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Missing values present a prevalent problem in the analysis of establishment survey data.
Multivariate imputation algorithms (which are used to fill in missing observations) tend to
have the common limitation that imputations for continuous variables are sampled from
Gaussian distributions. This limitation is addressed here through the use of robust marginal
transformations. Specifically, kernel-density and empirical distribution-type transformations
are discussed and are shown to have favorable properties when used for imputation of
complex survey data. Although such techniques have wide applicability (i.e., they may be
easily applied in conjunction with a wide array of imputation techniques), the proposed
methodology is applied here with an algorithm for imputation in the USDA’s Agricultural
Resource Management Survey. Data analysis and simulation results are used to illustrate the
specific advantages of the robust methods when compared to the fully parametric techniques
and to other relevant techniques such as predictive mean matching. To summarize,
transformations based upon parametric densities are shown to distort several data
characteristics in circumstances where the parametric model is ill fit; however, no
circumstances are found in which the transformations based upon parametric models
outperform the nonparametric transformations. As a result, the transformation based upon the
empirical distribution (which is the most computationally efficient) is recommended over the
other transformation procedures in practice.

Key words: Missing data; multiple imputation; empirical CDF; kernel density; ARMS;
Markov chain Monte Carlo.

1. Introduction

Missing data are a particularly common and particularly troublesome problem in

establishment surveys. A large portion of the statistical literature has been devoted to the

analysis of data that contain missing values, and as a result a myriad of approaches exist.

Pertinent techniques include calibration weighting (Kott and Chang 2010) and the EM

algorithm (Dempster et al. 1977); however, imputation (for a summary, see Rubin 1987) is

often the preferred method for handling missing data since it yields a completed dataset on

which classical tools for analysis may be applied. Additionally, multiple (or repeated)
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imputation (Rubin 1996) may be used to quantify imputation error. Despite the ubiquity of

missing data problems and methodology designed to address them, existing imputation

algorithms have many drawbacks, largely with respect to robustness and computational

efficiency.

Multivariate imputation techniques tend to be fairly restrictive with respect to the

types of model assumptions. Techniques that impute via a multivariate normal model

(Schafer 1997; Robbins et al. 2013) are popular and theoretically justified. Techniques

that use fully conditional specification (a.k.a. SRMI, as outlined in Raghunathan et al.

2001), which is implemented in several software packages including IVEware

(Raghunathan et al. 2002), MICE (Van Buuren and Oudshoorn 1999), and mi (Su et al.

2011), can be used to create imputations in data that contain categorical and discrete

variates but lack theoretical justification due to the use of a potentially

incompatible Gibbs sampler. However, each of the aforementioned procedures is

best suited to sample (i.e., draw) imputations for continuous variables from a normal

distribution.

Multivariate techniques that do not sample imputations for continuous items under

Gaussian assumptions are relatively sparse. Algorithms which employ fully conditional

specification can be modified so that imputations are generated via a conditional

modeling/sampling technique known as predictive mean matching (PMM, Little 1988).

PMM is a nearest-neighbor procedure; imputations are sampled from observed data

values. However, PMM is computationally burdensome in comparison to its Gaussian

counterparts and thus can have little utility in high dimensional settings. The IRMI

algorithm (Templ et al. 2011) is similar in structure to SRMI-type procedures with the

added functionality of estimating conditional models through robust regression; however,

steps are not taken to ensure that imputations are sampled from the true conditional

distribution, which implies that IRMI imputations will likely distort complex

distributional characteristics (further justification for this claim is provided in Section 5).

To increase the robustness of traditional normality-based methods, many authors

recommend the use of marginal transformations of continuous variates prior to the

application of imputation methodology. For example, Raghunathan et al. (2001) suggest

a power transformation, whereas Robbins et al. (2013) suggest a density-based

transformation (specifically, a skew-normal density is used).

The practicality of the aforementioned procedures is muddled by their computational

complexity. The growing ubiquity of multiple imputation, the prevalence of iterative

sampling techniques (e.g., Markov chain Monte Carlo) for imputation, and the high

dimensional nature of modern statistical analyses result in algorithms that mandate a

substantial computational burden. Such issues become increasingly problematic under the

guise of the benefits provided by the use of a wide-ranging imputation model (Robbins and

White, Forthcoming).

Here, the transformation-based schemes of Robbins et al. (2013) are extended, resulting

in the introduction of robust techniques for transformation. In particular, a transformation

based on the kernel density is suggested. Woodcock and Benedetto (2009) use a kernel

density to generate data values for the purpose of creating a public use dataset from

confidential data. Additionally, a fully empirical transformation (which uses a modified

empirical distribution) is presented here. The empirical transformation yields a hot-deck
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(or nearest-neighbor) technique that may be applied jointly with commonly used

multivariate imputation algorithms (such as IVEware, MICE or mi) in a very

computationally efficient manner. The proposed methodologies yield simple tools

which uphold the ability to preserve complex distributional structures provided by PMM

while maintaining the computational efficiency of techniques which mandate Gaussian

assumptions.

In this article, imputations for a widely-used data product are generated via the

aforementioned transformation techniques. The marginal and multivariate efficacy of the

resulting imputations, as well as the inadequacies of imputations generated using a fully

parametric model, are illustrated. Specifically, in Section 2, the dataset that will be used

throughout, and the technique that will be used to generate imputations (following

transformation), are introduced. The robust methods of transformation are presented in

Section 3, and data analysis is provided in Section 4. Further, Section 5 presents a

simulation study (performed using real and synthetic data) that illustrates the effectiveness

of the proposed transformation schemes. The article concludes by providing comments

and practical advice in Section 6.

2. The ARMS and Associated Imputation Technique

In June 2009, a research project commenced with the goal of creating a new imputation

method for the US Department of Agriculture’s (USDA) Agricultural Resource

Management Survey (ARMS). Partial findings of the research project are outlined in

Robbins and White (2011), Robbins et al. (2013) and Robbins and White (Forthcoming);

this article relates additional findings of the project. Although the methodologies presented

here are widely applicable, the problem of interest is motivated here through a discussion

of the ARMS and its recently developed imputation technique.

ARMS data are a key source of information for congressional decisions that allocate

billions of dollars in farm subsidies (Robbins et al. 2013). The survey provides the

USDA’s most comprehensive view of the American farm household; ARMS data

contain 30,000–40,000 units (observations) with 1,000–2,000 items (variables). The

ARMS has a multiphase, dual-frame, stratified, probability-weighted sampling design.

Design weights are calibrated, and the calibrated weights are used to calculate key

survey indications (U.S. Department of Agriculture 2011). Calibration of design weights

also accounts for unit nonresponse; the rate of unit nonresponse tends to hover around

30% (National Research Council 2008). Analyses presented herein use data from the

2010 ARMS.

Aside from being high dimensional, ARMS data have a complex distributional structure

– the majority of ARMS variables have semicontinuous distributions. To elaborate, a

portion of units will report a zero for a given variable, whereas the responses for the

remaining observations for that variable are sampled from some strictly positive and

(theoretically) continuous distribution.

The new ARMS imputation procedure handles semicontinuous variables via a

commonly used mixture model (see Javaras and van Dyk 2003, for example). Specifically,

a semicontinuous variable Y is broken down into two latent variables, B and Y*, where

B is an indicator variable denoting whether or not Y is positive, and Y* is a strictly
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continuous variable that indicates the positive portion of Y. The imputation algorithm

treats Y* as missing whenever Y is missing or 0. All semicontinuous ARMS variables are

transformed in this manner, and all ARMS variables with missing values are assumed to be

semicontinuous. See Su et al. (2011) for an example of an extant procedure that utilizes

similar approaches for handling semicontinuous data. Another key characteristic of the

missingness in ARMS data is that all missing values are assumed to be positive. Thus, B is

fully observed for all variables.

The positive portions of ARMS variables (i.e., the Y*s) tend to be highly skewed. Since

all imputation procedures that are practical in high-dimensional settings link variables

through a multivariate normal model, each Y* is transformed in order to achieve

normality. Letting X (which is theoretically Gaussian) represent a transformed version

of Y*, Robbins et al. (2013) provide the following procedural outline of the algorithm

for imputation in ARMS data:

1. Break each semicontinous variable Y into B and Y* (observed 0s are treated as

missing).

2. Transform: Y* ) X for each variable.

3. Impute: Find X̂ (the imputed version of X) for each variable.

4. Untransform: X̂) Ŷ (the imputed version of Y) for each variable (values that are

originally observed as 0 are reset to 0).

The imputed data also undergo an editing process to ensure that imputations satisfy all data

constraints prior to release. Most variables are not subject to such constraints, and the

editing process does not damage the quality of the imputations with regards to analytic

properties.

Robbins et al. (2013) focus on Step 3 above. For that purpose, they introduce a dynamic

imputation procedure, the so-called iterative sequential regression (ISR) method, that

builds a multivariate (normal) model for the Xs (and respective covariates) through a

sequence of conditional linear models while allowing flexibility in the form of each

conditional model. For the purpose of transformation, they apply a skew-normal model

(Azzalini 1985) to the logged versions of the Y*s. It had been established that such a

transformation is sufficient for the majority of ARMS variables (Miller et al. 2010).

However, for certain ARMS variables (and surely data from most any other survey) such a

model is insufficient.

As a result, the focus here turns to Steps 2 and 4 above: the mechanisms for

transformation. We present robust nonparametric methods for transformation that will

retain the applicability of the ISR procedure while ensuring that imputations preserve the

marginal structure of complex survey variables (as will be illustrated in the sections that

follow). It is emphasized that the methods presented in the following are widely

applicable; these techniques may be applied to any data that contain theoretically

continuous (or semicontinuous) variables and may be applied in conjunction with a wide

array of imputation procedures.

To help illustrate the applicability of the methodology presented here to general

imputation problems, statistical analyses that require the specific ARMS design are not the

focus here. Regardless, the survey design is not expected to have a substantial influence on

the choice of transformation scheme.
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In this article, the standard errors of estimators derived using imputed data are adjusted

for imputation error via multiple imputation (MI, Rubin 1987;1996). MI involves the

generation of multiple datasets which have been imputed independently of one another;

imputations are presumed to have been randomly sampled from the posterior distribution

of the missing data given the observed data. Rubin’s rules for combining information

across datasets have been provided in a number of references (including the two given

above). The validity of MI inferences in settings where complex survey data are used has

been called into question frequently (Kott 1995; Fay 1996; Kim et al. 2006). Although MI

has demonstrated utility for analysis of ARMS data (Robbins and White, Forthcoming),

MI is used here primarily due to its simplicity and effectiveness in comparing imputation

error across datasets imputed via differing methods.

3. Transformation Techniques

Let the length-n vector Y ¼ {Y1; : : : ; Yn} 0 denote a survey variable, where n is the

sample size (i.e., number of experimental units). To develop a transformation scheme that

attains normality, consider the fact that any continuous random variable with a known

cumulative distribution function (CDF) can be transformed into a standard normal variate.

Specifically, let X be any scalar random variable with known CDF F(x), and let

TðxÞ ¼ F21ðFðxÞÞ ð1Þ

represent the transformation function, where Fð�Þ denotes the standard normal CDF,

then

TðXÞ , Nð0; 1Þ

It is noted that when variables are transformed via (1) and then linked through a

multivariate normal distribution (which is the model used for imputation here), the

resulting model may be considered a Gaussian copula (Nelsen 2009).

The impasse with respect to application of the above transformation scheme is the fact

that in practical circumstances, the CDF F(x) tends to be unknown. Thus, in order to apply

the above transformation to the positive portions survey, it is necessary to first develop a

manner for determining (or approximating) the CDF of these positive portions. As

mentioned above, a log-skew-normal model suffices for the majority of ARMS variables.

That is, in accordance with (1); Robbins et al. (2013) suggest that if

T1ð yÞ ¼ F21ðFð yjĵ; v̂; âÞÞ ð2Þ

then T1ðlogYiÞ should have (or approximately have) a standard normal distribution for all

relevant i. In the above, {ĵ; v̂; â} represent consistent estimators of the skew-normal

parameters. Clearly, such marginal transformations provide no general implication that

joint normality will be obtained; however, Robbins et al. (2013) illustrate rigorously that

for ARMS data multivariate normality is (adequately) achieved through marginal

transformation to normality. It is noted that these conclusions also hold when the

nonparametric transformations proposed herein are used.

As was also mentioned above, the transformation in (2) is inadequate for certain ARMS

variables. For instance, labor variables, where the response indicates the number of weekly
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hours worked, tend to observe onerous marginal distributions. Names and descriptions of

ARMS variables that will be discussed in this study are given in Table 1. Names of ARMS

variables are formed by placing a “P” in front of the numeric item code seen on the survey

questionnaire.

As an example, Figure 1 provides a histogram of log(P829) with the best-fitting skew-

normal density curve. Only positive responses for this variable are included in this graph

(and similar plots that follow). A scatter plot of log(P829) and log(P830) is also provided

in the figure to illustrate the bivariate dispersion of the data points. Likewise, only units

that report positive values for both variables are plotted in this graph (and similar ones that

follow). These labor variables are analyzed on the log scale because logged values are

closer to being Gaussian than the untransformed values.

P829: Skew Normal Fit

log(P829)
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0.8

log(P829) vs. log(P830)

log(P829)

Fig. 1. Histogram of log(P829) (left) and scatter plot of log(P829) versus log(P830) (right). The left plot has the

best fitting skew-normal density curve overlaid. Axis values are suppressed to avoid disclosure where necessary

Table 1. List and description of ARMS variables pertinent to this study. The number of positive and observed

(nobs) values and the number of missing values (nmis) is provided for each listed variable. Within the simulation

study of Subsection 5.1, additional missingness is imposed in the variables marked with an asterisk

Name Description nobs nmis

P758* Operator’s expenditure for hired labor 9,354 0
P764* Operator’s wage expenditure for operator 1,296 0
P784* Contractor’s expenditure for contract labor 151 0
P828* Operator’s on-farm labor (in hrs/wk) for Jan.–Mar. 19,285 1,296
P829* Operator’s on-farm labor (in hrs/wk) for Apr.–Jun. 19,342 1,438
P830 Operator’s on-farm labor (in hrs/wk) for Jul.–Sept. 19,274 1,474
P831 Operator’s on-farm labor (in hrs/wk) for Oct.–Dec. 19,114 1,517
P832* Spouse’s on-farm labor (in hrs/wk) for Jan.–Mar. 8,991 533
P833* Spouse’s on-farm labor (in hrs/wk) for Apr.–Jun. 9,298 513
P834 Spouse’s on-farm labor (in hrs/wk) for Jul.–Sept. 9,298 529
P835 Spouse’s on-farm labor (in hrs/wk) for Oct.–Dec. 9,097 559
P884 Estimated value of farm credit stock on Dec. 31 4,273 1,025
P952* Operator and spouse off-farm labor 10,462 1,081
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To illustrate further the specific deficiencies of the skew-normal (SN) transformation for

the labor variables, Figure 2 provides a histogram log(P829) and a scatter plot of log(P829)

versus log(P830), all following skew-normal transformation. As the transformed data

should observe a standard normal distribution, the standard normal density is plotted over

the histogram of the transformed data. Additionally, a Kolmogorov-Smirnov (KS) test

under the assumption of a standard normal distribution is applied to the transformed values

shown in the left graph in Figure 2, and the distance statistic (d-stat) is given in the upper-

left corner of the plot. Labor variables such as P829 tend to have repeating values, which

makes the KS test theoretically inappropriate, but such results are given here and in further

plots for a comparison of goodness of fit.

The power (or Box-Cox) transformation is often applied within imputation procedures

(e.g., Raghunathan et al. 2001). However, the Box-Cox transformation show no increase in

utility over the log-skew-normal transformation described above; therefore it is not

discussed further. A more robust transformation scheme is clearly warranted.

Accordingly, nonparametric models for F(x) are considered.

3.1. Transformation Via the Kernel Density

Next, consider the Gaussian kernel, which is used to estimate the probability density

function (PDF). Similarly, Woodcock and Benedetto (2009) use kernel densities for

marginal transformation to normality. The kernel density (using a Gaussian kernel) of

Y ¼ {Y1; : : : ; Yn} 0 is

f̂hðxÞ ¼
1

nh

Xn

i¼1

f
x 2 Yi

h

� �
;

where h . 0 is a bandwidth parameter, and fð�Þ represents the standard normal PDF.

The CDF of Y may be approximated with

F̂hð yÞ ¼

ðy

21

f̂hðxÞdx ¼
1

n

Xn

i¼1

F
y 2 Yi

h

� �
:

P829: SN Post−transformation Fit
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Fig. 2. Histogram of log(P829) (left) and scatter plot of log(P829) versus log(P830) (right) following skew-

normal transformation. The left plot has the standard normal density curve overlaid
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Therefore, the kernel-density transformation for Y is

T2ð yÞ ¼ F21ðF̂hð yÞÞ; ð3Þ

and T2ðYiÞ should appear to have been sampled from a standard normal distribution.

Figure 3 provides a histogram log(P829) and a scatter plot of log(P829) versus

log(P830), all following the kernel-density (KERN) transformation. Clearly, the figure

provides an instance where the kernel density offers a transformation to normality that is

superior to that of the skew-normal family – the plots indicate that normality assumptions

appear reasonable (in both the univariate and multivariate sense).

Selection of the bandwidth parameter, h, in kernel-density functions is a well-studied

issue (Silverman 1986; Sheather and Jones 1991; Scott 2009). Selection algorithms often

return small values of h for ARMS variables; such choices of h fail to adequately

differentiate the KERN transformation from the EMP transformation described below. To

avoid this issue, a bandwidth parameter of h ¼ 0.2 is used whenever the KERN

transformation is applied to ARMS data herein; this value offers adequate smoothing for

the ARMS variables used.

3.2. Transformation Via the Empirical Distribution

The empirical distribution function of Y ¼ {Y1; : : : ; Yn} 0 is now considered:

~Fð yÞ ¼
1

n

Xn

i¼1

1{Yi # y};

where 1{A} is the indicator of event A. We, however, focus on

�Fð yÞ ¼
1

n

Xn

i¼1

1{Yi , y}þ
1

2
1{Yi ¼ y}

� �
;

P829: KERN Post−transformation Fit
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Fig. 3. Histogram of log(P829) (left) and scatter plot of log(P829) versus log(P830) (right) following kernel-

density transformation. The left plot has the standard normal density curve overlaid
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since �Fð yÞ ¼ limh!0F̂hð yÞ whenever y [ R. Particularly, �Fð yÞ is preferable to ~Fð yÞ in

cases where n is small or where Y contains repeating values (which is common for

theoretically continuous portions of ARMS items). The empirical distribution (EMP)

transformation for Y is

T3ð yÞ ¼ F21ð �Fð yÞÞ; ð4Þ

and ~Y ¼ {T3ðY1Þ; : : : ; T3ðYnÞ} should appear to have been sampled from a standard

normal distribution. Note that T3ð yÞ does not exist if �Fð yÞ ¼ 0 or 1. However, for all

y [ Y, �Fð yÞ [ ð0; 1Þ, meaning the observed values can be transformed via (4) without

issue. Nonetheless, it is recommended to set �Fð yÞ ¼ 1=ð2nÞ if y , mini{Yi}, and �Fð yÞ ¼

ð2n 2 1Þ=ð2nÞ if y . maxi{Yi}.

Figure 4 provides a histogram of P829 and a scatter plot of P829 versus P830, all following

the EMP transformation. Repeating values of P829 prevent the EMP transformation from

achieving exact normality. Regardless, the figure indicates that the EMP transformation is

also clearly superior to the SN transformation in the circumstances illustrated here.

Since �Fð yÞ
a:s
�!Fð yÞ, the transformation in (4) is preferable when there is enough

observed data to ensure that the empirical data provide a sufficient scope of the full

distribution (including, most importantly, the tails).

3.3. Untransformation

Let X represent a transformed version of Y following application of one of the

aforementioned schemes. Imputations will then be created for X, resulting in X̂, an

imputed version of the transformed data. However, the imputations must be

“untransformed” (i.e., returned to their original scale). If a transformation of the type in

(1) has been applied to Y, the following inverse transformation may be applied to the

imputed values:

T 21ðzÞ ¼ F 21ðFðzÞÞ; for z [ ð21;1Þ; ð5Þ

where F 21ðuÞ, for u [ ð0; 1Þ, represents the inverse of the Fð yÞ, for y [ ð21;1Þ. The

CDF found using skew-normal assumptions, Fð yjj;v;aÞ, and the CDF found using

P829: EMP Post−transformation Fit
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Fig. 4. Histogram of log(P829) (left) and scatter plot of log(P829) versus log(P830) (right) following empirical

distribution transformation. The left plot has the standard normal density curve overlaid
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the kernel density, F̂hð yÞ, are both continuous and one-to-one mappings defined over R.

Thus, their respective inverses, F 21ðujj;v;aÞ and F̂
21

h ðuÞ, exist for u [ ð0; 1Þ.

Let x̂ represent an imputation for X, which represents the transformed version of Y.

If the skew normal transformation seen in (2) was applied to this variable, x̂ can be

untransformed by calculating

ŷ ¼ T21
1 ðx̂Þ ¼ F 21ðFðx̂Þjĵ; v̂; âÞ;

and if kernel transformation seen in (3) was applied, the inversion requires the calculation

of

ŷ ¼ T21
2 ðx̂Þ ¼ F̂

21

h ðFðx̂ÞÞ:

Computations involving the above two expressions (the latter, in particular) can be quite

intensive.

The empirical CDF, �Fð yÞ, is neither continuous nor one-to-one. Thus, its inverse,
�F21ð yÞ, does not exist, and (5) is not directly applicable. Hence, inversion of the empirical

distribution transformation works as follows. Let U ¼ {U1; : : : ;Un}, where

Ui ¼ �FðYiÞ for i ¼ 1; : : : ; n:

Note that the Ui should resemble uniform variates. For x̂ [ ð21;1Þ, let ux ¼ Fðx̂Þ, and

after setting

ix ¼
i

argminjUi 2 uxj;

untransform imputations in variables requiring the empirical transformation by calculating

ŷ ¼ T21
3 ðx̂Þ ¼ Yix :

Inverting the empirical distribution in this manner ensures that any imputation of values

in variables transformed using (4) will be sampled directly from observed values.

Accordingly, an imputation method that utilizes the empirical method can be considered

a “hot-deck” technique (Little 1988; Little and Rubin 2002). The EMP transformation

is also advantageous due to its computational simplicity. However, the KERN

transformation scheme is very demanding computationally (as it requires numeric

integration).

4. Analysis of Imputed Data

The ISR algorithm of Robbins et al. (2013) is applied to the complete 2010 ARMS dataset

using the imputation model described therein, where only the transformation technique is

varied. For instance, five completed datasets were independently created (in the vein of

multiple imputation) where the skew-normal (SN) transformation in (2) is used for all

variables requiring transformation. This process is then repeated using the kernel-density

(KERN) transformation in (3) and the empirical distribution (EMP) transformation in (4).

Discussion is limited to the ARMS variables described in Table 1. The table also lists the

number of positive and observed values (nobs) and the number of missing values (nmis) for

each variable.
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The full imputation model includes many additional variables beyond those listed in

Table 1. Many of these variables contain missing values; the others are used as fully

observed covariates. The respective transformation scheme is applied to all continuous or

semi-continuous variables within the imputation algorithm. A list of variables included in

the full model is given in Robbins et al. (2011).

To begin, analysis of marginal data characteristics of the variables (which contain

missingness) in Table 1 is considered. Table 2 provides the unweighted sample mean (�x)

and sample standard deviation (s) of the nonzero values, in addition to the between

imputation variance (B) and upper bound (UMI) and lower bound (LMI) for the 95%

confidence interval (as found using Rubin’s combining rules for multiple imputation) for

the population mean of each variable. The reported values of �x and s represent the mean of

their respective values when calculated in each of the five imputed datasets. Table 2

presents the results in “cells”, where the top, middle, and bottom value in each cell is the

respective estimate found using the SN, KERN and EMP transformations, respectively.

Table 2 indicates that the choice of transformation method may result in differing values of

means and variances. The discrepancies do not appear to be substantial, although it is

noted that they are not explained by randomness in the imputations alone. Further, the lack

of influence of the transformation type is likely due to relatively small missingness rates.

It is also noted that other quantities (e.g., a 90% quantile) may be more heavily influenced

by the transformation technique; however, the objective here is to present statistics that are

of practical relevance.

To further examine marginal characteristics of imputations, discussion is now restricted

to the variable P884. This variable is of particular interest because a large portion of

positive and observed responses take on a single value (the specific value may not be

disclosed here). This phenomenon is illustrated by the histogram of the positive and

observed values of P884 which is provided in the left plot in Figure 5. The middle

plot shows the positive and observed values of P884 following the EMP transformation.

The plot provides visual evidence that the EMP transformation imposes “separation”

between values that are frequently repeated and neighboring values. This separation

ensures that there is a relatively high probability that an imputed value will equal the

repeating value. For instance, 16.6% of positive and observed responses for P884 take on

the frequently occurring value, and 9.3% of all EMP imputations take on that value

(whereas 0% of SN and KERN imputations take on the value). The right plot in Figure 5

provides kernel-density plots of observed and imputed values (for each of the three

transformation schemes), which further illustrates the need for a nonparametric

transformation procedure.

There are alternative approaches for imputing P884. For instance, a three-level mixture

model which includes two indicator variables (the first one indicating the occurrence of an

observation equaling zero and the second indicating the observation taking on the

frequently occurring value) may be more appropriate. However, such a procedure would

have to enable the second indicator variable to have missing values (since it is not known

whether or not the missing values of P884 take on the frequently occurring value).

Therefore, the use of the marginal transformations (as opposed to higher-level mixture

models) permits the convenience of a multivariate normal imputation model while

producing high-quality results.
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To monitor the multivariate influence of imputations sampled using the various

transformation schemes, consider scatter plots. Figure 6 provides scatters plots of

log(P829) versus log(P830) for each of the three transformations where pairwise positive

and observed pairs are marked with an ‘ £ ’ and imputed pairs are marked with a ‘þ’.

Lines of best fit for observed and imputed pairs are also included. Plots are given on the log

scale in order to emphasize the differences between methods. The plots appear to indicate

that bivariate extremes are underimputed, which may (partially) be a result of imputed

values tending to be smaller than observed values for both variables in the plots. This

phenomenon is to be expected for the labor variables; data indicate that “hobby” farmers,

who are less likely to work on-farm full time, are more likely to refuse response for labor

items. Regardless, the EMP transformation is clearly the most likely to preserve the

underlying bivariate structure.

To further gauge the multivariate quality of the imputations, consider an econometric

model motivated by the following. Farm operators often pursue off-farm sources of

income; the on- and off-farm labor decisions of farmers have been well scrutinized in the

economic literature. Economic theory suggests that the amount of time a farm operator

(and the operator’s spouse) choose to work on the farm is heavily influenced by factors
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such as the hours worked off farm by the operator and spouse, an on-farm wagerate,

off-farm wage rate, the operator’s age and level of education, and so forth. Econometric

models investigating this concept have been considered by Huffman (1980); Sumner

(1982); Huffman and Lange (1989); Mishra and Holthausen (2002) and Kwon et al. (2006)

among many others. Here, consider the following linear model:

OPHR ¼ b0 þ b1OPOFFHRþ b2OFFRATEþ b3P1242þ b4Zþ 1; ð6Þ

where Z represents a set of additional categorical covariates and 1 is a mean zero error

term. In the above, OPHR is the number of on-farm hours worked weekly by the farm

operator (calculated as the average of P828, P829, P830 and P831). Likewise, OPOFFHR

is the number of hours worked off-farm by the farm operator. OFFRATE is calculated as

P952/(OPOFFHR þ SPOFFHR) where SPOFFHR is the number of hours worked off

farm by the operator’s spouse. That is, OFFRATE represents the combined off-farm wage

rate for the operator and spouse. Further, P1242 is the operator’s age. Estimated values of

coefficients are found using least squares while isolating to units that report nonzero values

log(P829) vs. log(P830): SN Imputations log(P829) vs. log(P830): KERN Imputations

log(P829) vs. log(P830): EMP Imputations

Jointly observed and positive pairs
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Line of best fit for plotted x's
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Jointly observed and positive pairs
Fully or partially imputed pairs
Line of best fit for plotted x's
Line of best fit for plotted +'s

Fig. 6. Scatter plots of imputed and observed pairs of log (P829) and log (P830) for the various transformation

schemes
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for all pertinent variables. A model similar to (6) which involves the hours worked on farm

by the spouse was also considered throughout this study, but the findings are redundant and

thereby omitted.

Table 3 provides results for these two models. The format of this table is similar to that

of Table 2, as are the findings: The choice of transformation method may have a noticeable

(but in this case not substantial) impact on the estimations found using econometric

modeling.

5. A Simulation Study

This section presents simulation analyses which evaluate the efficacy of the proposed

transformation techniques. Ideally, all assessments would be performed using real data,

since synthetic data are not guaranteed to adequately mimic the complex structures

encountered in practice – the motivation behind the proposed techniques is to capture such

structures. Accordingly, when possible, evaluations are performed with observed ARMS

data; in circumstances where such analyses do not offer sufficiently clear conclusions;

a small-scale study using entirely synthetic data is used to inform the discussion.

5.1. Simulations Involving ARMS Data

A preferable technique for simulation involving real data would be to draw a sample of

respondents from the observed units while treating the full dataset as a population from

which population parameters can be ascertained; implementations of this scheme are seen

Table 3. Summary information for the econometric model. The top,

middle and bottom values in each cell are calculated using SN,

KERN and EMP imputations, respectively

b0 b1 b2 b3

Coefficient 2237 20.432 28.02e-3 28.96
2224 20.427 28.05e-3 29.08
2240 20.433 27.06e-3 28.90

seðCoef :Þ 9733 2.90e-4 1.96e-6 1.575
9688 2.89e-4 1.94e-6 1.569
9642 2.87e-4 1.90e-6 1.559

B 775.5 2.08e-5 7.51e-7 0.1794
843.7 3.14e-5 7.09e-7 0.2711
876.6 1.38e-5 8.45e-7 0.1106

LMI 2034 20.467 21.14e-2 211.60
2039 20.462 21.14e-2 211.80
2037 20.468 21.11e-2 211.46

UMI 2440 20.397 24.60e-3 26.329
2445 20.391 24.68e-3 26.357
2443 20.400 24.12e-3 26.349

Robbins: Nonparametric Transformations for Imputation 689



in Reiter (2005) and Manrique-Vallier and Reiter (2014). However, there are not enough

available data for this approach to be feasible within the ARMS. ARMS data are high

dimensional; nonetheless, the effective sample size (the number of positive values) can be

quite small for some variables. Instead, a jackknife-type study is executed here.

As setup, a completed ARMS dataset is created using the imputation scheme outlined in

Robbins et al. (2011). Specifically, the full-scale ISR algorithm and model are used in

conjunction with various transformation schemes. It is not feasible to use complete cases

only since there are an insufficient number of complete cases. This single completed

dataset is used to create all of the benchmark values required within the simulation study.

Next, missingness is randomly imposed in eight of the ARMS variables according to a

probabilistic model. Imputations are then created for these newly missing values and the

values of desired metrics as found using the imputed data are compared to values found

using the original benchmark dataset. It is worth noting that the rate of missingness that is

imposed will vastly exceed the original rate of missingness in ARMS data. The eight

variables in which holes are poked are marked in Table 1 with an asterisk; some of these

variables originally contained missingness, whereas others did not.

In addition to the eight variables in which missingness is imposed, there are 18

additional variables used as covariates within the imputation model for ISR. The imposed

missingness is completely at random (MCAR, in the terminology of Little and Rubin

2002). Specifically, any positive value is imposed as missing with a probability of 0.5,

and the occurrence of imposed missingness is independent across all values. Since the

imposed rate of missingness is far higher than the missingness rate in the original dataset,

the influence of imputations within the benchmark study should be filtered out. The

performance of ISR with density transformations has been analyzed in great detail under

other missingness mechanisms (e.g., MAR and NMAR – for details, see the

supplemental material of Robbins et al. 2013). Analyses under MAR and NMAR are

not expected to yield information regarding the influence of the transformation type

beyond what is learned under MCAR missingness; for brevity, only MCAR is

considered in these ARMS-based simulations. Since ISR is iterative (as it is a form of

Markov chain Monte Carlo), each completed dataset is sampled using a burn-in period

of 200 iterations.

The goal is to assess the potential for bias (in any point and interval estimates calculated

from the ARMS data) caused by the choice of transformation method. The performance of

the methodology is measured in terms of the relative change of a metric post imputation.

Missingness is randomly imposed in the completed benchmark dataset 100 different times.

Each time missingness is imposed, imputations are independently created five times (in the

vein of multiple imputation) for each method. The methods used are as follows.

1. SN – The skew-normal transformation of (2) is used for all variables.

2. KERN – The kernel-density transformation of (3) is used for all variables.

3. EMP – The empirical distribution transformation of (4) is used for all variables.

4. EMPABB – EMP with an approximate Bayesian bootstrap.

The transformation schemes discussed in Section 3 will result in imputations that

understate variability due to the fact each transformation scheme requires that any

variable’s CDF, F(x), be treated as known despite the fact that F(x) is, in fact, estimated.
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To address this issue, Woodcock and Benedetto (2009) suggest an approximate Bayesian

bootstrap (ABB), where F(x) is estimated using a bootstrapped pool of observations as

opposed to the actual pool of observations. Here, ABB is used together with the EMP

method, resulting in EMPABB as above.

Let x denote the benchmark dataset, and let x½d�k denote the d th completed dataset

(d ¼ 1; : : : ; 5) as imputed for the k th artificially incomplete dataset (where

k ¼ 1; : : : ; 100). Finally, let uð�Þ denote a metric of interest (where the argument

represents the dataset used to compute the metric). The percent change in the metric is

computed via

DuðkÞ ¼ 100
�uk 2 uðxÞ

uðxÞ

� �
;

where �uk ¼
P5

d¼1 uðx
½d�
k Þ=5. Results are presented in the form of box plots of the 100

values of DuðkÞ.

Metrics tracked in this simulation study include the sample mean and standard error of

the sample mean as calculated over the nonzero values of each variable in which

missingness is imposed in addition to the regression coefficients in (6) and their respective

standard errors. Note that the standard error of a sample mean equals the sample standard

deviation times a constant (i.e., n
21=2
obs ). Covariances were also monitored but yielded

results that mimic those of the regression coefficients (accordingly, those results are

omitted from the discussion). Confidence intervals for the sample means and regression

coefficients can be calculated using Rubin’s combining rules for MI, although the details

are omitted here.

Findings are shown in Figure 7 for P784, P829, b1 and b2. The results indicate that for

certain variables (e.g., P829) whose marginal distributions cannot be modeled with an

appropriate parametric density, biases in basic marginal characteristics may be induced if

one does not utilize a nonparametric transformation. Further, the nonparametric

transformations result in imputations that appear to adequately preserve the quantities

studied here (though there may be evidence of a moderate decrease in the variance of P784

caused by the nonparametric methodology). Likewise, there does not appear to be an

advantage to using the EMPABB method in place of the EMP method.

Finally, since the empirical distribution transformation is designed to handle repeating

values, it has the potential to be applied to variables that are binary or ordinal (though not

strictly categorical with more than two categories). However, such efficacy of the

transformation for such a purpose has not been thoroughly investigated.

Of interest is P784; this variable was included in this study since it has a particularly low

number of positive and observed values (151 in the true dataset and thereby approximately

75 prior to imputation within the simulation study – see Table 1). Parametric and

nonparametric transformations (when the former are well fit) are expected to perform

equivalently on large samples (wherein sufficient data are available to adequately

approximate the CDF under all transformation types); discrepancies between

transformations are anticipated to be most visible when there are few observations

available. To that end, it is noted that the SN transformation results in a substantially wider

confidence interval for the mean of the nonzero observations of P784 (approximately three
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to four times wider on average than the KERN and EMP transformations) within the

simulations used to generated Figure 7. Since the SN model seems appropriate for this

variable (the KS test yields a p-value of 0.801 when a skew-normal distribution is

assumed), since it seems unreasonable to assume that 75 observations can sufficiently

quantify a CDF, and since Figure 7 implies that the nonparametric transformations may

decrease the variance of this variable, it is suggested that the SN transformation is more

appropriate than the nonparametric transformations for P784.

Ideally, comparisons to predictive mean matching (PMM, Little 1988) could have been

presented in this study. PMM is a popular technique that builds a predictive model

for imputations through regression, and then samples imputations from observed data –

making it similar to (and useful in the same settings as) the methods presented here.

However, direct comparisons to PMM within the simulations above (wherein such

comparisons would be most useful due to the unknown distributional structure of

ARMSdata) cannot be made here due to computational constraints. For instance, one

iteration of ISR takes 1.15 seconds, and one iteration of MICE with PMM takes 15 minutes

when run on the group of variables used above. These computations are executed on a

64-bit Windows machine with a 3.3 GHz processor and 8.0 GB of RAM.

To summarize, the above study helps to verify the efficacy of the proposed methodology

on real data, but it has some notable shortcomings. For instance, it is desirable to

investigate the comparative performance of the proposed techniques against other

methods such as PMM, and to present results for a variety of missingness structures.

Many of these shortcomings are the consequence of computational issues. Furthermore,

the above simulations leave unanswered the question as to whether or not a parametric

transformation is preferable in settings involving small samples. A small-scale study

involving fully synthetic data is thus presented below.

5.2. Simulations Involving Synthetic Data

The small scale of the following simulation study (only two variables are used for various

sample sizes) makes it computationally feasible to consider a variety of methods and

missingness mechanisms. Specifically, the four transformation techniques mentioned

above (SN, KERN, EMP, and EMPABB) are used in conjunction with ISR. As needed,

skew-normal MLEs are used, and the kernel bandwidth parameter is estimated via the

method of Sheather and Jones (1991). Further, PMM is considered (while used in

conjunction with mice) as well as IRMI (Templ et al. 2011); no transformation is used

when these methods are applied.

Data are generated as follows. Let X ¼ {X1; : : : ;Xn} represent a random sample from

a skew-normal distribution with parameters j ¼ 4, v ¼ 2 and a ¼ 22. Additionally, let
~X ¼ { ~X1; : : : ; ~Xn} represent the version of X that has been transformed in accordance

with (2) while using the true parameter values, and define Y ¼ {Y1; : : : ; Yn}, where

Yi ¼ 1þ 0:5 ~Xi þ 1i for i ¼ 1; : : : ; n, and where 1 ¼ {11; : : : ; 1n} is a random sample of

length n from a standard normal distribution.

Missingness is imposed in the values of X through the following mechanisms. Under

MCAR missingness, each observation of X is missing with probability 0.5. For MAR

missingness, Xi is missing with a probability equal to 1=ð1þ expð2 ~YiÞÞ, where ~Yi

Robbins: Nonparametric Transformations for Imputation 693



represents a standardized version of Yi. NMAR missingness was also considered, but the

results are excluded for brevity since they provided no additional information regarding

the choice of transformation scheme beyond what is learned from the other mechanisms.

Imputations in X are generated via the techniques mentioned above; the elements of Y are

not transformed at any point. Further, m ¼ 5 imputed datasets are created, and no burn-in

period is necessary since missingness is restricted to one variable. MI point and interval

estimates are generated for a handful of parameters, and the entire process is replicated

independently 1,000 times for various values of n.

For a given imputation method, missingness mechanism, and value of n, let ûk denote

the MI point estimate of a generic parameter u calculated following the k th replication

(k ¼ 1; : : : ; 1; 000). The percent bias in the multiple imputation estimate of u is

approximated by calculating �Du ¼ 100
P1;000

k¼1 ½ðûk=uÞ2 1�=1;000. Similarly, the

sequence of 1,000 values of ûk can be tested to see if the percent bias is statistically

nonzero. Further, the empirical coverage of the MI interval estimate of u is calculated via

the portion of the 1,000 replications in which the true value of u is contained within its

95% confidence interval.

First, we consider the basic univariate parameters m ¼ E½X1� and s2 ¼ VarðX1Þ; results

are given in Table 4. All transformation methods offer strong performance in terms of bias

and coverage for these parameters, as does the PMM procedure. However, the IRMI

procedure shows some evidence of bias and observes poor coverage for these simple

quantities. It appears that all methods induce a small amount of bias (which mostly

disappears with increasing n) under MAR missingness; the fact that this bias tends to be

negative is a consequence of the form of the function that generates the MAR missingness.

Moreover, the results imply that the use of the approximate Bayesian bootstrap does not

improve the results. Finally (and most importantly), all transformation schemes appear to

offer equivalent performance.

In order to provide parallels to the log-skew-normal distributions that positive portions

of ARMS data observe, we also study summary statistics of the transformed variable

Ui ¼ expðXiÞ. Specifically, we use multiple imputation to develop point and interval

estimates of g ¼ E½U1� and n2 ¼ VarðU1Þ by applying Rubin’s combining rules to the

sequence {Û1; : : : ; Ûn}, where Ûi represents a version of Ui that contains imputations of

missingvalues. The ability of an imputation algorithm to preserve such quantities is a

strong indication that the distribution of the imputed data matches that of the actual data

had they been fully observed (since g and n2 follow from the specificform of the MGF

of X1). Results for these two quantities are shown in Table 5. The table indicates that IRMI

imputations provide biased estimates of g and n2 under all missingness mechanisms. This

observation is not surprising, since IRMI does not take steps to ensure that the full

distributional structure is captured in the imputation process. Although all methods are

more imprecise in their estimation of g and n2 than of m and s2, Tables 4 and 5 both yield

the same conclusions regarding the comparative performance of the techniques.

In summary, the key findings of the simulation studies presented in this subsection are

that all methods involving transformation are comparable to PMM and that the choice of

transformation technique does not have a significant influence on bias or coverage

probabilities. The latter finding is noteworthy because the SN method, which is ideally

suited to this setting, shows no gains over the nonparametric methods, whereas the
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nonparametric methods will certainly provide higher efficacy in settings where the skew-

normal assumption is violated. Figure 7 shows that the nonparametric methods yield a

decrease in the variance of P784, and Tables 4 and 5 implicate that all methods may have

decreased variability in items with small sample sizes. This decrease is not seen by the SN

method in Figure 7, perhaps because the skew-normal distribution does not adequately

capture the tails of the distribution of P784 (which also helps to explain the outlying values

for this variable and transformation method in Figure 7).

6. Comments

Nonparametric transformation of survey data prior to imputation provides a

straightforward manner through which unique marginal data characteristics can be

preserved throughout the imputation process – such transformations are also shown to

maintain multivariate aspects. The empirical transformation described above has the

added advantage that imputations are drawn from observed data, which makes a method

that utilizes it a nearest neighbor-type technique, and which also increases the probability

that complex underlying data structures (that are common in establishment surveys) are

maintained. Further, the empirical transformation is advantageous due to its computational

simplicity.

The evaluations presented in this article did not unveil circumstances in which a

transformation based upon a parametric model (i.e., the skew-normal distribution) is

clearly preferable to the nonparametric methods. Further, no settings were found in which

a transformation based upon a kernel density outperformed the transformation based upon

an empirical distribution – the latter is more computationally efficient. In light of the

above, the recommendation is that in practical circumstances the empirical distribution

transformation be used when possible (however, further evaluations beyond those

presented here may be needed to support this conclusion). With any transformation

method, the practitioner should always investigate the validity of the posttransformation

multivariate model (a joint normal distribution was used here) prior to generating

imputations.

As an additional comment, it is noted that the nonparametric methods are applied here

while exclusively using ISR (Robbins et al. 2013). ISR has the restriction that variables

with missing values be sampled from continuous distributions. However, the

nonparametric transformations are applicable in conjunction with any imputation

technique which applies normality assumptions to continuous variables. For instance,

these transformations could be employed with IVEware (Raghunathan et al. 2002) or

MICE (Van Buuren and Oudshoorn 1999), which include capabilities for imputation of

categorical variables.

Furthermore, it is also possible to use the methods discussed here for simulation of

fully or partially synthetic datasets for the purposes of data confidentiality (Rubin 1993;

Reiter 2002; Raghunathan et al. 2003). Woodcock and Benedetto (2009) use a kernel-

density transformationfor this purpose, and it is noted that the empirical transformation

has such utility if it is acceptable for synthetic values to be sampled from the observed

data.
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Finally, we note that one may use the EMP transformation technique for imputation of

ordinal or binary variables (though not for categorical variables with more than two

categories) since the method samples imputations from the set of observed values.

However, the performance of the EMP method for this purpose has not yet been examined

thoroughly.
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