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Evidence-based policy making and economic decision making rely on accurate business
information on a national level and increasingly also on smaller regions and business classes.
In general, traditional design-based methods suffer from low accuracy in the case of very
small sample sizes in certain subgroups, whereas model-based methods, such as small area
techniques, heavily rely on strong statistical models.

In small area applications in business statistics, two major issues may occur. First, in many
countries business registers do not deliver strong auxiliary information for adequate model
building. Second, sampling designs in business surveys are generally nonignorable and
contain a large variation of survey weights.

The present study focuses on the performance of small area point and accuracy estimates of
business statistics under different sampling designs. Different strategies of including sampling
design information in the models are discussed. A design-based Monte Carlo simulation study
unveils the impact of the variability of design weights and different levels of aggregation on
model- versus design-based estimation methods. This study is based on a close to reality data
set generated from Italian business data.
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1. Business Surveys and Small Area Estimation

Statistical offices increasingly face the challenge of producing estimates on subgroups

in addition to national estimates. In business statistics, these subgroups may consist of

regions or NACE classes (Nomenclature statistique des activités économiques dans la

Communauté européenne, Eurostat 2008). Generally, in business surveys the sampling

designs are optimized to furnish national estimates with a desired level of accuracy which

may lead to unsuitably small sample sizes for subgroups of interest. Since the precision

of direct estimates, for example measured by the variance of the estimator, is inversely

proportional to the sample size, the resulting small sample sizes may lead to unreliable

direct estimates for these subgroups. Hence, alternative estimators may have to be

considered.
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Over the past decades, small area estimation techniques have gained popularity.

The main idea behind these methods is to borrow information from other subgroups via

statistical models in order to increase the effective sample size of the subgroups of interest

(cf. Rao 2003). One major reservation in official statistics against the use of model-based

methods is the possible lack of design unbiasedness. In the presence of small sample sizes,

however, the design biasedness may play a minor role in assessing the precision of the

estimates because of the variability caused by small sample sizes. A widely used measure

to assess the precision of estimates is the mean square error (MSE), which considers both

the squared bias and the variance of an estimator. Model-based small area methods

typically have lower variances but may suffer from design bias. In contrast to model-based

methods, design-based methods are design unbiased at the expense of large variances with

small sample sizes. Thus there is a trade-off between bias and variance of the different

estimators. Therefore, the selection of an estimator of either kind has to be made carefully

in any application. While small area estimation is increasingly used in many fields of

social statistics, such as the estimation of poverty measures (cf. Molina and Rao 2010, or

Lehtonen et al. 2011), it has not yet been widely used in the area of business statistics.

Small area estimation techniques use models for the prediction of the quantity of interest.

This approach relies heavily on the availability of strong predictive variables for modeling

the dependent variable. This auxiliary information usually comes from business registers.

The higher the predictive power of the model, the better estimates are produced.

In this article, we want to raise and discuss two issues arising in the application of small

area estimation methods for business statistics. First, in many countries business registers

do not include strong auxiliary information, leaving the data producer with little choice

regarding model building and variable selection. Nevertheless, the data producer might

be obliged to publish information on subgroups under these less suitable conditions and

without sufficient sample sizes for applying design-based methods. Options available to a

data producer are discussed.

Secondly, sampling designs in business statistics are often nonignorable due to a high

market concentration of important variables, such as total turnover. The designs, mainly

stratified or probability proportional to size, work well within a design-based framework

for estimating national figures. However, most small area estimators operate in a model-

based framework ignoring the sampling design. In the case of informative sampling

designs, this may lead to erroneous statistical inferences (cf. Pfeffermann and Sverchkov

2009). In this case, one option is to correct for the design bias due to the informativeness

directly (cf. Pfeffermann and Sverchkov 2007). Another approach incorporates the design

weights into the estimation of the statistical model. In a Bayesian context, this issue has

been addressed by You and Rao (2003) and Little (2012). A discussion on weighting and

prediction in the context of small area estimation from a frequentist’s viewpoint is given in

Pfeffermann (1993) and Pfeffermann et al. (1998) and for multilevel modeling in general

in Asparouhov (2006). In our article we compare different frequentist strategies for

including design weights in small area modeling.

In Section 2, we describe the sampling designs used in business surveys and discuss

their usefulness for small area estimation. This is followed by the presentation of the small

area estimators considered in our study, including their properties with respect to complex

survey designs. In Section 3, we describe our data set and outline our design-based
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simulation strategy followed by a discussion of the results of our simulation study. Finally,

we summarize our findings in Section 4.

2. Small Area Estimation and Modeling

2.1. Sampling Designs for Business Surveys

In business surveys, stratified sampling designs are typically applied. The strata are

often determined as cross-classifications of variables such as industry classifications,

geographical information or employee size classes (cf. Hidiroglou and Lavallee 2009).

Since the present article focuses on enterprise-level business surveys, we omitted

multistage designs which, in general, are not applied in business statistics (cf. Thompson

and Oliver 2012). Some ideas in the context of small area applications for household

surveys can be drawn from Münnich and Burgard (2012).

Frequently, the survey planner who designs the survey and chooses the estimator faces a

conflict between obtaining reliable estimates for small domains and for national figures.

Furthermore, the planner has to consider the impact of the design on the estimator as well

as decide on the level of aggregation at which the estimates are required. This decision-

theoretic problem may be addressed by specifying a loss function, which is to be

minimized under certain constraints.

Longford (2006) minimizes the weighted sum of domain-specific variances and the

variance of the national estimators subject to the sample size restriction, where the weights

specify the relative importance of each domain and the priority for the national estimate.

Choudhry et al. (2012) consider the problem of minimizing the total sample size subject to

the upper bounds of the coefficients of variation for the strata means and the national mean

by using nonlinear programming techniques. Another approach introduced by Costa et al.

(2004) does not require an explicit loss function but consists of a convex combination of

the equal and proportional allocation with L strata (h ¼ 1; : : : ; L):

nh;Costa ¼ kn
Nh

N
þ ð1 2 kÞ

n

L
; 0 # k # 1; h ¼ 1; : : : ; L; ð1Þ

where nh denote the stratum-specific sample sizes with total sample size n, Nh is the

number of units in the h-th stratum summing up to the total number of units N, and k is a

weighting constant, which yields the equal allocation for k ¼ 0 and the proportional

allocation for k ¼ 1. The idea behind the Costa allocation is that the equal allocation is

favorable for domain level estimates but not very efficient for national estimates, whereas

the opposite holds for proportional allocation. In addition to reaching a compromise

between efficient estimation at different levels of aggregation, allocation (1) is also

particularly easy to apply. The optimal allocation due to Neyman (1934) and Tschuprow

(1923) minimizes the variance of the national mean estimator m̂ of the variable of interest

Y for stratified random sampling. If we are interested in small domain estimates, however,

this will not be sufficient, since the optimal allocation leads to very small domain-specific

sample sizes in cases where there is hardly any variation within a stratum. This may yield

stratum-specific sample sizes nh , 2 which do not allow unbiased estimation of the

variances. We therefore consider the box-constraint optimal allocation proposed by
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Gabler et al. (2012), which minimizes the 2–norm of the relative root mean square error

(RRMSE) of a set of direct statistics m̂ ¼ ðm̂1; : : : ; m̂DÞ under constraints regarding the

lower and upper bounds of the domain-specific sample sizes nd ðd ¼ 1; : : : ;DÞ of D

domains and an upper bound of the total sample size n. The 2–norm (cf. Harville 2008, 60)

can be seen as a compensatory functional penalizing larger RRMSEs more than smaller

ones. The box-constraint optimal allocation technique allows for control of the sample

sizes or sampling fractions and, hence, the variation of the design weights. The domain-

specific sample sizes emerge as a solution of the following optimization problem:

nd
min kRRMSE,�.ðm̂Þk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

D

d¼1

RRMSEðm,d.Þ
2

v

u

u

t

s:t: Ld # nd # Ud; d ¼ 1; : : : ;D

X

D

d¼1

nd # n;

ð2Þ

where Ld and Ud denote the lower and upper bound for the sample size in the d th domain.

The issue of obtaining numerically efficient solutions for the optimization problem (2) for

very large numbers of strata is explored in detail by Münnich et al. (2012).

Besides these stratified sampling designs, pps–designs are often used in business

surveys as past values of the auxiliary variables are available from the enterprise register

(cf. Holmberg et al. 2002). In pps sampling, the inclusion probability of each unit is

proportional to the value of some size variable available at the design stage. pps sampling

is a very efficient design for design-based estimation strategies in cases where a high

correlation exists between the target variable and the size variable and the intercept is

close to zero (cf. Tillé 2006). In fact, if the variable of interest is proportional to the size

variable, the variance of a Hajék-type estimator on a national level would be zero for fixed

size designs (cf. Särndal et al. 2003, 89). One issue with pps sampling is that it tends to

lead to highly variable design weights when there is a large variation in the auxiliary

variable X. This can negatively influence the statistical modeling. An approach to reduce

this variation is to incorporate box constraints to inclusion probabilities pi (i ¼ 1; : : : ;N)

yielding new inclusion probabilities p*
i according to

p*
i

min
X

N

i¼1

ð1=2Þ p*
i 2 pi

� �2

pi

s:t:
X

N

i¼1

p*
i ¼ n;

pL # p*
i # pU ; i ¼ 1; : : : ;N;

ð3Þ

where pL andpU denote the lower and the upper bound for the new box constraint

inclusion probabilities. The solution to problem (3) gives the box-constraint inclusion

probabilities p*
i which satisfy the box constraints. In the same spirit as the box-constraint
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optimal allocation, the box-constraint pps design allows for control of the range of the

design weights directly. As an additional benefit, the box-constraint approach towards pps

sampling avoids very small inclusion probabilities, which are a concern for the sample

selection algorithms. Another method has been proposed by Falorsi and Righi (2008)

whose strategy may be described as a balanced sampling multiway stratification. They

consider a situation in which constraints regarding a multivariate response y and several

partitions hold whilst at the same time the selected sample is balanced on auxiliary

variables. Since current algorithms for drawing balanced samples from large universes are

still extremely computer intensive, we omitted the approach of Falorsi and Righi (2008)

from our simulation study.

2.2. Small Area Estimators under Complex Designs

A common aim in small area estimation is the estimation of the domain mean

md ¼
1

Nd

X

Nd

j¼1

ydj; d ¼ 1; : : : ;D; ð4Þ

where ydj is the variable of interest for unit j in domain d and Nd denotes the population

size in domain d. A traditional estimator often used in survey sampling is the direct

estimator given by

m̂d;Direct ¼

X

nd

j¼1

wdjydj

X

nd

j¼1

wdj

; ð5Þ

with wdj as the design weight of unit j in domain d. Note that with planned domains and

stratified random sampling where the strata are nested within the domains, the sum in

the denominator of (5) is equal to Nd. Though Estimator (5) is design unbiased, estimates

for domains with small sample sizes are expected to be inaccurate. We refer to (5) as the

Direct estimator. The group of GREG estimators are given by

m̂d;GREG ¼
1

Nd

X

Nd

j¼1

ŷdj þ
X

nd

j¼1

wdj ydj 2 ŷdj

� �

" #

: ð6Þ

where ŷdj is the predicted value of the variable of interest for unit j in domain d under a

specified regression model. Thus the domain estimate in (6) results as the mean of the

predicted values for all population units in domain d plus the mean of the weighted

residuals for the sampled units in domain d. There are various choices for the assisting

model, such as using linear or possibly nonlinear models, considering mixed models or

focusing on fixed effects, and including or omitting design weights when fitting the model.

A thorough investigation of model choice for GREG estimators is given in Lehtonen et al.

(2003, 2005). In our study, we will focus on a linear fixed effects model and refer to this

estimator as the GREG estimator. A detailed account on design-based and model-assisted

domain estimation is given by Lehtonen and Veijanen (2009).
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The unit-level mixed model, which is also known as the nested error regression model,

is given by

ydj ¼ xT
djbþ ud þ 1dj; d ¼ 1; : : : ;D; j ¼ 1; : : : ;Nd; ð7Þ

where ud
iid,Nð0;s2

uÞ; 1dj
iid,Nð0;s2

1Þ. The domain-specific effects ud are independent of the

sampling error 1dj. xdj is the vector of auxiliary information for unit j in domain d, and b

the vector of fixed regression parameters. Under Model (7) the small area mean is given by

md ¼ X
T

dbþ ud for all domains d ¼ 1; : : : ;D. Xd is the vector of the population mean of

the auxiliary information in domain d and xd refers to the sample equivalent.

Assuming that Model (7) holds for the sample as well, the following EBLUP (empirical

best linear-unbiased predictor) under negligible sampling fractions for the unknown

domain mean md can be derived as (cf. Battese et al. 1988)

m̂d;BHF ¼ �X
T
d b̂þ ûd; ûd ¼ ĝd �yd 2 �xT

d b̂
� �

ĝd ¼
ŝ2

u

ŝ2
u þ ŝ2

1=nd

� �

b̂ ¼
X

D

d¼1

xT
d V̂

21

d xd

 !21
X

D

d¼1

xT
d V̂

21

d yd

 !

ð8Þ

In Equation (8), ûd is the EBLUP of the random effect ud, ĝd is the shrinkage factor

depending on the estimated variance components (ŝ2
u and ŝ2

1), and b̂ is an estimator

for b, yd ¼ n21
d

Pnd

j¼1ydj, V̂21 refers to the inverse of the variance-covariance matrix.

V̂d ¼ V̂dðŝ
2
u; ŝ

2
1Þ in domain d (cf. Rao 2003, Sec. 7.2). While Estimator (8) is model

unbiased and efficient for self-weighting sampling designs, this is unlikely to hold for

general sampling designs. In the following, we will denote the Estimator (8) as BHF for

notational convenience since it dates back to Battese et al. (1988).

In typical applications in official statistics, ignoring the design weights may have severe

consequences for the quality of model-based estimators (cf. Münnich and Burgard 2012).

Several extensions of mixed models to cope with nonignorable sampling designs have been

proposed, for example in Pfeffermann et al. (1998), Asparouhov (2006), Rabe-Hesketh

and Skrondal (2006) and Lehtonen et al. (2006). Here, we focus on selected approaches

which are suitable and easily applicable in official statistics.

A second way of extending the unweighted EBLUP under the unit-level mixed model

is by augmenting the design matrix by the design weights. The following model is fitted to

the survey data:

ydj ¼ xT
djbþ kwdj þ ud þ 1dj; d ¼ 1; : : : ;D; j ¼ 1; : : : ; nd; ð9Þ

where k is the additional regression coefficient for the impact of the weights on the variable

of interest, estimated by k̂. Alternatively, the size variable might also be used instead of wdj

under unequal probability sampling. The EBLUP under Model (9) is obtained as

m̂d;augBHF ¼ �X
T
d b̂þ k̂ �Wd þ ûd; ð10Þ

with �Wd ¼ N21
d

PNd

j¼1wdj as the population mean of the design weights in domain d.

This estimator was introduced by Verret et al. (2010) in the context of informative
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sampling and will be referred to as the augBHF estimator. Note that we could alternatively

estimate b and k using design weights.

You and Rao (2002) propose to transform the unit-level model (7) to a survey-weighted

domain-level model with normalized weights within the domains. This model is given by

�ydw ¼ �xT
dwbw þ ud þ �1dw; d ¼ 1; : : : ;D; ð11Þ

with

�ydw ¼
X

nd

j¼1

~wdjydj; �xdw ¼
X

nd

j¼1

~wdjxdw; �1dw ¼
X

nd

j¼1

~wdj1dj and ~wdj ¼
wdj

X

nd

j¼1

wdj

:

The pseudo-EBLUP under Model (11) follows as (cf. You and Rao 2002):

m̂d;YR ¼ ĝdw �ydw þ �Xd 2 ĝdw �xdw

� �T
b̂w;with

ĝdw ¼
ŝ2

u

ŝ2
u þ d2

dŝ
2
1

; ð12Þ

d2
d ¼

X

nd

j¼1

~w2
dj; and

b̂w ¼
X

D

d

X

nd

j¼1

wdjxdjðxdj 2 ĝdw �xdwÞ
T

 !21
X

D

d

X

nd

j¼1

wdjydjðxdj 2 ĝdw �xdwÞ

 !

In addition to achieving design consistency, the estimator given by (12) also fulfils

the benchmarking property with respect to the national estimate. The Estimator (12) is

denoted by YouRao.

In earlier simulation studies, the approach employed by Lehtonen et al. (2011) gave

good results for various sampling designs. It is based on incorporating the vector of design

weights in the lmer function in the R-package lme4 (cf. Bates et al. 2011; lmer provides

a fast mixed-effects model implementation). Despite the fact that it is not meant

for including design weights specifically, it has been shown to reduce the bias of the

unweighted estimator (8) in many cases. For details regarding the estimation of the model

parameters we refer to Bates (2011). This estimator is denoted by wBHF.

In some cases where unit-level data may not be available or the computation of unit-

level models may not be feasible, area-level models can be a remedy. An area-level model

may be described as follows:

�ybd ¼ �X
T
dbþ ud þ 1d; d ¼ 1; : : : ;D; ð13Þ

where ud
iid,Nð0;s2

uÞ and 1d
ind,Nð0;s2

1d
Þ, which is independent of ud (cf. Jiang and Lahiri

2006). Note that in the area-level model (13) the small area means of the direct

estimator ^�yd are modeled but not the observations themselves. This is due to the fact

that auxiliary information is available at the domain level only. In the area-level
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literature, s2
u is also referred to as the model variance and s2

1d
as the sampling variance

of the direct estimator, which depends on the domain-specific sample sizes and is

therefore not identically distributed between the domains. The EBLUP under the area-

level model (13) is given by

m̂d;FH ¼ �X
T
d b̂FH þ ûd ð14Þ

and we will refer to the estimator as FH, since it was introduced by Fay and Herriot

(1979). b̂FH refers to the estimator of the regression parameters under Model (13) and

is given in Rao (2003, 116).

To estimate the prediction mean square error (PMSE) of the aforementioned EBLUP-

type estimators BHF, wBHF, augBHF, YouRao and FH we consider two different

strategies: one based on Taylor series expansions and the other based on the parametric

bootstrap method. A good reference on these methods is Datta (2009). Prasad and Rao

(1990) derived the following PMSE decomposition for EBLUP estimators based on results

from Kackar and Harville (1984):

PMSEðm̂dðûÞÞ ¼ g1dðûÞ þ g2dðûÞ þ 2g3dðûÞ; ð15Þ

where the terms g1d to g3d depend on the estimated variance components û. Additionally,

in the case that the variance components are estimated by Restricted Maximum Likelihood

(REML) or Maximum Likelihood (ML), explicit formulae for Estimators (8) and (14)

based on decomposition (15) are given in Datta and Lahiri (2000). A second-order correct

PMSE estimator for (12) has been derived by Torabi and Rao (2010).

Butar and Lahiri (2003) proposed using parametric bootstrap methods to estimate

the PMSE of small area estimators. To account for the finite population, we consider a

simplification of the bootstrap proposed by González-Manteiga et al. (2008) to produce

PMSE estimates. Their algorithm for computing PMSE estimates for Estimator (8) is

as follows:

1. Fit the statistical model to the sample data to obtain the estimates b̂; ŝ2
u and ŝ2

1.

2. Construct replicates y*
dj ¼ xT

djb̂þ u*
d þ 1*

dj, where u*
d

iid,Nð0; ŝ2
uÞ and 1*

dj
iid,Nð0; ŝ2

1Þ.

3. Calculate the domain means m*
d ¼ ð1=NdÞ

PNd

j¼1y*
dj.

4. Fit the statistical model to the sampled elements of y*
dj to obtain estimates b̂* and û*

d.

5. Compute the estimated domain means m̂*
d ¼ X

T

d b̂
* þ û*

d.

6. Repeat the Steps 2 to 5 B times.

7. The estimated PMSE is computed by P dMSEMSEðm̂d;PBÞ ¼
1
B

PB
b¼1 m̂*ðbÞ

d 2 m*ðbÞ
d

� �2
.

We also used the parametric bootstrap to obtain PMSE estimates for estimators

wBHF, augBHF and FH, using the above mentioned models and formulae for estimating

the model parameters and computing the estimated domain means.

3. Simulation Study

3.1. Data Set and Sampling Design

Our design-based simulation study extends the work of Burgard et al. (2012) to cover the

issues of PMSE estimation and prediction intervals for small domains. The study is based
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on synthetic business data resembling the small and medium enterprises from the Italian

business register. This data set is a precursor of the fully synthetic data set TRItalia, which

is being produced within the BLUE-ETS project (see Kolb et al. 2013). The parameter of

interest is the mean of value added. As auxiliary variables we use turnover and the number

of employees. Both variables are available in the Italian business register. We use these

auxiliary variables since they are the only noncategorical register variables available at the

design stage. From a subject-matter viewpoint, both auxiliary variables may influence

the value added. A linear regression model without random effects confirmed that

both explanatory variables are highly significant. However, the model only yielded

R2 ¼ 0:0045 for our population, indicating that the explanatory power of the model is

poor. Even if this case is pessimistic, similar situations may occur in many countries where

registers often lack strong covariates. Even if the variable of interest is skewed, the

application of transformation methods requires further research on the inclusion of

weights, which is beyond the scope of this article.

As a stratification variable we used the first digit of the industry classification within

each province (103 Italian provinces), resulting in 927 strata. The stratum-specific

population sizes vary from 98 enterprises in the smallest stratum to 114,844 enterprises

in the largest stratum. Since our data set is restricted to small and medium enterprises

with 1 to 99 employees, our stratification does not contain a census-like stratum where

all units within the stratum are sampled with certainty. We account for the problem

that statistical agencies have to disseminate information at different levels of

aggregation by considering two kinds of domains as scenarios. In the first scenario, the

103 Italian provinces are also the domains of interest, whereas in the second scenario

the 927 strata are considered as domains. It is important to note that both scenarios

reflect the problem of prediction with planned domains, thus avoiding problems of

nonsampled areas.

The expected total sample size is set to n ¼ 60; 000. For the (box-constraint) optimal

allocations the auxiliary variable turnover was used to compute the stratum-specific

sample sizes. Besides these stratified sampling designs we also consider unequal

probability within the strata, where the expected sample size within each stratum is set to

the sample size allocated by proportional allocation. As in the case of optimal allocation,

we use turnover to compute the inclusion probabilities. We use turnover as a size

measure because it is the variable in our data set which has the highest correlation with

our dependent variable. Since turnover does not have zero values in our data set, its use

as a size measure is straightforward. A major difference between optimal allocation and

unequal probability designs is that the former leads to design weights which vary

between the strata, whereas for the latter the weights also vary within the strata. Even

though the computation of inclusion probabilities is straightforward when using a strictly

positive auxiliary variable, the sample selection is very computer intensive. For the case

of unconstrained inclusion probabilities, Midzuno’s method as described in Tillé (2006,

Algorithm 6.13) programmed in C failed to produce the desired samples in due time.

This problem was resolved by means of the box-constraint inclusion probabilities given

in (3). In accordance with Münnich and Burgard (2012) the Gelman factor (GF) is

defined as the ratio of the largest to the smallest design weight. This definition of a

Gelman factor should not be confused with the Gelman-Rubin factor which is related to
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MCMC convergence diagnostics. The GF is given by

GF ¼
i¼1; : : : ;N

max
1

pi

i¼1; : : : ;N
min

1

pi

: ð16Þ

The GF for equal allocation thus varies with the stratum sizes. If all the strata are of

roughly the same size, then the equal allocation is almost equivalent to the proportional

Table 1. Sampling designs

Abbreviation Design Gelman factor

COSTA50 Costa-type allocation with k ¼ 0.5 47.66
EQUAL equal allocation 1,153.85
BCOpt25 box-constraint optimal allocation with GF ¼ 25 30.88
BCOpt50 box-constraint optimal allocation with GF ¼ 50 60.83
OPT optimal allocation 554.92
PROP proportional allocation 1.78
UPS unequal probability sampling 44,085, 380.58
UPS10 unequal probability sampling under constraint

max
p21

L

p21
U

# 10

10

UPS100 unequal probability sampling under constraint

max
p21

L

p21
U

# 100

100
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Fig. 1. Domain-specific sample sizes – 1st Scenario (103 domains)
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allocation and thus the GF will approach 1. If the Nh are highly variable, the equal

allocation leads to highly dispersed design weights. Additionally, in the case of pps

designs we get GF _¼ max zi=min zi with z being the size variable used for the calculation

of the pps inclusion probabilities. Typically, the variation of the auxiliary variable in

business surveys is very large and thus the GF is very large as well. Table 1 lists our

sampling designs with the abbreviations used in the following and the GF. Turning our

attention to the box-constraint optimal allocations, we recognize that these allocations do

not satisfy the box constraints exactly. This is due to the fact that our approach produces

non-integer-valued numbers, which have to be rounded, rather than integer-valued

constraints.

The variation of the domain-specific sample sizes under the first scenario is illustrated in

Figure 1. We see that the optimal allocation on the one hand and the equal allocation on the

other hand are the two extreme cases. The minimum and the maximum for the domain-

specific sample sizes under Scenarios 1 and 2 are given in Tables 2 and 3. These tables

further illustrate that under Scenario 2 the minimum domain-specific sample sizes are very

small except for the equal allocation.

To evaluate the results of our simulation study, we consider several different quality

measures related to the accuracy of point estimates and the reliability of confidence

intervals. A common measure to estimate the bias of a point estimator is the relative bias.

It is given by

RBðm̂dÞ ¼

1

R

� �

X

R

l¼1

m̂l;d 2 md

md

; d ¼ 1; : : : ;D; ð17Þ

where R denotes the number of Monte Carlo replicates. The relative bias takes values from

21 to 1, whilst a relative bias close to 0 is desirable, indicating that the point estimates

are on average identical to the true values. Another quality measure is the relative root

mean square error (RRMSE), which is computed as

RRMSEðm̂dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R

X

R

l¼1

ðm̂l;d 2 mdÞ
2

s

md

; d ¼ 1; : : : ;D: ð18Þ

Table 2. Domain-specific sample sizes – 1st Scenario (103 domains)

PROP EQ COSTA50 BCOpt25 BCOpt50 OPT

Min 82 576 330 35 33 31
Max 4,862 585 2,727 11,765 11,978 13,522

Table 3. Domain-specific sample sizes – 2nd Scenario (927 domains)

PROP EQ COSTA50 BCOpt25 BCOpt50 OPT

Min 2 64 34 2 2 2
Max 1,605 65 836 3,998 3,935 4,766
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The values of the RRMSE are in the range between 0 and 1, where a value close to 0

indicates good results. Moreover, we consider summary statistics of the quality measures

over all domains. With respect to the relative bias, we compute the mean absolute relative

bias (MARB)

MARBðm̂dÞ ¼
1

D

X

D

d¼1

RBðm̂dÞj j ð19Þ

and for the RRMSE we consider the average relative root mean square error (ARRMSE)

ARRMSEðm̂dÞ ¼
1

D

X

D

d¼1

RRMSEðm̂dÞ: ð20Þ

We construct confidence intervals based on MSE or PMSE estimators as described in

Subsection 2.2. The traditional approach is to compute the confidence interval (CI) as

follows (cf. Chatterjee et al. 2008):

CIðm̂dÞ12a ¼ m̂d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PdMSMSEðm̂dÞ

q

�z12a=2; m̂d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PdMSMSEðm̂dÞ

q

�z12a=2

� �

ð21Þ

with z12a=2 as the ð1 2 a=2Þ-quantile of the standard normal distribution. Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PdMSMSEðm̂dÞ

q

is estimated, confidence intervals based on quantiles of the t-distribution

with ðnd 2 1Þ degrees of freedom could be considered. Note that differences between these

two approaches to computing confidence intervals vanish as the domain-specific sample

size nd increases. Additionally, we also considered using bootstrap confidence intervals as

proposed by Chatterjee et al. (2008). The reliability of confidence intervals is measured

by the coverage rate, computed as the percentage of confidence intervals covering the

true value md.

In the following section we will report results based on 1,000 Monte Carlo replications.

For the parametric bootstrap methods we use 499 bootstrap replications. Due to the small

number of bootstrap replications, the bootstrap confidence intervals are outperformed

Table 4. Computing times in seconds

Estimator BHF wBHF augBHF YouRao GREG Direct

Seconds 2732.17 2870.49 2789.30 3.83 0.40 0.21

Table 5. Types of estimators

Abbreviation Estimator

Direct Hajek-type estimator (5)
GREG linear fixed effects generalized regression estimator (6)
YouRao pseudo-EBLUP (12)
wBHF weighted EBLUP using weights option in lmer
augBHF augmented EBLUP (10)
BHF EBLUP (8) under unit-level mixed model
FH EBLUP (14) under area-level mixed model
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by the other methods. Therefore, the bootstrap confidence intervals are not presented in

Subsection 3.3. The average CPU time (AMD Opteron 6164 HE with 1.7 GHz and 4GB

RAM for each kernel) for the estimators is given in Table 4, where in case of the BHF,

wBHF, and augBHF 499 bootstrap resamples are performed.

3.2. Results of Point Estimates

In this section we summarize the most important aspects regarding the simulation results

on the point estimates. For convenience, our estimators are listed in Table 5. We also

considered a GREG based on mixed models, but we did not observe major differences

between a GREG with or without random effects. To keep the presentation of the results as

short as possible, the focus subsequently lies on the GREG without random effects.

For our first scenario (103 domains) the mean absolute relative bias over all domains

is given in Table 6. The analysis of MARB in Table 6 indicates that the Direct estimator

is indeed unbiased under all sampling designs. The model-assisted GREG has some

problems under unequal probability designs. This can be traced back to the fact that we did

not include design weights when estimating b. With respect to the estimators based on

unit-level models, we see that there are only minor differences under proportional

allocation, equal allocation and convex combinations thereof. As soon as we consider

(box-constraint) optimal allocations, the bias of the unweighted BHF estimator is more

pronounced compared to the wBHF and augBHF estimator. With respect to unequal

probability designs, we observe severe biases for the augBHF and BHF estimators,

whereas the wBHF estimator is still accurate. The YouRao estimator performs similarly

to the wBHF under proportional and equal allocation, but its bias increases for other

designs and is higher than the bias of the unweighted BHF estimator for optimal

Table 6. MARB – 1st Scenario (103 domains)

PROP EQ UPS10 UPS100 COSTA50 BCOpt25 BCOpt50 OPT

Direct 0.004 0.004 0.005 0.006 0.003 0.005 0.005 0.007
GREG 0.004 0.004 0.027 0.045 0.004 0.005 0.006 0.007
YouRao 0.023 0.026 0.034 0.069 0.020 0.059 0.066 0.089
wBHF 0.022 0.014 0.019 0.014 0.021 0.012 0.010 0.009
augBHF 0.022 0.023 0.226 0.532 0.021 0.019 0.018 0.019
BHF 0.022 0.023 0.226 0.533 0.020 0.040 0.041 0.040
FH 0.051 0.059 0.069 0.090 0.046 0.100 0.106 0.115

Table 7. ARRMSE – 1st Scenario (103 domains)

PROP EQ UPS10 UPS100 COSTA50 BCOpt25 BCOpt50 OPT

Direct 0.142 0.160 0.162 0.193 0.135 0.220 0.234 0.256
GREG 0.140 0.158 0.167 0.205 0.134 0.219 0.233 0.255
YouRao 0.139 0.156 0.160 0.191 0.133 0.211 0.224 0.245
wBHF 0.029 0.071 0.042 0.074 0.033 0.103 0.123 0.155
augBHF 0.030 0.033 0.229 0.539 0.029 0.031 0.032 0.034
BHF 0.029 0.032 0.229 0.539 0.030 0.044 0.046 0.046
FH 0.122 0.136 0.136 0.153 0.119 0.166 0.172 0.182
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allocations. The FH estimator exhibits bias under all designs considered due to full

shrinkage towards the synthetic component.

As soon as we consider the ARRMSE given in Table 7, the picture is completely

different. We observe that there is no single best estimator under all designs and hence

sampling design plays an important role. The results under proportional and Costa-type

allocations are almost the same. Under these designs, all model-based unit-level estimators

work well. Even though the area-level FH estimator is biased, it has the lower ARRMSE

compared to design-based estimators and the YouRao estimator. Under equal allocation,

the results are similar to the proportional and Costa-type allocations except for the

weighted wBHF estimator, which has a considerably higher ARRMSE than the other unit-

level estimators. For designs based on (box-constraint) optimal allocations, the augmented

augBHF estimator performs best, with the unweighted BHF estimator as the only other

estimator with an ARRMSE under ten percent. The wBHF estimator suffers from a much

higher ARRMSE despite a lower bias, a result that can be attributed to the increase of the

variability of the model parameter estimates. Moreover, under unequal probability

designs, the wBHF estimator is the only reasonable estimator in terms of an ARRMSE

under ten percent. The performance of the augBHF and BHF is identical up to the third

decimal number, indicating that augmenting the design matrix does not increase the

precision under unequal probability sampling in this setting. A closer look at Tables 6 and

7 reveals that due to the shrinkage to the synthetic component the FH estimator is biased

under all designs but does not perform badly with respect to RRMSE. The comparison

between the Direct estimator and the GREG shows that the working model does not have

much predictive power. Concentrating on the Direct estimator, we note that designs

optimized for national-level estimation are not the best choice for domain estimation.

Table 8. MARB – 2nd Scenario (927 domains)

PROP EQ UPS10 UPS100 COSTA50 BCOpt25 BCOpt50 OPT

Direct 0.015 0.008 0.017 0.024 0.010 0.022 0.023 0.026
GREG 0.015 0.009 0.016 0.020 0.010 0.022 0.023 0.026
YouRao 0.247 0.107 0.294 0.439 0.131 0.391 0.409 0.457
wBHF 0.081 0.068 0.073 0.060 0.078 0.047 0.042 0.037
augBHF 0.080 0.075 0.251 0.553 0.074 0.068 0.071 0.074
BHF 0.081 0.076 0.251 0.553 0.078 0.094 0.096 0.096
FH 0.221 0.127 0.257 0.304 0.152 0.314 0.318 0.322

Table 9. ARRMSE – 2nd Scenario (927 domains)

PROP EQ UPS10 UPS100 COSTA50 BCOpt25 BCOpt50 OPT

Direct 0.575 0.333 0.650 0.771 0.374 0.889 0.940 1.006
GREG 0.569 0.329 0.649 0.769 0.370 0.885 0.935 1.002
YouRao 0.451 0.312 0.498 0.573 0.344 0.570 0.581 0.608
wBHF 0.085 0.114 0.103 0.196 0.088 0.344 0.441 0.556
augBHF 0.091 0.082 0.256 0.561 0.080 0.080 0.085 0.089
BHF 0.085 0.082 0.256 0.561 0.083 0.099 0.101 0.102
FH 0.350 0.281 0.385 0.412 0.302 0.420 0.425 0.433
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The MARB in the presence of smaller domains (Scenario 2, 927 domains) are given in

Table 8. Compared to Scenario 1 (Table 6), the biases increase (almost) uniformly which

is due to the smaller sample sizes. We see that for all designs the GREG and Direct

estimators have the lowest relative bias. With respect to the unit-level estimators the

impact of designs is similar to the first scenario, but with generally higher absolute relative

biases. The FH suffers most from severe bias, especially under designs with largely

varying sample sizes such as (box-constraint) optimal allocations or proportional

allocation and the unequal probability designs. The most striking aspect about these results

is the large bias of the YouRao estimator.

With regards to the ARRMSE, which is shown in Table 9, we see that the ARRMSE

increases drastically compared to Scenario 1. Unlike Scenario 1, we now observe

significant differences between Costa-type allocation and proportional allocation, which is

due to the fact that the proportional allocation leads to very small domain-specific sample

sizes in Scenario 2 (see Table 3). This causes a severe loss in estimation quality in

comparison to the Costa-type allocation for design-based estimators. This does not apply

for model-based estimators, which manage to borrow strength from other domains to
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compensate for small domain-specific sample sizes and perform best under both designs.

With respect to the equal allocation the ranking of the estimators is similar, except that the

weighted wBHF estimator performs worse than the other two unit-level estimators. Under

(box-constraint) optimal allocations, the augmented augBHF estimator performs slightly

better than the BHF estimator due to the lower bias. Other estimators cannot be

recommended in this case, since their ARRMSE is 30 percent and more. Under unequal

probability designs, the weighted wBHF estimator seems the only reasonable choice, even

though its ARRMSE is close to 20 percent when the Gelman factors are constrained to 100.

3.3. Results of Precision Estimates

In this section, we report results of precision estimates for the most interesting designs and

estimators only. The coverage rates and mean confidence interval lengths for the first

scenario are illustrated in Figure 2 and means of the coverage rates are given in Table 10.

Figure 2 depicts both the confidence interval coverage rates and mean confidence interval

length for each domain. Ideally, these points would lie on the horizontal line, indicating

a 95 % coverage rate, and at the left side in each panel, demonstrating high accuracy of the

point estimates by a shorter average length of confidence intervals. It is obvious that some

small area estimators yield lower coverages, which is mainly caused by a worse fit of

the statistical model in several areas. This reflects the situation of many registers only

containing a limited set of potentially predictive covariates.

Focusing on the length of the confidence intervals, we see that equal allocation is the

best choice if one wishes to use design-based estimators. Whereas the coverage rates of

the Direct and GREG estimators are reasonable under all the sampling designs considered,

this does not apply for the other estimators. Under the UPS100 design, most model-based

estimation methods suffer from severe undercoverage. With respect to the two approaches

to PMSE estimation, either by Taylor approximation or by parametric bootstrap, we hardly

observe any differences in the case of the unweighted BHF estimator. Interestingly, the

augBHF does not perform badly in the case of (box-constraint) optimal allocations, even

though it does not achieve the nominal coverage rate on average in any design. The mean

coverage rates indicate overcoverage for the wBHF using parametric bootstrap under

(box-constraint) optimal allocations, which clearly shows that the confidence intervals are

not efficient. Altogether, it is indisputable that the coverage rates of the model-based

estimators are not satisfactory.

The coverage rates for the second scenario are depicted in Figure 3. In addition to the

dark “þ” signs related to the computation of the confidence intervals based on quantiles of

Table 10. Mean of coverage rates – 1st Scenario (103 domains)

PROP EQ UPS100 COSTA50 BCOpt50 OPT

augBHFboot 0.867 0.845 0.127 0.850 0.937 0.944
BHF 0.898 0.927 0.128 0.933 0.748 0.765
BHFboot 0.861 0.831 0.127 0.868 0.738 0.762
Direct 0.955 0.954 0.965 0.956 0.951 0.949
GREG 0.955 0.955 0.956 0.956 0.951 0.949
wBHFboot 0.670 0.939 0.987 0.781 0.973 0.973
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the normal distribution, lighter triangles indicate confidence intervals based on quantiles

of t-distributions with ðnd 2 1Þ degrees of freedom as explained at the end of Subsection

3.1. These two methods differ only in the presence of very small domain-specific sample

sizes nd, which was not a concern in Scenario 1. Looking at the x-scale, we observe that the

CI-length increases dramatically compared to Scenario 1. Furthermore, in the case of the

Direct estimator, we observe some problems under UPS100 for the CIs built via the normal

distribution. These problems vanish as soon as we use the t-distribution, which seems to

be the better choice for very small domains. For the GREG estimator the use of normal-

quantiles is critical except under equal and Costa-type allocations. With respect to the

model-based estimators the poor performance of all strategies is striking, as can also be

seen from Tables 11 and 12.

4. Summary

This article explores two major issues official statistics face when implementing small area

estimation techniques in business surveys. First, business registers of many countries
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do not yield many variables with strong predictive power. Second, the sampling designs

applied, in general, are nonignorable and may have a major impact on model-based

estimates. In this context, several strategies for incorporating design weights into

statistical models are discussed. The application focuses on registers where only a few

variables with limited predictive power are available. This reflects the situation in many

countries and several branches of official statistics and shows the usefulness of the

estimators under less favorable circumstances.

Our results suggest that model-based estimators should be considered in addition to

purely design-based estimators due to lower RRMSEs in many settings. Furthermore,

estimators ignoring the sampling design cannot be recommended since they may yield

considerably biased estimates. Besides the influence of the range of design weights, our

results stress the relevance of the source of design weight variation – between or within

areas and strata. Altogether, our study illustrates the efficiency gains made possible by

using model-based small area estimators even under less favorable circumstances.

A comparison of the augBHF and the wBHF estimator illustrates that the origin of the

variation of the design weights is an essential basis for selecting the appropriate estimator.

Under purely stratified designs with large Gelman factors the augBHF estimator gives

reasonable results and should be the estimator of choice with respect to minimal

ARRMSE, whilst the wBHF estimator suffers from the variability of b estimates. In

contrast, under unequal probability designs the wBHF estimator is clearly the best

estimator in both scenarios if one wishes to minimize the ARRMSE of the estimates. The

poor performance of the augBHF estimators in this case is partly explained by the huge

discrepancy between Wd and the expected mean of the sampling weights in domain d

under unequal probability sampling. This causes a bias due to informative sampling where

the model which holds for the population does not hold for the sample as well (cf.

Pfeffermann and Sverchkov 2009). This problem of the augBHF estimator under unequal

Table 12. Mean of coverage rates – 2nd Scenario (927 domains) – t Quantiles

PROP EQ UPS100 COSTA50 BCOpt50 OPT

augBHFboot 0.744 0.623 0.443 0.648 0.834 0.825
BHF 0.714 0.692 0.446 0.706 0.766 0.738
BHFboot 0.699 0.616 0.442 0.669 0.763 0.735
Direct 0.973 0.963 0.958 0.964 0.982 0.983
GREG 0.959 0.958 0.963 0.958 0.960 0.960
wBHFboot 0.366 0.741 0.993 0.483 0.981 0.980

Table 11. Mean of coverage rates – 2nd Scenario (927 domains) – Normal Quantiles

PROP EQ UPS100 COSTA50 BCOpt50 OPT

augBHFboot 0.717 0.619 0.386 0.642 0.745 0.726
BHF 0.686 0.687 0.389 0.699 0.638 0.588
BHFboot 0.672 0.612 0.386 0.663 0.634 0.585
Direct 0.962 0.960 0.941 0.959 0.966 0.967
GREG 0.943 0.954 0.946 0.952 0.904 0.895
wBHFboot 0.349 0.735 0.984 0.476 0.968 0.965
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probability sampling could be resolved by estimating the model parameters using design

weights. In our simulations, the YouRao estimator especially suffers from a poor model. In

other simulations, the YouRao performed much better when auxiliary information with

better predictive power was available. Similar results hold for the area-level FH estimator.

In addition to the Gelman factors and their sources of variation, the domain-specific

sample size plays a crucial role for domain estimation. This can be seen from the

comparatively good results of most estimators under equal and Costa-type allocation

achieved at the expense of less efficient estimation at the national level. Furthermore, we

note that under Scenario 2 with many small sample sizes the precision of domain estimates

generally decreases compared to the first scenario with larger domains. This decrease

is most pronounced for design-based estimators which cannot compensate for the small

sample sizes by borrowing strength from other domains.

Focusing on the precision estimates, we observe that the confidence interval coverage

rates of the design-based estimators are as expected. The shortest CI lengths result under

equal allocation designs. Minor problems of the design-based estimators with very small

domain-specific sample sizes are corrected by plugging-in quantiles from a tnd21

distribution. The coverage rates for the BHF were not satisfactory under either Taylor

linearization of the PMSE or PMSE estimation by parametric bootstrap due to high biases.

We have seen that very small domains may be problematic for precision estimates, as the

severe cases of under coverage in Scenario 2 point out. Moreover, our results indicate that

under (box constraint) optimal allocations in Scenario 1, the reliability of the confidence

intervals of the augBHF estimator is better than the reliability of the unweighted BHF

estimator. With respect to the parametric bootstrap method for the wBHF estimator, mainly

in Scenario 1, we have seen overcoverage for the (box constraint) optimal allocations and

unequal probability sampling, implying that the PMSE estimates are too conservative.

The present application used small and medium enterprises. When dealing with large

enterprises one could expect extremely skewed distributions with outliers. Under these

settings, either transformation methods (Berg and Chandra 2012 or Shlomo and Priam 2013)

or robust models should be considered (Sinha and Rao 2009 or Chambers and Tzavidis 2006).

A comparison of robust small area methods including computational issues can be drawn

from Schmid (2012). When using nonignorable sampling designs in business surveys, the

robustification of design weights should be investigated in addition to the robust modeling.
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