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This article describes a two-step calibration-weighting scheme for a stratified simple random
sample of hospital emergency departments. The first step adjusts for unit nonresponse. The
second increases the statistical efficiency of most estimators of interest. Both use a measure of
emergency-department size and other useful auxiliary variables contained in the sampling
frame. Although many survey variables are roughly a linear function of the measure of size,
response is better modeled as a function of the log of that measure. Consequently the log of
size is a calibration variable in the nonresponse-adjustment step, while the measure of size
itself is a calibration variable in the second calibration step. Nonlinear calibration procedures
are employed in both steps. We show with 2010 DAWN data that estimating variances
as if a one-step calibration weighting routine had been used when there were in fact two
steps can, after appropriately adjusting the finite-population correct in some sense, produce
standard-error estimates that tend to be slightly conservative.
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1. Introduction

The Drug Abuse Warning Network or DAWN (Substance Abuse and Mental Health

Services Administration 2012) was a national stratified random sample of US hospitals

used to estimate annual drug-related emergency-department visits and related statistics.

This article describes a calibration-weighting strategy for the DAWN that was never

implemented because the survey was discontinued after 2012. Nevertheless, we feel this

strategy and our contemplated approach to variance/mean squared error estimation

contained some innovative features worth sharing.

The DAWN sample was drawn from a list frame provided by the American Hospital

Association (AHA). The frame was stratified by location, size, and ownership type (public

vs. private). Hospitals were oversampled within 13 metropolitan areas, for which domain

estimates were published when respondent sample sizes were deemed large enough.
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In the estimation strategy used operationally for DAWN, the weight for a respondent

began with the hospital’s design weight. A nonresponse adjustment factor was applied

to each weight to account for those hospitals that were sampled but did not participate

in the DAWN survey. This was followed by a sample balancing – often called a

“poststratification” adjustment – to improve the efficiency (reduce the variances) of most

of the resulting nearly (i.e., asymptotically) unbiased estimates. Both steps employed

simple weighting-class adjustments requiring ad hoc collapsing schemes when there were

too few respondents in a class or the class adjustment factor was deemed too large.

In this article, we will describe alternative approaches to these two adjustments.

For simplicity, we will ignore the subsampling of visits and visit-level nonresponse

adjustments that took place within some DAWN hospitals.

The new nonresponse adjustment factors use a calibration-weighting routine that

implicitly models the probability that a hospital responds to (participates in) the DAWN

survey. It does this by assuming hospital response is a function of its characteristics, such

as its size, measured by annual emergency-department (ED) visits on the AHA frame,

ownership (public or private), region, and the population density of the county in which it

is located. If the response model is correctly specified, as we assume it is, then employing

this calibration-weighting routine produces nearly unbiased estimates of DAWN totals.

The new sample-balancing adjustment factors are produced using a version of nearly

pseudo-optimal calibration (Kott 2011) that forces each final weight to no less than 1.

Sample balancing exploits the fact that the variables measured by the DAWN survey, such

as annual drug-related ED visits, are functions of characteristics known for all hospitals

on the AHA frame. Calibrating the respondents’ weights so that the estimated totals of

(some of) those characteristics computed from the respondent sample exactly equal

corresponding frame (AHA) totals tends to increase the efficiency of estimated DAWN

totals, which remain nearly unbiased.

Evaluation of the nonresponse pattern in DAWN data from 2010 lead us to treating

the hospitals from the 13 metropolitan areas as one subpopulation and the remaining

hospitals as a separate subpopulation. For brevity’s sake we restrict our attention in this

article to nonresponse modeling and weight adjustments for the former subpopulation.

Similar methods can be used for the subpopulation of remaining hospitals. The impact

of finite-population correction on variance estimation is much less of an issue in that

subpopulation.

Although the DAWN published domain estimates for many of the 13 metropolitan

areas, we investigated domain estimates within the four US census regions instead. This

kept the respondent sample sizes within domains more respectable given that much of the

theory underpinning calibration weighting is asymptotic.

Since many DAWN hospitals were sampled with certainty (before nonresponse), we

restrict our attention in this article to linearization-based variance estimators of nearly

unbiased estimated totals that require finite population correction. Most software designed

to estimate variances using linearization-based methods only capture the increase in

variance from the respondent sample size being smaller than the before-nonresponse

sample size and from the final weights being more variable than the original weights. We

will describe linearization-based methods that also capture the decrease in variance

resulting from hitting calibration targets as well as from finite population correction.
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The software package SUDAAN 11w (RTI 2012) can produce linearization-based

measures that estimate variances appropriately when there is a single step of calibration

weighting, but not (easily) when there are multiple calibration steps. We will discuss a

simplified variance estimator for the DAWN given our two-step calibration scheme that

can be implemented in SUDAAN 11. The resulting estimated variances tend to be slightly

conservative when applied to DAWN data from 2010.

Calibration weighting for the DAWN is discussed in Section 2. Section 3 addresses

variance estimation after calibration weighting. Section 4 contrasts alternative variance

estimators using DAWN data, while Section 5 offers some concluding remarks.

2. Calibration Weighting for the DAWN

2.1. Nonresponse Adjustment

Let dk be the design weight for a sampled DAWN hospital k. For our purposes, this was the

population size of the stratum (say h) containing k divided by its sample size (Nh/nh). The

strata within a metropolitan area were determined by size class (up to three within an area)

and ownership type.

Following Folsom (1991), our nonresponse-adjusted weight for a DAWN respondent k

has the form:

ak ¼ dk 1þ exp ðgT xkÞ
� �

; ð1Þ

where xk is a vector of the respondent’s characteristics to be described shortly, and g is

determined using Newton’s method (successive linear approximation) so that the

calibration equation
X

R

ajxj ¼
X

R

dj 1þ exp ðgT xkÞ
� �

xj ¼
X

S

djxj ð2Þ

holds where R is the respondent sample and S the sample before nonresponse.

The value

pk ¼ pðgT xkÞ ¼ 1= 1þ exp ðgT xkÞ
� �

implicitly estimates the probability that k is a respondent given its characteristics in

vector xk.

Although pðgT xkÞ is a logistic function of gT xk, this method in not the same as finding

g using either maximum likelihood (i.e., so that
P

S 1þ exp ðgT xkÞ
� �21

2Ij

n o
xj ¼ 0,

where Ij ¼ 1 if j [ R and 0 otherwise) or quasi-maximum (i.e., so thatP
S dj 1þ exp ðgT xkÞ

� �21
2Ij

n o
xj ¼ 0Þ. Kim and Riddles (2012) show why the

calibration approach in Equation (2) can lead to estimated totals with smaller variances

than maximum-likelihood-based alternatives.

Preliminary analyses of 2010 DAWN data strongly suggested that the probability of

response was better modeled as the log of the AHA emergency-department visits than as a

direct function of ED visits. This is a more sensible result than it may appear to be. It

means that a one percent increase in the size measure lead to an r percent increase in the

odds of response, all other things being equal.
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After extensive model searching, we ultimately assumed unit response to be a logistic

model of an xk vector containing the log of the number of AHA emergency-department

visits, which we denote log(qk), dummy variables for each of the 13 metropolitan areas,

d1k, : : : , d13k, an indicator for a public (as opposed to private) hospital, dPk, an interaction

term between the public indicators and one of the area dummies dPk d13k, and the log of the

population density within the ZIP code containing the hospital (from US Census Bureau

2012) with imputation of missing values when needed, tk. Note that qk must always be

positive, which it was, so that log(qk) can be defined.

Although we assume we know the correct form of the model governing the response

probabilities for each hospital, rk ¼ pðgT xkÞ ¼ 1=½1þ exp ðgT xkÞ�, we can only estimate

the parameter g with g in Equation (2). We further assume that whether or not a hospital k

responds given xk is independent of whether another hospital responds.

2.2. Sample Balancing

Like most government surveys, the DAWN produces a number of estimates. It is possible

that a weight adjustment will decrease the variances of some estimates while increasing

those of others. Nevertheless, we chose to focus our sample-balancing efforts on reducing

the variance of a single estimate: the total number of drug-related emergency-department

visits. This can be viewed as the “flagship” variable of the DAWN survey. Not only is it

important in its own right, but it is related to many of the DAWN survey variables.

Using the nonresponse-adjusted weights from the previous step (the ak), ignoring strata

(and thus the need to collapse strata with only a single responding hospital) but otherwise

using a routine sensitive to the sampling design, we fit linear models of drug-related

emergency-department visits, yk, using covariates available on the AHA frame.

The model we liked best effectively modeled not yk but yk/qk as a function of four

census-region dummies, u1k, : : : , u4k, log(qk), and u1kdPk through u4kdPk. Observe that

yk/qk is the ratio of the number of drug-related emergency-department visits to a proxy of

all emergency-department visits (using a previous year’s data). The final model fit yk as a

linear function of qku1k, : : : , qku4k, qklog(qk), and qku1kdPk through qku4kdPk.

Following the advice in Kott (2011), we set final calibration weights at

wk ¼ ak

lkðuk 2 1Þ þ ukð1 2 lkÞ exp ðBk½ak 2 1�hT zkÞ

ðuk 2 1Þ þ ð1 2 lkÞ exp ðBk½ak 2 1�hT zkÞ
; ð3Þ

where zk ¼ (qku1k, : : : ,qku4k,qklog(qk),qku1kdPk, : : : ,qku4kdPk)T, Bk ¼ ðuk 2 lkÞ=

½ð1 2 lkÞðuk 2 1Þ�, lk ¼ 1/ak, and h is found so that the calibration equation,P
R wjzj ¼

P
U zj, holds.

The fraction on the right-hand side of Equation (3) is a particular version of the general

exponential model of Folsom and Singh (2000):

f ðhTdk; uk; ck; lkÞ ¼
lkðuk 2 ckÞ þ ukðck 2 lkÞ exp ðAkhTdkÞ

ðuk 2 ckÞ þ ðck 2 lkÞ exp ðAkhTdkÞ
: ð4Þ

This version is centered at 1 (all ck are 1) with all Ak ¼ Bk. With some work, one can

see that the right-hand side of Equation (4) is nearly equal to 1 þ hTdkwhen hTdk is

small, which it should be assuming we have already appropriately adjusted for
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nonresponse (and there are no frame coverage issues). By setting lk ¼ 1/ak, no weight can

be less than 1. Finally, letting dk ¼ ½ak 2 1�zk will tend to produce more efficient

estimates than the conventional setting dk ¼ zk.

If no restriction is put on the upper size of the weight adjustment in Equation (3), that is,

if all uk ¼ 1, then

wk ¼ 1þ ðak 2 1Þ exp ðBk½ak 2 1�hT zkÞ:

The third census region has only 32 respondents. Without restricting the uk some of those

have relatively large wkqk values. This suggested to us setting uk in this region to .105Q/qk,

where Q was the sum or the qj in the region. This restricts the size of wkqk ¼ akukqk to

10.5% of Q. We chose 10.5% because a restriction to 10% was not possible without the

calibration equations failing to hold.

3. Variance Estimation

Both the weight-adjustment functions, whether ak/dk in Equation (1) or wk/ak in Equation

(3), are versions of Folsom and Singh’s general exponential model:

f ðf; uk; ck; lkÞ ¼
lkðuk 2 ckÞ þ ukðck 2 lkÞ exp ðAkfÞ

ðuk 2 ckÞ þ ðck 2 lkÞ exp ðAkfÞ

where Ak ¼ uk 2 lkð Þ= ðck 2 lkÞðuk 2 ckÞ½ �. For variance estimation under a correctly

specified response model, one needs the derivative of f(.) with respect to f, which is

f 0ðf; uk; ck; lkÞ ¼
ðuk 2 f 1kÞð f 1k 2 lkÞ

ðuk 2 ckÞðck 2 lkÞ
ð5Þ

where f1k ¼ f ðf; uk; ck; lkÞ.

3.1. One Calibration-Weighting Step

If we only calibrated for nonresponse, a good estimator for the variance of ty,a ¼ SRak yk,

assuming the response model is correctly specified, would be

vðty;aÞ ¼
XH

h¼1 k[Sh

X
1 2

nh

Nh

� �
nh

nh 2 1

� �
£ udkx T

k b1 þ ake1k

� �
2

1

nh j[Sh

X
udjx

T
j b1 þ aje1j

� �
2

4

3

5

2

þ
k[R

X
dk f 2

1k 2 f 1k

� �
e2

1k; ð6Þ

where ak ¼ 0 when hospital k is not in the set of responding hospitals R, Sh denotes a

stratum (h ¼ 1, : : : , H ) containing nh sampled hospitals and Nh total hospitals, n is

the total number of sampled hospitals (in our case, 367), f(gTxk; 1,2,1) ¼ f1k ¼ ak/dk ¼ 1 þ

exp(gTxk) is the weight-adjustment factor, f 0(gTxk; 1,2,1) ¼ exp(gTxk),
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b1 ¼
X

R

dkf 0ðgT xk; 1; 2; 1ÞxkxT
k

" #21X

R

dkf 0ðgTxk; 1; 2; 1Þxkyk

¼
X

R

dkexp gT xk

� �
xkxT

k

" #21X

R

dkexp gT xk

� �
xkyk;

ð7Þ

e1k ¼ yk 2 xT
k b1; and u ¼ 1:

Table 1 displays the sample and respondent sizes for our 2010 DAWN data within

strata. The certainty strata from across the metropolitan areas have been combined.

See, for example, Kott and Liao (2012) for a fuller explanation of why Equation (6)

provides a nearly unbiased estimator for the variance of ty,a when unit response is a logistic

function of xk. The argument there parallels an earlier one in Kott (2006) where instead

of the respondent sample being calibrated to the full sample as in Equation (2), the

respondent (or full) sample was calibrated to the population using
P

R ajxj ¼
P

U xj.

Equation (6) was proposed in Kott (2006) with u ¼ 0. The article shows that by injecting

f 0(gTxk; 1,2,1) into b1, one is able to avoid accounting for the pk only being estimates of

the hospital response probabilities.

Were a simple random sample drawn with replacement within the H strata or if the

sampling fraction (nh/Nh) in each stratum were small enough to ignore, a good variance

estimator would be

vWRðty;aÞ ¼
XH

h¼1 k[Sh

X nh

nh 2 1

� �
udkxT

k b1 þ ake1k

� �
2

1

nh j[Sh

X
udjx

T
j b1 þ aje1j

� �
2

4

3

5

2

ð8Þ

The added variance due to nonresponse is contained within what looks like a naı̈ve

single-phase variance estimator in Equation (8). The added variability due to the response/

nonresponse phase comes from the ak ¼ dk f 1kIk ¼ dkIk=pk, where Ik is the response

indicator for hospital k, and pk remains the hospital’s implicitly estimated probability of

response. Since the Ik are independent across hospitals, the naı̈ve single-phase variance

estimator fully captures the added variance due to nonresponse (for whichP
R d 2

k f 2
1k 2 f 1k

� �
e2

1k would be a good estimator).

3.2. Two Calibration-Weighting Steps

Kott and Liao (2012) also provide a nearly unbiased variance estimator for ty,w ¼ SR wkyk

when unit response is a logistic function of xk:

vðty;aÞ ¼
XH

h¼1 k[Sh

X
1 2

nh

Nh

� �
nh

nh 2 1

� �

£ dkxT
k
~b1 þ akf 2k ~e1k

� �
2

1

nh j[Sh

X
djx

T
j
~b1 þ ajf 2j ~e1j

� �
2

4

3

5

2

þ
k[R

X
dk ½ f 1k f 2k ~e1k�

2 2 f 1kf 2k ~e
2
1k

� �
;

ð9Þ
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where

~b1 ¼
X

R

dkexp gT xk

� �
xkxT

k

" #21X

R

dkexp gT xk

� �
xk f 2ke2k;

f 2k ¼ f ð½ak 2 1�hT zk; uk; 1; 1=akÞ;

e2k ¼ yk 2 zT
k b2;

~e1k ¼ e2k 2 xT
k
~b1;

b2 ¼
X

R

aj f
0ð½aj 2 1�hT zj; uj; 1; 1=ajÞ½aj 2 1�zjz

T
j

 !21

X

R

ajf
0ð½aj 2 1�hTzj; uj; 1; 1=ajÞ½aj 2 1�zjyj;

and f 0(.) is defined using Equation (5). To a large extent, Equation (9) is Equation (6) but

with yk replaced by f2k e2k causing ~b1and ~e1k to replace b1 and e1k. Recall that f2k is very

close to 1 under the assumption that we modeled the nonresponse correctly.

Observe that if ~b1 ¼ 0, we would have the simplified expression:

vðty;a;SÞ ¼
XH

h¼1 k[Sh

X
1 2

nh

Nh

� �
nh

nh 2 1

� �
ak f 2ke2k 2

1

nh j[Sh

X
ajf 2je2j

2

4

3

5

2

þ
k[R

X
ak f 1k½ f 2ke2k�

2 2 f 2ke2
2k

� �
:

This is almost the variance estimator one would get by ignoring the first calibration step

and pretending the ak were the design weights:

vðty;a;S 0 Þ ¼
XH

h¼1 k[Sh

X
1 2

nh

Nh

� �
nh

nh 2 1

� �

£ akf 2ke2k 2
1

nh j[Sh

X
ajf 2je2j

2

4

3

5

2

þ
k[R

X
ak ½ f 2ke2k�

2 2 f 2ke2
2k

� �
:

The difference is the f1k, which appears in vðty;a;SÞ but not in vðty;a;S 0 Þ and makes the

former larger than the latter except when all the sampling fractions are ignorably small or

there is no nonresponse.

Now suppose instead we assume a linear prediction model consistent with treating b1

as 0. In particular,

ykjzk; xk ¼ zT
k b2 þ 12k; ð10Þ

where the 12k was uncorrelated random variables each with a mean of zero and a variance

of kqk for some unknown k, whether or not the hospital was sampled or responded when

sampled.
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It is not hard to see that the model variance of ty,w as an estimator for SU yk given the

respondent sample is
P

Rðw
2
k 2 wkÞkqk. Similarly, the variance estimator in Equation (6)

will have nearly the same prediction-model expectation if the Nh is replaced by

Nh* ¼ nh

X
Rh

ak
2f 2k

2qk
X

Rh

akf 2k
2qk

ð11Þ

when the respondent sample in stratum h is not empty (otherwise, set Nh* to, say, 1000).

Since the variance estimator is nearly unbiased given any respondent sample, it is also

nearly unbiased on average across all respondent samples, that is, under the combination

of the assumed response and prediction models and the original sampling mechanism.

Note that when all the stratum sample fractions are ignorably small, this variance estimator

coincides with vðty;a;SÞ (but not generally otherwise).

4. An Application

In this section, we compare variance estimators computed after:

1. Calibrating only for nonresponse pretending the sample was drawn with replacement;

2. Calibrating only for nonresponse;

3. Calibrating for both nonresponse and sample balance but pretending the sample was

drawn with replacement;

4. Calibrating for both nonresponse and sample balance;

5. Calibrating for both nonresponse and sample balance but pretending the sample was

drawn with replacement and using the simplified version of variance estimation

described in the subsection 3.2;

6. Calibrating for both nonresponse and sample balance using the simplified version of

variance estimation described in the subsection 3.2.

Since the estimated totals are different when we only calibrate for nonresponse, we

compare estimated coefficients of variation (cvs) rather than estimated variances.

Henceforth, we will abbreviate an estimated coefficient of variation as cv. The fourth

variance-estimation method above produced nearly unbiased estimates of the variances for

the following six estimated totals we investigated at the US and census-region levels:

all drug-related hospital visits,

alcohol-related visits,

illicit-drug-but-not-alcohol-related visits,

psychotherapeutics-related visits,

stimulant-related visits, and

drug-related visits ending in death

computed within each census region and across the four regions.

We computed some variance estimates pretending the sample was drawn with

replacement since that is how many variances are estimated in practice, either because
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stratum sampling fractions are very small, as they are not here, or because the assumption

makes variance estimation both easy and conservative. It also lets us see what damage, if

any, resulted from our prediction-model-based treatment of finite-population correction.

Both pretending samples were drawn with replacement (WR) and treating them as

drawn without replacement (WOR), the relative increase in the cv’s from only calibrating

for nonresponse are displayed in the first two columns of Table 2. We looked at relative

differences in the cvs because the different weights from using one or two calibration-

Table 1. Population, sample, and respondent sizes in subpopulation 1 (13 “metro” areas)

Stratum
Population

Size
Sample

Size
Respondent

Size
Nh*

(Equation (11))

Certainties 254 254 123 683.74
Probability Strata

East
Metro Area 1

Stratum 1 10 8 6 14.34
Stratum 2 10 7 4 15.26
Stratum 3 10 3 2 13.51

Metro Area 2
Stratum 1 4 2 1 3.96
Stratum 2 8 6 5 11.78
Stratum 3 14 9 4 22.33

South
Metro Area 3

Stratum 1 6 5 4 5.65
Stratum 2 44 28 15 108.92

Metro Area 4
Stratum 1 18 5 4 22.67

Midwest
Metro Area 6

Stratum 1 6 3 1 43.34
Stratum 2 7 3 1 31.02

Metro Area 7
Stratum 1 5 3 0 1000.00
Stratum 2 7 3 2 15.67

Metro Area 8
Stratum 1 19 4 2 74.72

West
Metro Area 9

Stratum 1 6 5 3 8.97
Metro Area 10

Stratum 1 10 9 3 19.49
Metro Area 11

Stratum 1 4 3 0 1000.00
Metro Area 13

Stratum 1 4 3 3 4.09
Stratum 2 5 4 4 5.21

Total 451 367 187

Metro Areas 5 and 12 have no probability strata (all certainties)
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weighting steps lead to different estimated totals. We measured relative differences by

taking the log of the ratio of the cvs being compared (e.g., log(cvA/cvB)) because that

measure is symmetric.

It is easy to see there is considerable cv reduction in most, but not all, cases from the

sample balancing in the second calibration-weighting step. The cv of the estimates of the

Table 2. Relative increase in estimated coefficients of variation (cv) due to adjusting only for nonresponse or

using the simplified variance estimator

Adjusting only for
nonresponse

Simplified variance
estimator

Estimator
WR

log(cv1/cv3)
WOR

log(cv2/cv4)
WR

log(cv5/cv3)
WOR

log(cv6/cv4)

All regions
Drug-related visits 48.73 45.21 1.27 7.04
Alcohol-related visits 22.26 17.89 0.59 4.96
Illicit-drug-related visits 19.82 13.77 0.78 7.30
Psychotherapeutics-related visits 21.57 16.57 0.70 6.45
Stimulant-related visits 38.49 34.92 2.31 8.90
Resulted in death 4.93 28.81 20.13 7.60

East
Drug-related visits 76.78 83.14 2.57 8.72
Alcohol-related visits 37.12 35.96 1.41 5.25
Illicit-drug-related visits 48.44 47.85 1.50 10.31
Psychotherapeutics-related visits 44.71 48.04 3.34 5.90
Stimulant-related visits 50.88 56.26 3.05 10.06
Resulted in death 11.79 17.21 0.24 2.33

South
Drug-related visits 82.93 87.53 0.31 2.46
Alcohol-related visits 26.79 26.00 0.61 2.76
Illicit-drug-related visits 18.46 16.29 0.78 1.61
Psychotherapeutics-related visits 61.01 62.57 20.05 1.33
Stimulant-related visits 78.39 83.29 0.56 2.97
Resulted in death 23.05 21.03 0.46 0.98

Midwest
Drug-related visits 118.44 102.45 20.58 21.37
Alcohol-related visits 106.02 76.14 20.79 19.74
Illicit-drug-related visits 96.51 70.14 1.28 24.55
Psychotherapeutics-related visits 44.18 29.80 20.31 17.53
Stimulant-related visits 98.91 84.06 20.55 20.09
Resulted in death 214.25 216.70 0.54 15.32

West
Drug-related visits 66.50 49.16 0.44 0.02
Alcohol-related visits 49.07 37.72 0.24 10.91
Illicit-drug-related visits 52.15 45.74 20.05 22.66
Psychotherapeutics-related visits 47.78 36.27 0.41 0.17
Stimulant-related visits 56.66 43.43 0.62 20.06
Resulted in death 9.52 6.16 20.43 22.77

Mean 47.93 42.30 0.70 8.22
Min 214.25 216.70 20.79 22.77
Max 118.44 102.45 3.34 24.55
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number of deaths from drug-related visits both across the US and in the Midwest are larger

after sample balancing. All other cvs are smaller, over 40% smaller on average.

Columns 3 and 4 show that using the simplified variance estimator described in the last

subsection (Equation (6) with the Nh replaced by the Nh* in Table 1) increases the cvs

more often than not. When it is not conservative, the simplified method is never more than

3% lower than its nearly unbiased counterpart in the 30 cvs we computed. The results tend

to be more conservative and much more variable when the without-replacement version of

the variance estimator is used, and we employ Equation (11) to counteract what would

otherwise be an over-correction for the large sampling fractions in most strata. Replacing

qk in Equation (11) by qk
2 would make the simplified cvs a bit less conservative (not

shown). The average upward bias would drop to 4.67%, with a minimum of 27.01% and

a maximum of 21.13%.

5. Some Concluding Remarks

We have shown how to produce calibration weights for the 2010 DAWN respondent sample

of hospitals in two steps – the first to remove the bias from unit nonresponse assuming that

we modeled response correctly as a logistic function of covariates, and the second to provide

sample balance and thereby increase the statistical efficiency of most estimated totals. We

have also shown how to compute nearly unbiased measures of the standard errors of

DAWN-estimated totals, providing a simplified version that, although not nearly unbiased,

appears to be mostly conservative and is easily computed using SUDAAN 11.

The reason why the simplified version tends to be conservative is that it replaces a

respondent-sample derived estimate for a parameter (b1) by 0. To the extent that there are

efficiency gains to be made from the nonresponse calibration-weighting step in addition to

those made in the sample-balancing step 2 and there may not be any (we are effectively

regressing a residual, e2k on xk, in the nonresponse-adjustment step) 2 this simplification

will tend to underestimate the true standard error of the two-step calibration.

Since we were able to compute a nearly unbiased measure of the standard errors of

two-step-calibrated estimates, an obvious question is why bother introducing a simplified

version of the computation? The obvious reason is that statisticians will not be able to mimic

what we have done for variance estimation without great effort. Moreover, this effort grows

for estimated ratios, like the fraction of drug-related hospital visits involving alcohol.

Some may wonder why we did not perform the calibration-weighting steps in the

reverse order: sample balancing first, followed by nonresponse adjustment. That clearly

could be done, but we will not follow up on it here. Something to consider before reversing

the calibration steps, however, is that upper bounds on the final weights cannot be set in the

nonresponse-adjustment step unless one is willing to change the form of the response

model being fit. This runs the risk of introducing nonresponse bias. No such risk exists

when setting upper bounds in the sample-balancing step.

6. References

Folsom, R.E. 1991. “Exponential and Logistic Weight Adjustments for Sampling and

Nonresponse Error Reduction.” In Proceedings of the American Statistical Association,

Social Statistics Section, 197–202.

Kott and Day: Developing Calibration Weights and Standard-Error 531



Folsom, R.E. and A.C. Singh. 2000. “The Generalized Exponential Model for Sampling

Weight Calibration for Extreme Values, Nonresponse, and Poststratification.” In

Proceedings of the American Statistical Association, Survey Research Methods Section,

598–603. Available at: https://www.amstat.org/sections/srms/Proceedings/papers/

2000_099.pdf (accessed July 1, 2014).

Kim, J.K. and M. Riddles. 2012. “Some Theory for Propensity Scoring Adjustment

Estimator.” Survey Methodology 38: 157–165.

Kott, P.S. 2011. “A Nearly Pseudo-optimal Method for Keeping Calibration Weights from

Falling Below Unity in the Absence of Nonresponse or Frame Errors.” Pakistan Journal

of Statistics 27: 391–396.

Kott, P.S. 2006. “Using Calibration Weighting to Adjust for Nonresponse and Coverage

Errors.” Survey Methodology 32: 133–142.

Kott, P.S. and D. Liao. 2012. “One Step or Two? Calibration Weighting from a Complete

List Frame with Nonresponse.” Under review by Survey Methodology (presented at the

Symposium on the Analysis of Survey Data and Small Area Estimation, in honour of the

75th Birthday of Professor J. N. K. Rao).

RTI International 2012. SUDAAN Language Manual, Release 11.0. Research Triangle

Park, NC: RTI International.

Substance Abuse and Mental Health Services Administration 2012. Drug Abuse Warning

Network (DAWN). Available at: http://www.samhsa.gov/data/DAWN.aspx (accessed

July 1, 2014).

US Census Bureau 2012. ZIP Codee Tabulation Areas (ZCTAse). Available at:

https://www.census.gov/geo/reference/zctas.html (accessed July 1, 2014).

Received November 2012

Revised February 2014

Accepted May 2014

Journal of Official Statistics532

https://www.amstat.org/sections/srms/proceedings/papers/2000_099.pdf
https://www.amstat.org/sections/srms/proceedings/papers/2000_099.pdf
http://www.samhsa.gov/data/dawn.aspx
https://www.census.gov/geo/reference/zctas.html

