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In survey data, an observation is considered influential if it is reported correctly and its
weighted contribution has an excessive effect on a key estimate, such as an estimate of total or
change. In previous research with data from the U.S. Monthly Retail Trade Survey (MRTS),
two methods, Clark Winsorization and weighted M-estimation, have shown potential to detect
and adjust influential observations. This article discusses results of the application of a
simulation methodology that generates realistic population time-series data. The new strategy
enables evaluating Clark Winsorization and weighted M-estimation over repeated samples
and producing conditional and unconditional performance measures. The analyses consider
several scenarios for the occurrence of influential observations in the MRTS and assess the
performance of the two methods for estimates of total retail sales and month-to-month change.
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1. Introduction

In survey data, an observation is considered influential if its value is correct but its

weighted contribution has an excessive effect on an estimated total or period-to-period

change. To be clear, our focus is on influential values that remain after all the data have

been verified or corrected, so these unusual values are true and not the result of reporting or

recording errors. Failure to “treat” such influential observations may lead to substantial

over- or under-estimation of survey totals, which in turn may lead to overly large increases

or decreases in estimates of change.

The presented research was motivated by a request from the methodologists and subject

matter experts who supervise the U.S. Census Bureau’s Monthly Retail Trade Survey

(MRTS) to find a method that improves or replaces current methodology for identifying

and treating influential values. New methodology would need to use the influential

observations, but in a manner that assures their contribution does not have an excessive

effect on the monthly totals or an adverse effect on the estimates of month-to-month
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change. The tight time schedule for producing MRTS estimates monthly means that the

preference is for a new methodology for detecting and treating influential values that is

automated, but is implemented in a manner that allows for a final (manual) review.

Therefore, the objective of this research is to find an automated statistical procedure to

replace the current subjective procedure performed by analysts.

Each month, the MRTS surveys a sample of about 12,000 retail businesses with paid

employees to collect data on sales and inventories. The MRTS is an economic indicator

survey whose monthly estimates are inputs to the Gross Domestic Product estimates.

Moreover, significant changes in levels are important to monetary and budgetary

decision makers, economists, business analysts, and economic researchers in assessing

the health of the economy, and in making corporate investment decisions. The MRTS

sample design is typical of business surveys, employing a one-stage stratified sample

with stratification based on major industry, further substratified by the estimated annual

sales. The sample design requires the sampling rates to be higher in the strata with the

larger units than in the strata with the smaller units and companies that have been

determined to comprise a large portion of the total are included with certainty. The

sample is selected every five years after the Economic Census and then updated as

needed with a quarterly sample of births (new businesses) and removal of deaths

(businesses no longer in operation). MRTS publishes Horvitz-Thompson estimates of

totals, as well as month-to-month change. Because of its typical sample design and

characteristic data, the results that we obtain by studying the program in detail should be

applicable to other similar programs.

In the MRTS, when an influential observation appears in a month’s data, the current

corrective procedures depend on whether the subject-matter experts believe the

observation is a one-time phenomenon or a permanent shift. If the influential value

appears to be an atypical occurrence for the business, then the influential observation is

replaced with an imputed value. If the influential value persists for a few months and

appears to represent a permanent change, then methodologists adjust its sampling weight

using principles of representativeness or move the unit to a different industry when the

nature of the business appears to have changed (Black 2001). Prior to influential value

detection, the MRTS processing already includes running the algorithm by Hidiroglou and

Berthelot (1986), often called the HB edit, to identify (and – on occasion – treat) within-

imputation-cell outliers and create the imputation base (Hunt et al. 1999). Treatment of

influential values is the final step of the estimate review process. Hence, the methods

described here are developed to complement, not replace, the HB edit.

The research reported in this article builds on several previous studies on methods of

addressing influential values in the MRTS. Initial work (Mulry and Feldpausch 2007a)

examined a variety of outlier detection and treatment methods from the literature on

empirical data from one month of a volatile MRTS industry with an obvious influential

value. Of the considered methods, Clark Winsorization (Clark 1995) and M-estimation

(Beaumont and Alavi 2004; Beaumont 2004) emerged as the most promising. This study

examined several methods, including a second type of Winsorization that developed the

cut-off value for the observations by stratum (Kokic and Bell 1994) (instead of specifying

an individual cut-off value for each observation as in Clark Winsorization) and a

combination of robust estimation and reverse calibration to address influential values
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(Ren and Chambers 2003; Chambers and Ren 2004). Mulry and Feldpausch (2007a)

concluded that the MRTS data was too volatile for the other methods, which may perform

very well in other situations. One might also consider the robust estimators studied by

Hulliger (1995) or Farrell and Salibian-Barrer (2006) for other applications.

Subsequent work (Mulry and Feldpausch 2007b) with 38 months of empirical MRTS

data from the same industry confirmed the potential for both methods (Clark

Winsorization and weighted M-estimation) to address influential values in MRTS data.

The infrequent appearance of influential values in empirical data made it difficult to

evaluate the performance of the considered methods with respect to relative magnitude

of identified influential observation(s) or to examine the statistical properties of the

considered methods over repeated samples. Consequently, Mulry and Oliver (2009)

conducted a simulation study and presented some preliminary but inconclusive results.

The focus of this article is the use of simulation methodology to investigate these two

robust statistical methods for identifying and treating influential observations: Clark

Winsorization (Clark 1995) and M-estimation (Beaumont and Alavi 2004; Beaumont

2004). In a sample survey setting, robust methods are especially appealing since they are

valid for a variety of probability distributions and therefore are less sensitive to model

misspecifications. This is especially important for economic data that generally have

skewed populations where the assumption of a normal distribution, or even symmetry,

is unlikely to hold.

Building on past research, we developed simulation methodology to obtain decisive

results about the statistical properties of Clark Winsorization and weighted M-estimation

when applied to data like that collected for industries in the MRTS. The methodology

includes simulation of a stationary time series for the population data and the develop-

ment of performance measures. This simulation examines the effectiveness of the

methodologies when seasonal effects are not present to illuminate the properties of the

methods.

This article describes the simulation methodology and includes performance results for

Clark Winsorization and M-estimation in several scenarios for influential values. Both

methods were designed for totals estimates, but the most important measure for MRTS

is month-to-month change. Therefore, our analysis emphasizes the simulation’s estimates

of relative bias for estimates of total sales and month-to-month change, both when an

influential value is present and when it is not. Additional evaluation criteria include the

number of true and false detections.

2. Detection and Treatment Methods

In this section, we present the studied methods. Subsection 2.1 describes the Clark

Winsorization methodology for modifying an influential value, and Subsection 2.2

discusses the M-estimation methodology that provides the choice of adjusting the

influential value or its weight. Figure 1 illustrates how Clark Winsorization and

M-estimation adjust an influential observation.

Before describing the methods, we first introduce the notation. For the i th business in a

survey sample of size n for the month of observation t, Yti is the characteristic of interest

(revenue in our application), wti is its survey weight (which may be equivalent to the
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inverse probability of selection but can include poststratification, generalized regression,

or calibration adjustments), and Xti is a variable highly correlated with Yti, such as the

previous month’s collected revenue or the frame revenue value. Note that the more general

formulations allow X to be a vector of auxiliary variables. We restrict our analysis to a

single covariate and set Xti equal to the unit’s previous month’s revenue, paralleling the

MRTS ratio imputation and outlier-detection (HB edit) procedures. The total monthly

revenue Yt is estimated by

Ŷt ¼
Xn

i¼1

wtiYti:

In MRTS, the missing data treatment is imputation (Thompson and Washington 2013),

and consequently, the survey weight wti is the design weight. For ease of notation,

hereafter we suppress the t index. Both Clark Winsorization and weighted M-estimation

methodologies use a comparison to the prior month’s value to detect observations with

influential values in the current month.

2.1. Clark Winsorization

Winsorization procedures replace extreme values with less extreme values, effectively

moving the original extreme values toward the center of the distribution. Winsorization

methods offer adjustments for the observed influential value but could be used to derive an

adjustment for the survey weight if that is needed instead. Winsorization procedures may
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Fig. 1. Illustration of an influential value and its adjustments from Clark Winsorization and weighted

M-estimation
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be one-sided or two-sided, but the method developed by Clark (1995) and described by

Chambers et al. (2000) is one-sided.

The general form of the one-sided Winsorized estimator of the total is designed for large

values and is written as

Ŷ* ¼
Xn

i¼1

wiZi where Zi ¼ min{Yi;Ki þ ðYi 2 KiÞ=wi}: ð1Þ

Detection of observation i as an influential value by Clark Winsorization occurs when

Zi – Yi. To implement the method, Clark suggests approximating the Ki that minimizes

the mean squared error under the general model by Ki ¼ mi þ Lðwi 2 1Þ21, using a

general model where the Yi are characterized as independent realizations of random

variables with EðYiÞ ¼ mi and varðYiÞ ¼ s2
i . To estimate mi and L, Clark’s approach builds

on a method developed by Kokic and Bell (1994) that derived a K for each stratum rather

than for each individual unit.

Chambers et al. (2000) suggest using the results of a robust regression to obtain the

estimate of mi as bXi where b is the regression coefficient and Xi is the auxiliary variable

(the previous month’s observed revenue in our application). We used the least median of

squares (LMS) robust regression method (Rousseeuw 1984; Rousseeuw and Leroy 1987)

because other robust regression methods that we considered, including the least median

trimmed (LMT), appeared too sensitive in that they flagged many non-influential values

(Mulry and Feldpausch 2007a). To estimate L, the Clark Winsorization first uses the

estimate of mi to estimate weighted residuals

Di ¼ ðYi 2 miÞðwi 2 1Þ by D̂i ¼ ðYi 2 bXiÞðwi 2 1Þ;

which are sorted in decreasing order D̂ð1Þ; D̂ð2Þ; : : : D̂ðnÞ. The Clark method finds the last

value of k, called k*, such that ðk þ 1ÞD̂ðkÞ 2
Pk

j¼1D̂ð jÞ is positive, and then estimates L by

L̂ ¼ ðk * þ 1Þ21
Pk *

j¼1 D̂ð jÞ. Last, the estimate of Ki is formed by K̂i ¼ bXi þ L̂ðwi 2 1Þ21,

which is used to determine the values of Zi for the estimate of the total Ŷ*.

2.2. Weighted M-Estimation

M-estimators (Huber 1964) are robust estimators that come from a generalization of

maximum likelihood estimation. The application of M-estimation examined in this

investigation is regression estimation. The weighted M-estimation technique proposed by

Beaumont and Alavi (2004) uses the Schweppe version of the weighted generalized

technique (Hampel et al. 1986, 315–316). The estimator of the total using this approach is

consistent for a finite population since it equals the finite population total when a census is

conducted (Särndal et al. 1992, 168).

A key assumption of the M-estimation approach is that yi given xi is distributed under

the prediction model m with

Em yijxi

� �
¼ x 0ib and Vm yijxi

� �
¼ vis

2: ð1:1Þ

In our application, yi is the current month’s value; xi is the previous month’s value, and the

regression model does not include an intercept. With retail trade, the regression of current
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month’s sales on the previous month’s sales tends to go through the origin (Huang 1984).

We use the unbiased sampling weights wi to maintain parallel estimation with the MRTS.

Briefly, the method estimates B̂M , which is implicitly defined by

i[S

X
w*

i ðB̂
MÞð yi 2 xiB̂

MÞ
xi

vi

¼ 0 ð2Þ

where

vi ¼ lxi

w*
i ¼ wic{riðB̂

MÞ}=riðB̂
MÞ

riðB̂
MÞ ¼ hieiðB̂

MÞ=Q
ffiffiffiffi
vi

p

eiðB̂
MÞ ¼ yi 2 xiB̂

M

and Q is a constant that is specified. The variable hi is a weight that may or may not be a

function of xi. The variable l, possibly a constant, is chosen to ensure the correct

specification of the form of the variance in the underlying prediction model.

Section 4 contains a discussion of the investigation to determine the settings for these

parameters.

The role of the function c is to reduce the influence of units with a large weighted

residual riðB̂
MÞ. We focus on two choices for the function c, Type I and Type II Huber

functions, and describe their one- and two-sided-forms. The one-sided Type I Huber

function is

c{riðB̂
MÞ} ¼

riðB̂
MÞ; riðB̂

MÞ # w

w; otherwise

8
<

:

9
=

; ð4Þ

where w is a positive tuning constant. This form is equivalent to a Winsorization of riðB̂
MÞ.

Detection of observation i as an influential value by M-estimation with the Huber I

function occurs when riðB̂
MÞ . w. In the two-sided Huber I function riðB̂

MÞ is replaced

by its absolute value riðB̂
MÞ

�� ��.
The weight adjustment corresponding to the Type I Huber function c above is

w*
i ðB̂

MÞ ¼

wi; riðB̂
MÞ # w

w

riðB̂MÞ
; otherwise

8
><

>:

9
>=

>;
ð5Þ

an undesirable feature of using the Type I Huber function is that the unit’s adjusted weight

may be less than one if the influential value is very extreme, thereby not allowing the

influential value to represent itself in the estimation. The Type II Huber function c ensures

that all adjusted units are at least fully represented in the estimate. The one-sided Type II

Huber function is

c{riðB̂
MÞ} ¼

riðB̂
MÞ; riðB̂

MÞ # w

1

wi

riðB̂
MÞ þ

ðwi 2 1Þ

wi

w; otherwise

8
><

>:

9
>=

>;
ð6Þ
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where w is a positive tuning constant. Detection of observation i as an influential value by

M-estimation with the Huber II function occurs when riðB̂
MÞ . w. In the two-sided Type II

Huber function riðB̂
MÞ is replaced by its absolute value riðB̂

MÞ
�� ��. This form is equivalent to

a Winsorization of riðB̂
MÞ, cf. the Type I Huber function.

An interesting feature of using the one-sided Type II Huber function in the

M-estimation method is that the parameters can be set to mimic the assumptions of the

Clark Winsorization outlined in Subsection 2.1 (Beaumont 2004). However, the results

will not be identical because the method used to estimate B̂M is different.

Solving for B̂M requires the Iteratively Reweighted Least-Squares algorithm in many

circumstances, although for certain choices of the weights and variables, the solution is the

standard least-squares regression estimator.

The weight adjustment for the Type II Huber function above is

w*
i ðB̂

MÞ ¼

wi; riðB̂
MÞ # w

1þ ðwi 2 1Þ
w

riðB̂MÞ
; otherwise

8
><

>:

9
>=

>;
: ð7Þ

The adjusted value corresponding to the Type II Huber function is

y*
i ¼

1

wi

yi þ
ðwi 2 1Þ

wi

xiB̂
M þ

ffiffiffiffi
vi
p

hi

Qw

� �
: ð8Þ

We use an adjusted value Beaumont and Alavi (2004) derived by using a weighted

average of the robust prediction xiB̂
M and the observed value yi of the form

y*
i ¼ aiyi þ ð1 2 aiÞxiB̂

M where ai ¼
w*

i ðB̂
MÞ

wi

: ð9Þ

Beaumont (2004) finds an optimal value of the tuning constant w by deriving and then

minimizing a design-based estimator of the mean-square error via numerical analysis.

Unlike the Clark Winsorization algorithm, the Beaumont version of M-estimation does not

require a model to hold for all the data, or for the influential value, in particular, and

therefore relies on less stringent assumptions.

Since the algorithm is an iterative procedure, convergence is not guaranteed. Failure of

convergence appears to be more problematic with the use of two-sided Huber functions

than with one-sided Huber functions. Section 4 contains more discussion of the possible

consequences when convergence is not achieved.

3. Methodology

3.1. Research Approach

To assess how well M-estimation and Clark Winsorization identify and treat influential

values in MRTS data, we conduct a simulation study using different – but realistic –

influential value scenarios, considering detection and treatment effects on estimates of

totals and of current-to-prior period change.
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To do this, we generated two separate time-series populations of monthly sales data,

modeled from two MRTS industries with different natures. We generate a stationary time

series for each industry to avoid potential confounding of the influential value detection

methods and other patterns such as trends or seasonality. Industry 1 has monthly sales of

approximately 46.1 billion and one of the most volatile industries. Industry 2 has a more

stable pattern and has monthly sales of approximately 2.5 billion. The sample sizes in our

simulations are 1,161 for Industry 1 and 147 for Industry 2. Subsection 3.2 describes the

procedure used to generate these simulated populations.

Our simulation evaluation approach is two-fold: an unconditional analysis where a

small subset of the samples (replicates) contain an induced influential value and the

majority do not; and a conditional analysis that employs only the subset of samples that

contain the induced influential value. The objective of the unconditional analysis is to

evaluate the performance of Clark Winsorization and M-estimation over a realistic survey

setting, where it is not expected that each sample will include an influential value. The

objective of the conditional analysis is to evaluate the respective performance of each

approach when the sample does contain an influential value.

In practice, the most common scenario pertaining to influential values is an observation

whose measurement is much higher than previous measurements and whose high weight

greatly amplifies its impact on the estimates. Failure to address this scenario properly can

have far-reaching consequences in interpreting the state of the economy, so we focus on

this scenario.

3.2. Simulation Methodology

Recall that the MRTS is a stratified sample, with strata defined by unit size within industry

where the measure of size is sales. An exploratory empirical analysis of the simulated data

for both studied industries confirmed that the stratum-level means differ by within-

industry-strata as shown in the examples in Figure 2, and that a realistic within-stratum

prediction model is given by the stationary series.

ŷhi;t ¼ bhŷhi;t21 þ 1hi; 1hi , ð0;s2
hiÞ; t . 1

where h indexes the strata as illustrated in the examples in Figure 3.
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Fig. 2. Stratum-level Box-plots for simulated retail trade Industry 1
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In the notation provided in Subsection 2.2, the “true” prediction model for the simulated

data is Em yhi;tjyhi;t21

� �
¼ y 0hi;t21bh;t21 and Vm yhi;tjyhi;t21

� �
¼ s2

h; so that vh ; 1 within

stratum.

To obtain a series 20 months in length, we generated the population for the first month

and then generated the next 19 months as a stationary time series essentially as a forecast

going forward from Month 1. The population data for the first month were generated using

the SIMDAT algorithm (Thompson 2000) with modeling cells equal to sampling strata

and population size equal to the original frame size in each cell. The stationary time series

was generated using historical standard errors and autocorrelations to develop the AR(1)

model within stratum for Months 2 to 20 given by

yt 2 m ¼ F*ð yt21 2 mÞ þ at; for t ¼ 2; : : :; 20 ð10Þ

where

y1 2 m ¼ 0 and m is the series mean,

at , Nð0;s2) (white noise process where s is estimated empirically by the observation

for the unit in the first month times the median of percent difference between

observations in the historical first and second months),

F ¼ the sample-based estimate of lag one autocorrelation for the selected industry.
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Fig. 3. Scatter plots of current month to previous month sales at the stratum level for simulated retail trade

Industry 1
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The time series algorithm written in SAS creates an AR(1) series so that each new

observation is set equal to F times the previous value þ at, where at is generated from the

Nð0;s2) distribution. The initial value of the series is set to zero so that each subsequent

point has an expected value of zero – which is necessary for series to be stationary. After

all 20 observations for a unit have been created, the initial value (first month value) is

added to them so that this number is actually the mean over the time series (in short, it

shifts the mean from zero to the first month value).

Generating the series in this manner assures that each of the two populations (one

for each industry) is a stationary series within strata, but not at the industry level. Our

simulated population data follow directly from the stratification model and mimic the

conditions under which the influential observation procedures would be implemented

(i.e., after micro-data automatic editing/imputation and HB outlier detection). However,

the stratification model diverges greatly from the prediction models assumed by Clark

Winsorization (industry-level models, with one population model describing the

industry data) and by M-estimation (also, industry-level, with the underlying

weighted regression model using the vi term to account for expected increasing

variability with unit size). The funnel shape of the plot in Figure 4 illustrates how the

variance of the observations of the retail trade industry data increases as the values of

the observations increase. However, Figure 5 illustrates that neither the assumption

vi ¼ 1 nor the assumption vi ¼ xi for the vi in the prediction model in Equation (1.1)

fits the data well at industry-level, but at the same time, both assumptions appear to

have comparable weaknesses. Therefore, we defer the choice of the setting for vi until

we view the detection error rates as defined later in this section and discussed further

in Subsection 4.1.

To assess the statistical properties of each influential value treatment method

(M-estimation and Clark Winsorization), we induce an influential value into the

20

15

10

5

0

0 5 10 15 20

Previous month sales (×106)

C
ur

re
nt

 m
on

th
 s

al
es

 (
×

10
6 )

Fig. 4. Industry-level scatter plot of current month to previous month sales for simulated retail trade Industry 1
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population in Month 4. The choice of Month 4 allows gauging the performance in the

months before as well as after the influential value appears which is particularly important

for estimates of month-to-month change. The induced influential value does not have an

undue effect on the population total, but does have undue influence on the estimated

population total if selected in sample. The details of constructing the time series for the

population follow using Industry 1 for illustration; the same procedure generated the

Industry 2 population.

First, we generate a time series for the Industry 1 population of length 20 months using

the methodology described in the first paragraph of this section. We let Y1, Y2, : : : ,Y20

represent the population totals for this stationary series.

Next, we create one influential unit in the population in Month 4 in a stratum with a

sampling rate of approximately 1/50 by adding eight million to the unweighted value of a

randomly selected unit in this stratum. Hence, the population total for Month 4 is now

eight million larger than its initial value. This influential value does not have an undue

effect on the population at approximately 46.1 billion in Month 4, but it can have an undue

influence on the estimated population total if selected in sample since its weighted value is

400 million larger than its initial weighted value. With this design, we can expect the unit

to be selected for one of every 50 samples and when selected, increase the estimated total

by about one percent. The induced influential value in the simulation is based on

influential values that occurred during the 38 months of the MRTS examined in Mulry and

Feldpausch (2007b).

After creating the population time series, we select stratified simple random without

replacement (SRS-WOR) samples of size comparable to the MRTS sample from Month 1

until 200 of these samples contain the unit that has the induced influential value in

Month 4. The choice of 200 samples was a function of the processing requirements for

M-estimation because the required number of samples to achieve 200 with the influential

value was quite large and the algorithm had to be run on the total number of samples in
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Fig. 5. Residual versus Fitted Values with LOESS curve from models for predicting Industry current month

sales using previous month sales with Least Square Regression corresponding to vi ¼ 1 (left) and Weighted Least

Square Regression where the weight ¼ 1/xi corresponding to vi ¼ xi (right)
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the unconditional analysis. For Industry 1, the necessary number of samples is 10,742,

and for Industry 2, the necessary number of samples is 11,931. By requiring the same

unit to be included in all samples in the conditional analysis, we effectively reduce the size

of the probability sample by one, but continue to give the influential value its stratum

weight. This results in a small bias in the months without the induced influential value,

and the magnitude of the bias is a function of how close the unadjusted unit’s value is to

the stratum mean in these months.

In each independent sample, we apply the M-estimation and Clark Winsorization

algorithms to Month 2 using Month 1 as the auxiliary data and then continue to apply

both methods to each month through Month 20 using the previous month as the

auxiliary data. Modified values in a given month are used as auxiliary data in the next

month. After repeating these procedures on each independent sample, we conduct

the two analyses mentioned in Subsection 3.1, a conditional analysis that uses only

the 200 samples with the influential value and an unconditional analysis using all the

samples.

3.3. Estimators and Evaluation Criteria

To define the estimators, we first need some notation:

d ¼ u for the unconditional analysis,

c for the conditional analysis.

S(d) ¼ the total number of samples selected for analysis d

S(u) ¼ 10,742 for the unconditional analysis in Industry 1

11,931 for the unconditional analysis in Industry 2

S(c) ¼ 200 for the conditional analysis in Industry 1 and Industry 2

1 ¼ the outlier detection method

m ¼ M-estimation

w ¼ Clark Winsorization, none for the untreated estimate

Yt ¼ the true population total of the simulated data for month t

Ŷt;i ¼ the untreated estimate of Yt for month t in sample i

Ŷ
1

t;i ¼ the treated estimate of Yt for month t in sample i with 1 ¼ M-estimation or Clark

Winsorization.

The mean of the simulated values for month t, analysis d, method 1 is an estimate of Yt

Ŷ
1

t ðdÞ ¼

XSðdÞ

i¼1
Ŷ
1

t;i

SðdÞ
:

The population values of the change are:
Yt

Yt21
¼ true month-to-month change for the simulated data in month t, t ¼ 2 to 20.

The estimates of this change are:
Ŷ
1

t ðdÞ

Ŷ
1

t21ðdÞ
¼ estimate of month-to-month change for month t, analysis d, method 1.

Now, let E1
t be a month t true population value, namely Yt (total sales) or Yt

Yt21
(month-to-

month change). Also, let E
_1

tiðdÞ be the estimate of total sales or month-to-month change
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for month t, analysis d, method 1 from replicate i. Then the relative bias (RB) of E
_1

t ðdÞ is

RB ¼

XSðdÞ

i¼1

100ðE
_1

tiðdÞ2 E1
t Þ

E1
t

� �

SðdÞ
: ð11Þ

We expect that the RB of the treated estimate is less than or equal to the RB of the

untreated estimate in most circumstances.

The relative root mean square error (RRMSE) of E
_1

t ðdÞ is

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XSðdÞ

i¼1

100ðE
_1

tiðdÞ2 E1
t Þ

E1
t

� �2

SðdÞ

vuuuut
: ð12Þ

We expect that the RRMSE of the treated estimate is less than or equal to the RRMSE of

the untreated estimate since the methods minimize MSE.

Mirroring Thompson and Sigman (1999), to evaluate the outlier detection performance of

each method, we view each application as a hypothesis test, in which the null hypothesis is

“the data item’s value is not an influential value”. One rejects the null hypothesis when the

item’s value is flagged as influential. Under this framework, two types of errors can occur:

. Type I error rate equals the percentage of observations that were not induced

influential values that were designated as influential (false positive). If a method

adjusts values that are not induced influential values, then the Type I error rate will be

positive.

. Type II error rate equals the percentage of induced influential values that were not

detected (false negative). The Type II error rate applies only to samples containing

the induced influential value. So, the Type II error rate is equal to 0 in Months 1–3

and 5–20 since no influential values were induced in these months.

4. Results

In this section, we examine the simulation results regarding the performance of the two

treatments and the quality of the estimates they produce. The Clark Winsorization

algorithm does not require parameter settings, but the M-estimation algorithm does. First,

we investigate the settings of the parameters for the M-estimation algorithm to determine

which options produce the best estimates. Then we use those settings for M-estimation in

the comparison with Clark Winsorization. As we will see in the simulation results, the

choices of the M-estimation parameter settings affect whether the algorithm converges in

some situations and therefore are important. For the Winsorization, we developed the

software in SAS. For the M-estimation, we used SAS software developed by Jean-Francois

Beaumont (personal communication), with minor modifications.

4.1. M-estimation Algorithm Settings

The M-estimation algorithm discussed in Subsection 2.2 requires settings for Q, hi, vi, the

function c, and an initial value of the tuning constant w. We use the default settings of
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Q ¼ 1 and hi ¼ ðwi 2 1Þ
ffiffiffiffi
xi
p

, but explore different settings for the other parameters, as

summarized in Table 1. We also consider whether to include the observations selected

with certainty in fitting the regression line.

Our investigation considers two values of the weighting parameter for the residuals

vi ¼ lxi namely vi ¼ xi and vi ¼ 1. The choice vi ¼ 1 corresponds to l ¼ 1=xi so that

Vm yijxi

� �
¼ s2 (equal variances) and the choice vi ¼ xi corresponds to l ¼ 1 so that

Vm yijxi

� �
¼ xis

2. Ideally, the choice of the setting for vi should be a data-driven decision

because vi essentially specifies the variance of the model errors underlying the regression

estimator for M-estimation. In our (realistic) setting, neither vi ¼ xi nor vi ¼ 1 provide a

good model for the studied industry level estimates from the MRTS data. Indeed, this

model misspecification is an inherent challenge with economic data.

Notice that when we used the default settings for Q and hi along with setting vi ¼ xi for

all units in sample, ri ¼ ðwi 2 1Þð yi 2 xiB̂
MÞ has the same form as D̂i in the Clark

Winsorization. However, recall that the b in the Winsorization estimation method and the

B̂M in the M-estimation method are not usually going to be equal because they use

different estimation methods. With Q ¼ 1 and h ¼ ðwi 2 1Þ
ffiffiffiffi
xi
p

(the default settings),

setting vi ¼ 1 tends to give the residuals for large weighted values of xi more influence in

fitting the M-estimation regression line than when vi ¼ xi.

The M-estimation algorithm detects and adjusts influential values through finding an

optimal value of the tuning constant w, which is the cut-off value for the weighted

regression residuals. The user sets an initial value for the tuning constant w, and the

algorithm finds the value of w that minimizes the mean squared error (MSE). Setting

the algorithm parameters in a manner appropriate for the MRTS data requires

considerable investigation. We consider two options for the function c, the one-sided

Huber I and II functions described in Subsection 2.2 and two options for the initial

value of w, one high and the other low. After exploring the application of M-estimation

to samples that included and excluded the units selected with certainty, we found

little difference and included the certainty units in our simulation. The units selected

with certainty contribute to fitting the regression line but cannot be designated as

influential because riðB̂
MÞ equals zero for a certainty unit with the default setting

hi ¼ ðwi 2 1Þ
ffiffiffiffi
xi
p

.

Selecting the high and low initial values of w for the simulation depends on the data

for the industry. If there are no weighted residuals larger than the initial value of w, the

M-estimation algorithm runs for only one iteration and does not offer any adjustments.

Table 1. M-estimation algorithm parameters

Parameter Parameter function Values

Q Constant 1 (default)
hi Unit weight ðwi 2 1Þ

ffiffiffiffi
xi
p

(default)
vi Model error underlying regression

estimator
1 or xi

c c function Huber I or Huber II
w Tuning constant (determines starting

point for critical region)
User provides initial value and

program calculates optimal value
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Therefore, for low initial w we choose a value that tended to be lower than the highest

weighted residual in a sample since we wanted the algorithm always to run in the

simulation. For the high initial w, we want only to assure that the algorithm detects the

induced influential value when it appears in Month 4. Consequently, we choose a value

that is lower than the weighted residual for the induced influential value but higher than the

weighted residuals for the other values. For Industry 1, the low initial w is 4.8 million and

the high value initial value is 150 million. The low and high initial values of w for Industry

2 are 1.5 million and 150 million, respectively.

Table 2 summarizes the results for Type I and Type II errors for the parameter settings for

Industry 1 and Industry 2 and offers results for the different parameter settings and

functions using Type I and Type II errors as the evaluation criteria. A Type I error (false

positive) may occur in all the months in all the samples, but a Type II error (false negative)

may occur only in Month 4 of the 200 samples with the induced influential value in Month 4.

Both settings for the parameter vi display some Type I errors when the initial setting of

w is the low value of 4.8 million while there are no Type I errors when the initial w is the

large value of 150 million. The Type I errors occur because the algorithms for Clark

Winsorization and M-estimation when the initial w is low (4.8 million) make small

adjustments to several observations to achieve the minimum MSE although the reduction

in MSE is small.

Remember that neither vi ¼ 1 nor vi ¼ xi is an appropriate error model for the simulated

data for either of the two industries. The Type I and Type II errors are very similar for the

two choices of the function c, Huber I and Huber II, when the same high or low initial w is

used in the unconditional analysis. The Type II error rate for vi ¼ 1 is zero for both options

for the initial w in Month 4 for Industry 1 for both Huber I and Huber II. However, when

vi ¼ 1 for Industry 2, the Type II error rate is 0.0065 for the high initial w, and 0.04 for

Huber I and 0.05 for Huber II for the low initial w. The Type II error rate when vi ¼ xi is

always zero for all combinations of the options.

Table 2. Summary of M-estimation results for the unconditional analysis with Industry 1 and Industry 2 data

in the scenario of one high influential value for two settings of the parameters vi, two settings of the initial w, and

two options for the function c

c function

vi Huber I Huber II Type I error Type II error

xi Option 1 Option 2 † Small Type I error
rate when initial
w small at 4.8 million

Industry 1 rate: zero
Industry 2 rate: zero

† No Type I errors
when initial w large
at 150 million

1 Option 3 Option 4 † Very small Type I
error rate when initial
w small at 1.5 million

† No Type I errors
when initial w large
at 150 million

Industry 1 rate: zero
Industry 2 rates:
† when initial w small, 0.04

for Huber I, 0.05 for Huber II
† when initial w large, 0.0065

for Huber I & II
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Since there is some Type II error when vi ¼ 1 and none when vi ¼ xi, and the two

settings produce about the same results regarding Type I error, we decided to pursue only

vi ¼ xi.

4.2. One High Influential Value

4.2.1. Industry 1 Estimates and Quality

First, we focus on the simulation results for Industry 1, the more volatile of the two

simulated industries and the larger of the two (in terms of sample size and total sales). We

show results for only the Huber II function c because results for Huber I and Huber II

functions are approximately equal. Since the M-estimation algorithm is an iterative

procedure, convergence is not guaranteed. We used the default convergence criterion of a

difference of 0.001 between the current and previous iterations and did not explore other

options. In this simulation, the algorithm did not converge for about two percent of the

samples in the unconditional analysis. Usually a researcher puts a limit on the number of

iterations that the algorithm may run. We chose a limit of five iterations. When the limit is

reached, the program choses the larger of the last two values of w. The results for the

performance measures include the consequences of this choice. In the conditional analysis,

the algorithm converged for Month 4 in all 200 samples, and the convergence properties

in other months were similar to those in the same months in the rest of samples in the

unconditional analysis.

The relative bias estimates of total sales in Months 2 to 7 in the unconditional and

conditional analyses are shown in Table 3 while Table 4 shows the RRMSE estimates

for the same months. The population value of total sales in these months varies slightly

around $46.1 billion. Tables 3 and 4 only show the results involving Months 2 through

7 because the results for the rest of the 20 months parallel those involving Month 7.

This is to be expected since the series is stationary and only Month 4 has an induced

influential value.

In the unconditional analysis, the untreated estimate of the total for Month 4 has a

relative bias of 0.012 percent, corresponding to approximately $4.6 million, and an even

smaller relative bias in the other months, corresponding to 2$1.7 million to 2$3.6

million. Since the reported estimates of total sales are in millions, this level of bias does

appear in the reported estimates and is within the survey sampling error where the

coefficient of variation is approximately two percent. In Month 4, the treated estimates do

reduce the bias even further, with M-estimation with a high initial w having the lowest

absolute relative bias. In the other months, estimates of total from M-estimation with a

high initial w have a relative bias equal to that of the untreated because no observations are

adjusted in those months. However, in months other than Month 4, Clark Winsorization

and M-estimation with the low initial w tend to introduce additional negative relative bias,

about -0.01 percent, because they tend to trim about 0.5 percent of the observations to

achieve a minimum MSE. Interestingly, Table 4 shows that the three methods produce

estimates of total sales for Month 4 with approximately the same RRMSE of 1.261 in the

unconditional analysis. Since Table 3 shows that Clark Winsorization and M-estimation

with a low initial w have more relative bias than M-estimation with a high initial w, we
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conclude that these estimates achieve a comparable RRMSE by reducing the variance

through trimming several observations. We are observing a classic bias versus variance

trade-off and since the bias is a small component of the RRMSE, changes to the variance

have a larger impact.

When we turn to month-to-month change in the unconditional analysis, the induced

influential value in Month 4 causes a positive bias in the untreated estimate of change from

Months 3 to 4 and a negative bias of comparable size in the untreated estimate of change

from Months 4 to 5. All the treated estimates reduce the relative bias by about half in the

change from Months 3 to 4 and from Months 4 to 5. The treatments reduce the RRMSE in

the untreated estimate by about 24 percent. As with the estimates of total, the relative bias

and RRMSE for the untreated and treated estimates of change are comparable in the

months not involving Month 4.

For the conditional analysis, Table 3 shows that the relative bias is approximately equal

for all the estimates of total sales in Months 2, 3, and 5 to 7. In Month 4, the relative bias in

both versions of M-estimation and Clark Winsorization is approximately 60 percent of the

relative bias in the untreated estimate. Recall that the simulation design introduces a small

amount of bias in the conditional analysis. Table 4 shows that Clark Winsorization and

both versions of M-estimation produce estimates with approximately 84 percent of

RRMSE for the untreated estimate in Month 4, but the RRMSEs are comparable in the

other months.

In the conditional analysis in Table 3, we see that untreated and treated estimates of

change from Months 3 to 4 have a positive relative bias and an approximately offsetting

negative relative bias for the change from Months 4 to 5. The relative bias for the estimates

of change that do not involve Month 4 is very small and does not appear in estimates of

change which are reported in tenths of percent. When Month 4 is involved, the untreated

estimates of change would be apparent in the reported estimates. All treatments reduce the

relative bias by approximately one-half with M-estimation with a high initial w having

slightly less relative bias than Clark Winsorization and M-estimation with a low initial w.

The treatments also reduce RRMSE in the untreated estimates of change by about one-half

with M-estimation with a high initial w having the lowest as shown in Table 4. Apparently,

the trimming by the latter two methods to reduce the variance in the estimates of total sales

creates additional bias in the estimates of change when Month 4 is involved. Clark

Winsorization and M-estimation with a low initial w appear to have some residual effect in

the estimate of change from Months 5 to 6 since each has a lower relative bias than the

untreated estimate and M-estimation with a high initial w. However, the RRMSEs of all

four estimates of change are approximately equal.

4.2.2. Industry 2 Estimates and Quality

Now we turn our attention to the simulation results for Industry 2, which has a less volatile

pattern of change and a smaller sample size than Industry 1. The population value of total

sales in these months is about $2.5 billion and the sample size is 147.

The patterns in the performance measures for the unconditional analysis for Industry 2

shown in Tables 5 and 6 are very similar to the results for Industry 1. The effect of the

induced influential value in Month 4 is larger because its size relative to the population

total is larger as is the effect of adjusting it. The M-estimation algorithm converged for all
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samples with the high initial w, but with the low initial w, each month experienced a failure

to converge in approximately ten percent of the samples. However, this does not appear

to change the pattern observed in the unconditional analysis for Industry 1. Yet,

M-estimation with the low initial w experienced convergence problems in Month 5 in 106

of the 200 samples in the conditional analysis, which is the focus of this section. The reason

for the failure to converge is a combined effect of a low influential value in Month 5 that

is the consequence of an induced very high influential value in Month 4 and the small

sample size in Industry 2.

In Month 4 in the conditional analysis, M-estimation with a high initial w reduces the

relative bias in the untreated estimate of total sales by 49 percent. The reduction in relative

bias using M-estimation with a low initial w is 50 percent while for Clark Winsorization

the reduction is 49 percent. Viewing the results for the estimates of total sales for the other

months, the relative bias and RRMSE from M-estimation with a high initial w equal those

for the untreated. In months other than Month 5, M-estimation with a low initial w reduces

the relative bias in the untreated estimate by 30 to 34 percent while Clark Winsorization

achieves reductions ranging from 35 to 49 percent. Both methods appear to be trimming as

in their application to Industry 1 although the percentage reductions are greater than seen

for Industry 1. However, Month 5 is different – the relative bias for M-estimation with a

low initial w has a much bigger absolute value than the untreated and is negative which

makes the RRMSE twelve percent higher than the untreated.

When we turn to month-to-month change, we see more anomalies when Month 5 is

involved. First, for estimates involving neither Month 4 nor Month 5, the relative bias for

M-estimation with a high initial w equals the relative bias for the untreated while the

trimming by M-estimation with a low initial w and Clark Winsorization achieves

reductions of 17 to 48 percent, but the RRMSEs for all four estimates are comparable. The

relative bias in the untreated estimate of change for Months 3 to 4 continues to offset the

relative bias for Months 4 to 5. All three treatments achieve a reduction of approximately

50 percent in RRMSE of the untreated estimate of change from Months 3 to 4. For the

change from Months 4 to 5, both M-estimation with a high initial w and Clark

Winsorization reduce the relative bias by about 45 percent while M-estimation with a low

initial w produces a 30 percent reduction. The reductions in the RRMSE for the untreated

estimate are comparable to the percentage reductions in the relative bias for the three

treatments. For the change from Months 5 to 6, the relative bias in the untreated and

M-estimation with a high initial w are equal but slightly larger than Clark Winsorization.

However, the relative bias for M-estimation with a low initial w is 1.461 percent, an order

of magnitude higher than for the other three estimates.

An examination of the data provides insight about what happens with the

M-estimation algorithm when using the low initial w in Month 5 for some samples with

the induced influential value in Month 4. The algorithm identifies and treats the

influential value in Month 4. However, in Month 5 the sample unit returns to a range

closer to its value in Month 3. In some samples, but not all, the Month 5 value is small

enough to create an unusually large negative weighted regression residual as illustrated

in Figure 6.

Because the version of the M-estimation algorithm used in the simulations uses a one-

sided Huber II function c, it does not treat unusually low values, and therefore, the MSE
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can be a strictly decreasing function of w, which causes the algorithm not to converge.

In the case of a strictly decreasing MSE, the algorithm does not converge by the limit on

the number of iterations (five in our study) and instead selects the larger w of the last two

iterations, which is usually very small. This small w causes the program to flag many

observations in the sample as influential and to adjust them in over 50 percent of the

samples. When using the one-sided version of the M-estimation algorithm, the

adjustments reduce only observations larger than their previous month’s values and

thereby introduce a negative bias in the estimates of total sales. If the limit for the number

of iterations increases beyond five, in some applications the algorithm converges to a local

minimum that is usually very small. Therefore, increasing the number of iterations does

not solve the problem.

To gauge whether a two-sided function c would perform better than a one-sided

function c with a low initial value of w, we applied the M-estimation algorithm to Months

4 and 5 to the 200 replicates that contained the influential value, but also found

convergence problems. In Month 4, the algorithm failed to converge for eleven samples,

but 96 of the 189 that achieved convergence produced a final value of w that was very

small and therefore, not helpful because it designated a large number of observations as

influential. Results in Month 5 also were problematic since the algorithm did not converge

for 39 samples and of the 161 achieved that convergence, 21 converged to nearly zero. In

one other sample where the algorithm converged, it flagged more than ten percent of the

observations as influential, which we consider to be many.

The samples with convergence problems caused by the induced high influential value

returning to its routine range and producing a particularly low residual (Figure 6) illustrate

the situation where the most desirable option probably is no adjustment. With the high

initial w setting, no residual is larger than the initial w so the M-estimation algorithm does

not run for any of the samples, and therefore, it produces no adjustment, and achieves the

desirable option. This highlights the importance of choosing the initial w to be a value low
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Fig. 6. Scatterplots of Month 4 versus Month 3 (left) and Month 5 versus Month 4 (right) with robust regression

line when applying M-estimation with a low initial w in a sample from Industry 2. The unusually high influential

value in Month 4 was adjusted but not enough to avoid producing an unusually low influential value in Month 5

when the unit returned to its routine range
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enough that an observation with a larger weighted residual requires an adjustment, but

high enough for the algorithm not to run when no adjustment is needed.

5. Summary

Our investigation finds both weighted M-estimation and Clark Winsorization to be

effective in identifying and treating influential values; however, each method has

advantages and disadvantages that may affect a decision about which to employ. Although

the simulation procedure was designed to produce data similar to the Census Bureau’s

MRTS, the studied problem and context are broadly applicable to other programs.

A big advantage of Clark Winsorization is the ease of implementation of its

straightforward formulas. By design, the method identifies and treats only influential

values that are unusually high so it does not identify or treat values that are influential

because they are unusually low. However, the major concern in economic surveys

regarding influential values usually is the occurrence of high ones. When an influential

value is present, Clark Winsorization always identifies it and offers an adjustment.

On the other hand, the Clark Winsorization trims about 0.5 percent of the observations

when no influential value is present in the sample, introducing adjustments that achieve

a very small reduction in MSE for estimated totals and month-to-month change.

The trimming increases the bias of the Winsorized estimate over that obtained with

M-estimation with a high initial w. Since the Clark Winsorization trimming reduces the

variance in the treated estimates, the RRMSEs of the two studied methods are comparable.

The trimming is also disadvantageous because the staff usually researches whether

observations flagged as influential are accurate. The tight time schedule for production of

monthly estimates requires avoiding unnecessary investigations. However, in some

situations, the ease of implementation of Clark Winsorization and the protection that it

offers against unusual influential values could outweigh the small amount of bias

introduced by trimming a few falsely identified observations by a small amount. These

would be situations where knowledge of the population is limited and/or where

verification of values designated as influential could be restricted to focus only on those

with treated values exhibiting large changes relative to the remainder of the units.

The weighted M-estimation methodology identifies and treats both high and low

influential values. Our investigation focused on high influential values because they

usually are the major concern in the studied programs although low influential values do

occur and can introduce bias. The M-estimation algorithm has flexibility in setting

parameters to make assumptions appropriate for the underlying data. In addition, weighted

M-estimation with a high value of the initial tuning constant w performed the best overall

of the three options considered.

An attractive feature of M-estimation is that the algorithm allows an analyst to set the

value of the initial tuning constant w and thereby determine the minimum size of the

weighted regression residuals that will be considered as potential influential values. This

facilitates the efficient use of staff time in examining proposed adjustments. However,

setting the initial w is important to the effectiveness of the algorithm and needs to be a

data-driven decision based on exploratory analysis. Some further refining may occur as the

procedure is used in practice. In addition, there is a need to have a back-up strategy for
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situations when the algorithm does not converge and for situations when the algorithm

converges but does not provide helpful results. In the latter cases, an influential value is

present, but the MSE is either a strictly decreasing or a strictly increasing function of

the tuning constant w resulting in adjustments for almost all or none of the observations.

If the MSE does have a global minimum but the algorithm does not converge, then

changing the initial w to be close to the value of w corresponding to the minimum MSE

usually results in the algorithm converging.

Research is currently underway on how to set the initial w in an ongoing monthly survey

that may or may not be subject to seasonal effects, but the approaches under study require

at least minimal prior knowledge of the population. If one has no prior knowledge of the

population, one could take the approach of applying Clark Winsorization. If Clark

Winsorization produces no adjustment or merely trimming, then no adjustment is an

acceptable choice.

Other research on M-estimation and Winsorization methods have either supported or

not contradicted our findings. In a recent study with the U. S. Census Bureau’s Annual

Survey of Public Employment and Payroll, M-estimation also performed better than Clark

Winsorization (Barth et al. 2012). In another study, Lewis (2007) attempted to formulate

methodology for Winsorization of estimates of change, but did not find a satisfactory

method in spite of making more restrictive assumptions than presented here.

Ultimately, we believe that the trimming of some observations by Clark Winsorization

that introduces some bias for a small reduction in MSE is a less than desirable feature

and instead choose to focus on M-estimation applications, with the full endorsement of

the MRTS program managers. Implementing M-estimation in MRTS requires investi-

gating the remaining issues, such as seasonality, data-driven methods of optimizing

the selection of the initial tuning constant w, and – most important – a changing economy.

The flexibility of M-estimation makes the approach particularly appealing given these

challenges.
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