail.

3.2. Point Estimation and Variance Estimation for Coefficients

For several versions of a Model (3), we computed estimators ĝ of the coefficients g

through ordinary least squares (OLS) regression of lnðV̂pjtÞ on the corresponding vector of

predictors. In keeping with Valliant (1987), one could consider alternative estimators of g

based on weighted least squares methods, with weights proportional to the inverses of

preliminary estimators of variances of the error terms in Model (3). However, exploratory

application of this idea to the CES data encountered issues with numerical stability; see

Section 6 for related comments.

In addition, practical work with GVFs can require one to identify groups of estimators ûjt

for which a common set of coefficientsgmay be used. Some authors have addressed this need

through qualitative identification of estimators with similar design or population features; for

an example see Wolter (2007, 276). To complement this qualitative approach, it is useful to

produce estimators of the variance of the coefficient vector estimator ĝ, and to carry out

significance testing for homogeneity of the coefficients across groups. For example,

Subsection 5.2 will present results on comparison of coefficients across years and across

industry groups. For this goal, we obtained an estimator V̂pðĝÞ of the variance of the

approximate distribution of ĝ from an extension of standard estimating equation approaches

for complex-survey estimators (Binder 1983). Details of the estimating equation formulation

for GVF cases and its applications were provided in Cho et al. (2014). This formulation
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accounted directly for the features of the sample design and the point estimators ûjt. In the CES

example, the dependent variables V̂pjt may be strongly correlated across months, due to the

form of the weighted link relative estimators as well as the use of a rotation sample design.

However, sampling is essentially independent across domains. Thus we decomposed the

estimating equation into sums of terms across independent domains. Based on this design-

adjusted variance estimator for ĝ, Cho et al. (2014) showed that standard (unadjusted)

variance estimates for ĝ may be much smaller than the unbiased estimates. Consequently,

it is important to use design-adjusted estimators, V̂pðĝÞ, in inference for g.

3.3. Models for Variance Estimation Error

Now consider again the temporal and cross-sectional variability in standard errors

discussed in Section 1. Within the framework defined by Model (3), Sources (A) and (B)

correspond to the regression terms gA XAjt
and gB XBjt

, respectively; and Source (C)

corresponds to the equation error term q*
jt. In addition, design features associated with

Source (A) and the choice of a specific variance estimator V̂pjt can both have an effect on

the sampling errors defined by the differences

ejt ¼ V̂pjt 2 Vpjt ð4Þ

for Source (D). Note especially that the sampling errors ejt are conceptually distinct from

the equation errors qjt in Expression (2). Similar distinctions arise in other work with

sampling errors and measurement errors. See, for example, Fuller (1987). In some cases,

one may treat the distribution of the ejt terms as a rescaled and centered version of a

chi-squared distribution on djt degrees of freedom, that is,

V21
pjt djt V̂pjt ¼ V21

pjt djt ejt þ djt , x2
djt
:

Some of the sample survey literature approximates djt as the difference between the

number of primary sampling units and the number of strata applicable to domain j at time t.

For some discussion of conditions under which this approximation may be appropriate, see

Korn and Graubard (1990), Valliant and Rust (2010) and references cited therein. Our

CES analyses will consider only estimators of national-level population parameters for

relatively large industries. For such cases, the abovementioned computations lead to

values of djt greater than 100. Consequently, the current article will devote relatively

limited attention to the sampling error terms ejt.

4. Differences Attributable to Variability in the Predictors Xjt; Equation Error; and

Estimation Error

In keeping with standard approaches to decomposition of sums of squares in regression

(e.g., Draper and Smith 1998, ch. 6), one may decompose the variability of lnðV̂pjtÞ into

four terms:

SSA: The sum of squared differences associated with controllable predictors XA

SSBjA: The sum of squared differences associated with predictors XB, after accounting

for the controllable-predictor terms XA variability
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SSQ: The variability associated with equation error (sometimes called “lack of fit” error

in the regression literature)

SSPE: The variability attributable to the random variability of lnðV̂pjtÞ conditional on

lnðVpjtÞ (sometimes called “pure error” in the regression literature)

For the CES national-level work, Subsection 3.3 noted that the V̂pjt estimators are

associated with relatively large “degrees of freedom” terms djt. Consequently, our analysis

will use the assumption that the conditional variance Vp lnðV̂pjtÞjVpjt

� �
is approximately

equal to zero. Note that Vp lnðV̂pjtÞjVpjt

� �
reflects the sampling variability of lnðV̂pjtÞ after

conditioning on the true variance term Vpjt, and thus is essentially conditioning on the

predictors Xjt and the equation errors q*
jt. Thus we will use the corresponding assumption

that SSPE ¼ 0. With this approximation, we have the decomposition of the “corrected

total” sum of squares

SSCT ¼
XJ

j¼1

XT

t¼1

lnðV̂pjtÞ2 L::
� �2

ð5Þ

¼ SSA þ SSBjA þ SSQ ð6Þ

¼ SSB þ SSAjB þ SSQ ð7Þ

where L:: ¼ J 21T 21
PJ

j¼1

PT
t¼1lnðV̂pjtÞ. In addition, for a full-model fit

lnðV̂pjtÞ ¼ g0 þ gAXAjt
þ gBXBjt

þ q*
jt;

the customary model R 2 equals the ratio

SSCTð Þ21 SSA þ SSBjA

� �
¼ SSCTð Þ21 SSB þ SSAjB

� �
: ð8Þ

Furthermore, for the partial model fit lnðV̂pjtÞ ¼ g0 þ gAXAjt
þ q*

jt, the resulting

model R 2 equals the ratio ðSSCTÞ21SSA. Similar comments apply to the partial model fit

lnðV̂pjtÞ ¼ g0 þ gBXBjt
þ q*

jt

with model R 2 equal to ðSSCTÞ21SSB.

5. Application to the U.S. Current Employment Statistics Program

5.1. Models from the Decomposition of the Design Variance

To identify some potential predictors XA and XB for the CES application, recall that our

sample consists of unemployment insurance accounts, which report nonzero employment

for previous and current months. Let njt be a number of responding UI accounts, Njt be a

number of total UI accounts, and S2
jt be a finite population variance within the domain j at

time t. Then, we can express the variance of ŷjt as a function of a design effect, Djt, for ŷjt.

Ignoring the finite-population correction term, we write the variance of ŷjt, in terms of Djt
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on the original variance scale:

VpðŷjtÞ ¼ Djt n21
jt S2

jtN
2
jt

� �
: ð9Þ

For some general background on design effects and their use in variance approximations,

see, for example, Kish (1995), Park and Lee (2004) and references cited therein.

Note that Expression (9) uses the variance term S2
jt, the finite population variance of the

original employment counts yjt. The design effect term Djt incorporates all of the ratio

estimator effects. In addition, for point estimators such as (1) that are based on estimators

of cumulative growth from a benchmark month, Djt may be an increasing function of t

(i.e., the design variance increases as the reference month moves further away from the

benchmark month). For example, one could consider the approximation

Djt 8 D ta0 ; ð10Þ

where D is a common design effect term shared across domains j. Moreover, several

authors have considered cases in which (sub)population variances are functions of

associated (sub)population means or totals. For example, Cochran (1977, 243) discusses

approximation of a finite population variance of an area unit as proportional to a positive

power of the size of that unit. Similarly, Box-Cox transformations are often based on the

assumption of a power relationship between the means and variances of sets of

observations. Application of this idea to the CES leads to the approximation

S2
jtN

2
jt 8 a1ðxj0Þ

a2 ; ð11Þ

where a1 and a2 are constants, and xj0 is the QCEW employment total for all

establishments in domain j for the month t ¼ 0. Taken together, Expressions (9) through

(11) suggest that on a logarithmic scale, one may consider the variance model

ln VðŷjtÞ
� �

¼ lnðDÞ þ a0lnðtÞ2 lnðnjtÞ þ lnða1Þ þ a2lnðxj0Þ þ q*
jt

or in a slightly more general form,

ln VðŷjtÞ
� �

¼ g0 þ g1lnðnjtÞ þ g2lnðtÞ þ g3lnðxj0Þ þ q*
jt ð12Þ

where, for example, g0 ¼ lnðDÞ þ lnða1Þ; g1 ¼ 21; g2 ¼ a0 and g3 ¼ a2.

In addition, under some standard designs, the selected sample size njt may be a function

of variables related to xjt. For example, under Neyman allocation (e.g., Cochran 1977, 99)

njt is proportional to SjtNjt provided the domains were equal to individual strata, and so the

log transformed Model (12) reduces to

lnðVpjtÞ ¼ g0 þ g1lnðxj0Þ þ g2lnðtÞ þ q*
jt ð13Þ

with appropriate redefinitions of the coefficients g0; g1 and g2. For Model (13),

XBjt
¼ lnðxj0Þ; lnðtÞ
� �

. This model does not include any variables under the direct control of

the designer, so XAjt
is empty. For the CES application, the domains were unions of several

strata. Consequently, in preliminary work, we considered versions of Model (13) that

included XAjt
¼ lnðnjtÞ. However, our empirical results indicated that after inclusion of the

predictor lnðxj0Þ, the additional predictor lnðnjtÞ provided very limited additional value.

Consequently, our modeling work for this article centered on versions of Model (13).
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Finally, recall from Subsection 3.1 that GVF models often include the point estimator ûjt

as a predictor. For the CES application, this would suggest inclusion of the population total

estimators ŷjt. However, these estimators are strongly associated with the benchmark

values xj0 which are already included in Model (13). Consequently, we did not include ŷjt

as an additional predictor in Model (13) for the CES data.

5.2. Differences in Model Coefficients g

Model (13) was based on the assumption that the coefficient vector g was constant over all

years and all domains. However, this assumption may not hold, for example, if the

underlying terms D;a0;a1, or a2 are not constant over years and domains. Consequently,

we explored the possible heterogeneity of g over years and domains, respectively.

5.2.1. Temporal Homogeneity

To explore the temporal heterogeneity of V̂pjt, we divided years into two groups. National

Bureau of Economic Research (NBER) declared the current recession starting December

2007. Moreover, the data from the BLS payroll employment site (http://data.bls.gov/

timeseries/CES0000000001?output_view¼net_1mth) are generally consistent with the

NBER recession timing. Consequently, we fit Model (13) separately for the years

2005–2007 and 2008–2010, respectively.

lnðVpjtÞ ¼

g10 þ g11lnðxj0Þ þ g12lnðtÞ þ q*
jt if Year ¼ 2005-2007

g20 þ g21lnðxj0Þ þ g22lnðtÞ þ q*
jt if Year ¼ 2008-2010

8
<

:
ð14Þ

In addition, we tested for the homogeneity of coefficients across year groups, based on the

null hypothesis

H0 : ðg10; g11;g12Þ ¼ ðg20; g21; g22Þ:

For this test, the Wald test statistic is:

W ¼ ðA ĝÞ0 A V̂ðĝÞA 0
� �21

ðA ĝÞ ð15Þ

where g ¼ g10; g11; g12; g20; g21; g22

� �
, V̂ðĝÞ is a 6 £ 6 design-based estimator of the

covariance matrix of ĝ as described in Subsection 3.2 and

A ¼

1 0 0

0 1 0

0 0 1

21 0 0

0 21 0

0 0 21

0

BB@

1

CCA:

Standard arguments adapted to the current case (e.g., Korn and Graubard 1990) indicate

that ðW=dÞ{ðd 2 pþ 1Þ=p} has approximately a noncentral F distribution with p and

ðd 2 pþ 1Þ degrees of freedom and with noncentrality parameter ðAgÞ0{AVðgÞA 0}21ðAgÞ

where l ¼ 28 is number of clusters (due to the presence of two groups of years intersected

with 14 industries); d ¼ l 2 1 ¼ 27; and p ¼ 3 is number of rows in the contrast Matrix A.

Table 2 presents the resulting coefficient estimates, standard errors and test statistics.

The separate blocks of rows in Table 2 correspond to separate model fits for variance
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estimates V̂pjt associated with total employment, one-month change and one-month

relative change, respectively. Note especially the strong indications of statistically

significant coefficients for lnðxj0Þ for each of the model fits. The coefficient estimates of

lnðxj0Þ are positive for total employment and one-month change, reflecting the fact that

larger values of lnðVpjtÞ were generally associated with domains that had larger levels of

employment and employment change.

For total employment, one-month change and one-month relative change estimators,

the W values are 11.14, 6.95 and 5.73, respectively. The cutoff points {d p=ðd 2 pþ 1Þ}

F0:05{p; ðd 2 pþ 1Þ} were 9.69 for a ¼ 0:05 and 7.51 for a ¼ 0:10. Note that the test

statistic for total employment is much larger than both cutoff points. Thus, at conventional

levels of significance, for the case of total employment, we reject the null hypothesis of

equality of the GVF coefficients across the two groups of years. In addition, note that for

total employment, the coefficient for the predictor lnðtÞ changes substantially between

2005–2007 (ĝ12 ¼ 1:33) and 2008–2010 (ĝ22 ¼ 0:87), relative to the magnitude of

seðĝ12Þ ¼ 0:12. This illustrates the importance of carrying out empirical checks on the

homogeneity of variance function models across years, rather than just assuming that the

coefficients are constant.

5.2.2. Cross-Sectional Homogeneity

To explore the cross-sectional variability of V̂pjt, we fit Model (13) separately for domains

in goods-producing and service-providing industries, respectively, which led to the model

lnðVpjtÞ ¼

g10 þ g11lnðxj0Þ þ g12lnðtÞ þ q*
jt if Goods ðfour industriesÞ

g20 þ g21lnðxj0Þ þ g22lnðtÞ þ q*
jt if Services ðten industriesÞ

8
<

:
ð16Þ

In addition, we tested the null hypothesis H0 : ðg10; g11; g12Þ ¼ ðg20; g21; g22Þ using the

Wald test statistic (15) where l ¼ 14 is number of clusters because there are two industry

groups: one with four industries and the other with ten industries; d ¼ l 2 1 ¼ 13; and

p ¼ 3 is number of rows in the contrast Matrix A. Table 3 presents the results of these

analyses. As with Table 2, we have three sets of results for total employment, one-month

change and one-month relative change, respectively. For estimators of total, one-month

change and one-month relative change, the W values were 15.94, 65.33 and 53.52,

respectively. The cutoff points were 12.72 for a ¼ 0:05, and 9.43 for a ¼ 0:10.

Thus we have strong indication of differences in the Goods and Services coefficients for

all three sets of estimators.

Finally, note that in both Table 2 and Table 3, the R 2 values for the total employment

and one-month change were relatively strong (greater than 0.7 in each case). For the

two GVF model fits for one-month relative change, the R 2 values were somewhat lower

(0.45 and 0.49, respectively).

5.3. Evaluation of Sources of Variability in the CES Variance Estimators

After evaluating the coefficient estimators ĝ for the CES data, we applied the diagnostic

ideas outlined in Section 4.

Journal of Official Statistics800



T
a

b
le

3
.

C
o

ef
fi

ci
en

t
p

o
in

t
es

ti
m

a
te

s,
st

a
n

d
a

rd
er

ro
rs

a
n

d
te

st
s

fo
r

h
o

m
o

g
en

ei
ty

b
et

w
ee

n
tw

o
g

ro
u
p

s
o

f
in

d
u

st
ri

es
b

y
p

ro
d
u

ct
ty

p
es

;
cr

it
ic

a
l
va

lu
es

fo
r

W
a

ld
te

st
st

a
ti

st
ic

s
W

:
1

2
.7

2
fo

r

a
¼

0
:0

5
,

9
.4

3
fo

r
a
¼

0
:1

0

G
o

o
d

s
S

er
v

ic
es

E
st

im
at

o
r

g
1
0

g
1
1

g
1
2

g
2
0

g
2
1

g
2
2

R
2 g

ŝ
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Table 4 presents results for full and partial model fits for the variance estimators V̂pjt for

total employment. In keeping with the results of Table 2, we allowed separate coefficients

for the early years (2005–2007) and the late years (2008–2010), respectively. Note that in

Table 4, in the full model fit for both early and late years, all coefficients (except for the

intercept) are statistically significant at conventional a levels. In addition, R2 ¼ 0:71; 0:67

and 0.05 for the full model fit, the fit with lnðtÞ omitted, and the fit with lnðxj0Þ omitted,

respectively. In that sense, most of the explanatory power of Model (14) is attributable to the

predictors lnðxj0Þ. This also indicates that although the coefficient of lnðtÞ satisfies significance

testing criteria at customary a levels, it does not contribute much power for prediction of

lnðVjtÞ as reflected in R 2 and s2
e values. This illustrates the importance of using the

diagnostics of Section 4 as complements to the coefficient testing idea from Section 3.

Tables 5 and 6 present related results for the variance estimators V̂pjt, associated with

one-month change and one-month relative change, respectively. Table 5 displays patterns

of statistical significance and R 2 results that are similar to those observed in Table 4,

except that for the late years, the full model fit does not lead to statistically significant

coefficients for the predictor lnðtÞ. The results in Table 6 differ from those in Tables 4 and

5 in two notable ways. First, in the full-model fit, the estimates for g0 and g1 are negative

in Table 6, but positive in Table 4. Second, the R 2 values in Table 6 are notably smaller

than those in Tables 4 and 5 for the full model fit and the lnðtÞ-omitted fits. Because the

underlying point estimator for Table 6 is a ratio, one would not necessarily expect Table 6

to display the same pattern as observed for point estimators for totals and differences

of totals as in Tables 4 and 5, respectively.

5.4. Magnitude of Equation Error Variances

To address issues (A) and (B) of Section 1, Subsection 5.2 developed methods for the

identification of predictors Xjt that account for some of the observed variability in the

Table 4. Total employment: coefficient estimates, inferential statistics and R 2 values for full-model and

reduced-model fits

Early years (2005–2007) Late years (2008–2010)

Intercept lnðxj0Þ lnðtÞ Intercept lnðxj0Þ lnðtÞ

R2
g ŝ2

e

g0 g1 g2 g0 g1 g2

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)
Model (tg0

) (tg1
) (tg2

) (tg0
) (tg1

) (tg2
)

Full 0.26 1.08 1.33 0.38 1.15 0.87 0.71 0.57
(4.46) (0.27) (0.12) (2.50) (0.16) (0.09)
(0.06) (3.93) (11.31) (0.15) (7.42) (9.46)

lnðtÞ 3.66 1.08 2 2.62 1.15 2 0.67 0.66
omitted (4.35) (0.27) 2 (2.41) (0.16) 2

(0.84) (3.93) 2 (1.09) (7.42) 2

lnðxj0Þ 16.97 2 1.33 18.21 2 0.87 0.05 1.89
omitted (0.62) 2 (0.12) (0.48) 2 (0.09)

(27.41) 2 (11.31) (38.05) 2 (9.46)
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estimators V̂pjt. Furthermore, Sections 4 and 5.3 used standard regression diagnostics to

evaluate the properties of variability in lnðV̂pjtÞ that is attributable to specific predictors, X.

To address issue (C), this section will consider the variability of the residual terms

q̂*
jt ¼ lnðV̂pjtÞ2 Xjtĝ. In particular, we address issue (C) by exploring the extent to which

the variances of the residuals q̂*
jt may vary across industry, employment size at benchmark

month, or month.

Figure 6 presents a scatter plot of these monthly residuals for total employment against

the predicted values with separate plotting symbols for industries that are goods producing

(1–4) and service providing (5–14), respectively. To explore this further, Table 7 presents

Table 6. One-month relative change: coefficient estimates, inferential statistics and R 2 values for full-model

and reduced-model fits

Early years Late years

Intercept lnðxj0Þ lnðtÞ Intercept lnðxj0Þ lnðtÞ

R2
g ŝ2

e

g0 g1 g2 g0 g1 g2

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)
Model (tg0

) (tg1
) (tg2

) (tg0
) (tg1

) (tg2
)

Full 22.27 20.72 0.30 21.60 20.71 20.09 0.45 0.67
(2.59) (0.17) (0.13) (2.75) (0.17) (0.10)

(20.88) (24.27) (2.38) (20.58) (24.08) (20.84)

lnðtÞ 21.50 20.72 2 21.82 20.71 2 0.45 0.67
omitted (2.68) (0.17) 2 (2.72) (0.17) 2

(20.56) (24.27) 2 (20.67) (24.08) 2

lnðxj0Þ 213.52 2 0.30 212.57 2 20.09 0.00 1.21
omitted (0.42) 2 (0.13) (0.42) 2 (0.10)

(232.19) 2 (2.38) (230.00) 2 (20.84)

Table 5. One-month change: coefficient estimates, inferential statistics and R 2 values for full-model and

reduced-model fits

Early years Late years

Intercept lnðxj0Þ lnðtÞ Intercept lnðxj0Þ lnðtÞ

R2
g ŝ2

e

g0 g1 g2 g0 g1 g2

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)
Model (tg0

) (tg1
) (tg2

) (tg0
) (tg1

) (tg2
)

Full 22.18 1.27 0.32 21.45 1.29 20.12 0.72 0.67
(2.65) (0.17) (0.13) (2.84) (0.18) (0.11)

(20.82) (7.32) (2.44) (20.51) (7.20) (21.16)

lnðtÞ 21.37 1.27 2 21.76 1.29 2 0.72 0.68
omitted (2.74) (0.17) 2 (2.80) (0.18) 2

(20.50) (7.32) 2 (20.63) (7.20) 2

lnðxj0Þ 17.53 2 0.32 18.43 2 20.12 0.01 2.41
omitted (0.39) 2 (0.13) (0.36) 2 (0.11)

(44.96) 2 (2.44) (50.98) 2 (21.16)
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selected sample quantiles of these residuals for goods-producing and service-providing

industries, respectively, based on data from 2005–2010. Note especially that for each of

total employment, one-month change, and one-month relative change, the interquartile

range (IQR) for goods is somewhat larger than the IQR for services. However, the

difference between the 99th percentile and the first percentile is larger for services than for

goods with total employment, and are approximately equal with one-month change and

one-month relative change.

In addition, we fit the models,

q̂
*

jt

� �2

¼
vG0 þ vG1lnðxj0Þ þ vG2lnðtÞ if j [ Goods

vS0 þ vS1lnðxj0Þ þ vS2lnðtÞ if j [ Services

(

ð17Þ

and tested H0 : ðvG0;vG1;vG2Þ ¼ ðvS0;vS1;vS2Þ using estimators and test statistics

similar to those developed in Subsection 5.2.

Table 8 presents the resulting coefficient estimates, standard errors and test statistics. Note

that the Wald tests do not reject the null hypothesis of no differences for the total employment,

one-month change and one-month relative change analyses. However, for one-month change

and one-month relative change, t-tests on individual coefficients are fairly distinct for the

“Goods” and “Services” models, respectively. In particular, for the “Goods” analyses, the

coefficients for lnðxj0Þ are not significant for these two cases; and for the “Services” analyses,

the coefficients for lnðxj0Þ are significant for the corresponding two cases.

Reviewers of an earlier form of this article noted that a version of Figure 6 displays

curvature for the service-providing industries. To address this, we fit an alternative form of

Model (13) that included the predictor lnðxj0Þ
� �2

. Table 9 presents results for the model

lnðV̂pjtÞ ¼

g10þg11lnðxj0Þþg111 lnðxj0Þ
� �2

þg12lnðtÞþ q*
jt if Year¼ 2005-2007

g20þg21lnðxj0Þþg211 lnðxj0Þ
� �2

þg22lnðtÞþ q*
jt if Year¼ 2008-2010

8
><

>:
ð18Þ

17 18 19 20 21 22 23
−3

−2

−1

0

1

2

3

4

Predicted value

R
es

id
ua

l

Goods
Services

Fig. 6. Scatter plot of log-scale residuals q̂
*

jt against predicted values Xjtĝ for the variance of total employment
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A plot of the residuals from Model (18) against the predicted values produced by Model

(18) did not display the curvature pattern observed in Figure 6. However, in comparison

with the results in Table 3 for Model (16), Table 9 indicates that for Model (18), inclusion

of the squared predictor to modest changes in the values of s2
e (0.50 vs 0.44) and R 2 (0.75

vs 0.78). In addition, for goods-producing industries, the t-statistics reported for the

coefficient g111 of lnðxj0Þ
� �2

are not significant at conventional levels of significance;

however, for service-providing industries, the t-statistics reported for the coefficients g211

equal 22.37, 2 1.77 and 21.84 for total employment, one-month change and one-month

relative change respectively. Use of an additional regressor lnðnjtÞ was explored through

analyses that are not detailed in the current text; inclusion of this regressor did not produce

notable changes in the analyses.

In summary, Subsections 5.2 and 5.3 indicated that much of the observed variability in

the lnðV̂pjtÞ values may be attributed to variability in the conditional-expectation structure

described by the regression Model (13). In addition, those sections indicated importance

of testing for homogeneity of model fit across different temporal and cross-sectional

groups. The current section indicates that the patterns of residual variability (reflected

in the variances of the equation error terms q*
jt) differ substantially between goods-

producing and service-providing industries, and in some cases may be associated with

the predictors lnðxj0Þ.

6. Discussion

Historically, survey organizations have developed generalized variance function models

based on relatively broad concepts like commonality in design and population features.

This article complements these previous approaches by using formal significance

procedures to test for homogeneity of GVF coefficients across groups of estimators; by

using regression diagnostics to evaluate the impact of adding particular predictors; and by

using models for the variances of the equation errors in GVF models. The CES application

presented in Sections 2 and 5 illustrated the main ideas of this article, with special

emphasis on comparison of models across years (2005–2007 vs 2008–2010) and across

industry groups (goods-producing vs service-providing).

One could consider several extensions of the ideas developed here. First, this article

used the assumption that the rescaled variance estimators V21
pjt djt V̂pjt followed a chi-

square distribution on djt degrees of freedom with values of djt that were large (over 100).

This was appropriate for the national-level analyses considered here. It would be of

interest to extend the current work to state and local area analyses; for some of those

analyses, the effective degrees of freedom djt may be relatively small. In addition, one

could consider alternative approaches under which scaled forms of V21
pjt V̂pjt followed

a heavy-tailed distribution, for example, a contaminated chi-square or contaminated

lognormal. These alternatives may be of special interest for cases in which the underlying

data may be subject to outliers.

Second, one could consider versions of Models (2) and (3) that directly incorporate

finite population corrections (fpc). This would be of interest primarily in applications for

which some strata have substantial sampling fractions, and for which explicit inclusion of

fpc terms may lead to substantial improvements in the GVF model fit. For cases in which
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an estimator ûjt is based on data from a single stratum (as is the case for some types of

domain estimation), explicit inclusion of a finite population correction term leads to an

adjustment of the intercept terms in a logarithm scale fit of Model (3). For other cases,

inclusion of a finite population correction leads to more complex adjustments that are

beyond the scope of the current work.

Third, in keeping with the comments in Subsection 3.2, one could consider weighted

least squares (WLS) or generalized least squares (GLS) point estimators of the coefficient

vectors g. These alternatives would be of special interest in cases for which ordinary least

squares residual plots displayed patterns of heteroscedasticity that were more severe than

the pattern in Figure 6 for the log-transformed fit. Under the alternative models described

in the previous paragraph, it would be of special interest to explore conditions under which

GLS estimators of g are more efficient than the ordinary least squares estimators used

in this article, to develop variance estimators for these GLS point estimators, and to

evaluate properties of the GLS estimators under violation of the abovementioned model

assumptions.

Fourth, the proposed parametric GVF model in this article assumes that the model

is fully described by a very small set of parameters. However, for other applications,

the relationships between sampling variances and predictor variables may follow

patterns that require more complex models with a larger number of parameters.

Semiparametric analysis may provide a flexible tool for studying the dependence of a

variable of interest on auxiliary information, without constraining the dependence to

a fixed form with few parameters. It would be of interest to extend our model to the

semiparametric setting.
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