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To receive federal homeless funds, communities are required to produce statistically reliable,
unduplicated counts or estimates of homeless persons in sheltered and unsheltered locations
during a one-night period (within the last ten days of January) called a point-in-time (PIT)
count. In Los Angeles, a general population telephone survey was implemented to estimate
the number of unsheltered homeless adults who are hidden from view during the PIT count.
Two estimation approaches were investigated: i) the number of homeless persons identified as
living on private property, which employed a conventional household weight for the estimated
total (Horvitz-Thompson approach); and ii) the number of homeless persons identified as
living on a neighbor’s property, which employed an additional adjustment derived from the
size of the neighborhood network to estimate the total (multiplicity-based approach). This
article compares the results of these two methods and discusses the implications therein.
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1. Introduction

How to best estimate homelessness has historically been a difficult and costly venture

(Link et al. 1994; Tompsett and Toro 2004; Toro and Janisse 2004; Toro 2005, 2006). As

a highly mobile population, it is difficult to contact and track the homeless due to their

unstable living situations. Furthermore, when performing homeless counts of the

unsheltered population, enumerators are typically required to count late at night when the

shelters are closed for the evening and the homeless on the streets are more easily

identifiable. Night-time counts, however, can be problematic because visibility is reduced

and vulnerable populations, such as children, hide from public view. In addition,

homelessness is not a permanent state. A person’s housing situation can change rapidly

and homeless people can relocate quite easily. Thus the true value of homelessness is

constantly in flux, which creates inherent variability between estimates taken at different

points in time. Estimates therefore can vary depending on the assumptions and
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methodology applied in the count. Nevertheless, homelessness needs to be measured,

especially in the U.S., which has one of the highest rates of homelessness among

developed nations (Tompsett et al. 2003; Toro et al. 2007). In addition to the important

social issues that surround homelessness, there are practical reasons to obtain the best

possible estimates. One such agency that depends on reliable measures of the homeless

population is the Los Angeles Homeless Services Authority (LAHSA).

LAHSA, a joint powers authority of the County and City of Los Angeles, coordinates

and manages government funds for programs that provide shelter, housing, and other

services to the homeless in 85 of the 88 cities of Los Angeles County (and all of the

unincorporated areas). In order to receive federal dollars, LAHSA is required to conduct a

homeless count every two years. Given that Los Angeles is the largest urban county in the

U.S. with more than ten million residents and a geographic area of 4,083 square miles that

encompasses 88 cities, this task is challenging. Los Angeles County also has one of the

largest disparities between wealthy and low-income people in the nation. It manages one

of the largest welfare systems in the country and contends with one of the nation’s largest

homeless populations (Bring Los Angeles Home 2006).

In 2009, the Carolina Survey Research Laboratory (CSRL) at the University of North

Carolina at Chapel Hill collaborated with LAHSA for the 2009 Los Angeles Homeless

Count (HC09). Homelessness was measured at the Continuum of Care (CoC) level and

included all of Los Angeles County except the cities of Glendale, Pasadena, and Long

Beach, which produce their own independent estimates. HC09 included a street count,

a shelter count, and a youth count as well as a hidden homeless estimate, all in an attempt

to measure the county’s homeless population. The HC09 findings estimated that 42,694

people were homeless and that over 20 percent of the homeless population was hidden

(2009 Greater Los Angeles Homeless Count Report). The hidden homeless estimate was

derived from interviewing 4,288 households in the CoC and asking them if a hidden

homeless person lived on their property. Though a relatively large number of sample

respondents provided interviews, only 16 hidden homeless persons were identified as

meeting the HUD criteria for hidden homelessness. The rarity of this event produced a

rather imprecise estimate with a relatively large variance where the total was 9,451 and the

standard error 2,339.

The focus of this article is on the hidden homeless estimate, which made up a significant

portion of the homeless population in HC09. To redress the issue of large sampling errors

commonly associated with survey estimates of rarely occurring events, frame coverage

was increased in the 2011 Los Angeles Homeless Count (HC11) by asking survey

participants to report not only on homeless individuals currently residing on private

property, but also on homeless individuals in their immediate neighborhood. Though this

method increases the number of hidden homeless persons that get reported, it also

introduces the potential for multiple reports of the same hidden homeless persons by

members of the same neighborhood network. Consequently, a multiplicity-based

estimator must be derived which adjusts for the possibility of multiple reports of

hidden homeless. It is through this neighborhood network approach that we hope to

improve the statistical precision of the hidden homeless estimate. This article examines the

utility of the multiplicity-based approach for estimating the hidden homeless population

in Los Angeles.
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2. Methods

To minimize the difficulties that arise in sample surveys designed to estimate a rare event,

Birnbaum and Sirken (1965) proposed a stratified random sample design that included

obtaining information about the “multiplicity” of individuals with a rare condition as

reported by health care providers (i.e., the primary sampling units). To derive an estimate

of the number of diagnosed cases of a rare disease, these investigators designed the survey

to increase sample coverage while accounting for patients being reported by several

providers. Following this idea, an alternate approach was proposed in HC11 that expands

beyond reporting for hidden homeless individuals located on a private property, as was the

sole approach for HC09. In the present study, respondents were asked to not only report

the number of hidden homeless on their residential property but also any hidden homeless

on their neighbor’s property. Consequently, coverage was expanded and the possibility of

discovering hidden homelessness was broadened, thus hopefully making a rare event less

rare. This approach has been called network or multiplicity sampling in the literature

(Sudman and Freeman 1988; Flores-Cervantes and Kalton 2008; Kalton 2009), because

the typical one-to-one counting rule in conventional sampling takes into account the

inclusion of larger observational units or networks. Instead of being self-weighting

(conventional approach), the multiplicity approach must take into account the network

size. The success of this approach, however, rests largely on the validity and accuracy of

the information provided by the respondent, not only for the critical measure of hidden

homelessness, but also for a new, additional measure of neighborhood network size. In

order for the multiplicity estimate to be valid, we must accurately gather the size of the

neighborhood and the probability that more than one person (viz., neighbors) could report

on the same hidden homeless person or persons. In this article, comparisons were made

between the statistical precision of a more conventional Horvitz-Thompson approach (as

applied in HC09) and the multiplicity-based approach proposed here.

2.1. Sample Design

Households for the telephone interview were identified from a disproportionately stratified

dual-frame sample of landline telephone numbers obtained from Marketing Systems

Group in Horsham, Pennsylvania. Stratification was defined by frame source (list-assisted

RDD and electronic white page “EWP” listings), median household income of the

exchange area (EA) in which the telephone number was located (delineated into high

and low designations at $50,680), the percent of single-family households in the EA

(delineated into “high” and “low” designations at 60%), as well as other local area

information thought to be predictive of hidden homelessness (Table 1). The latter was used

to form an item predictor score (IPS) based on the distribution of such scores for all listed

telephone numbers on the frame. IPS was considered low in designated areas if it resulted

in a summative score of 0 or 1, and high if the IPS ranged between 2 and 6. IPS scoring

criteria consisted of the following items:

. Single family dwelling: Yes ¼ 1; No ¼ 0;

. High African American concentration: Yes ¼ 1; No ¼ 0;
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. Below the 20th percentile for length of time in current residence (measure of

mobility): Yes ¼ 1; No ¼ 0;

. Below the 20th percentile on household income: Yes ¼ 1; No ¼ 0;

. In a block group (or census tract, if only available at this level) above the 80th

percentile on percent vacancy rate: Yes ¼ 1; No ¼ 0; and

. In a Census Tract above the 80th percentile on rate of street homeless count per

100,000 population members as of the 2000 Census: Yes ¼ 1; No ¼ 0.

2.2. Questionnaire Design and Pilot Testing

In general, hidden homeless persons are defined as those who live among, but not directly

with, the residential population of a community. In this study, people were classified as

hidden homeless if they were sleeping on private property in such places as an

unconverted garage, carport, back porch, tool shed, tent, camper, car, encampment, and so

on. These people were likely to go missing during a point-in-time count because they were

not on the streets nor readily visible to enumerators, but nevertheless were considered

unsheltered homeless according to the U.S. Department of Housing and Urban

Development (HUD) definition. This definition is in contrast to the precariously housed or

at risk of literal homelessness definitions, which include individuals temporarily staying

within a household because they have no regular or adequate place to stay and lack the

means or money to provide it.

Neighborhood was operationally defined by street block neighborhood (SBN). The SBN

for any household was defined as the set of households whose front entrance faces the

street – bounded by one linear segment of street on which the referent household is

located. In other words, a respondent reported on the number of hidden homeless for the

set of households on both sides of a one-block long street that also includes the

respondent’s household. Residents of apartment, condominium, or single room housing

Table 1. Strata used to sample telephone numbers for the hidden homeless telephone survey

Directory Listed NOT Directory Listed Directory Listed NOT Directory Listed

High 21

Low 119

High 43

Low 2101

5

6

Listing Status of Phone Number: Listing Status of Phone Number:

7

8

Item Predictor Sum:

Item Predictor Sum:

Median Household Income in
Exchange Area:

% Single Family
Dwelling Units in
Exchange Area:

High

Low

HighLow
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complexes were asked to provide estimates of hidden homeless on complex property. An

additional requirement was that respondents must also give a measure of neighborhood

network size. For single family dwellings, respondents need to provide a count of homes

contained within the SBN. For complexes, respondents need to report the number of

housing units in their building and the number of buildings in their housing development

in order to calculate their respective neighborhood network size.

For the pilot study, 2,500 random digit dial telephone numbers within the Los Angeles

CoC were placed into calling between December 14 and December 29, 2010. Of those

telephone numbers, 1,662 were finalized as ineligible, 55 as refusals, 747 were given an

unknown status because eligibility was never determined, and 36 cases resulted in

completed interviews. Interviews were completed with an adult who either owned or

rented the property. After reviewing the pilot data, minor changes were made to the

instrument to improve the flow of the telephone interview. The question about any hidden

homeless on personal property read: Not including dependents or adult children, is there

anyone living with you or staying on your property because they do not have a regular or

adequate place to stay due to a lack of money or other means of support?

The questions on neighborhood hidden homeless piloted well, but went through minor

reconstruction to simplify telephone administration. The previous version read: Now I’d

like to ask you some questions about your neighborhood. Have you seen anyone staying

[on your neighbors’ property (IF X10 ¼ single dwelling)] [in your complex (IF

X10 ¼ housing complex)] who you believe does not have a regular or adequate place to

stay due to a lack of money of other means of support? For this question, your

[neighborhood includes houses on both sides of the street confined by two intersection

streets] OR [complex includes all the housing units in your complex or development].

INTERVIEWER NOTE: THIS DOES NOT INCLUDE DEPENDENTS OR ADULT

CHILDREN.

The new version read: Now I’d like to ask you some questions about the houses on your

block. Have you seen anyone who appears to be homeless staying [on your neighbors’

property (IF X10 ¼ single dwelling)] [on the complex grounds (IF X10 ¼ housing

complex)] [WHO YOU BELIEVE DOES NOT HAVE A REGULAR OR ADEQUATE

PLACE TO STAY DUE TO A LACK OF MONEY OF OTHER MEANS OF SUPPORT]?

For this question, your [neighborhood block includes houses on both sides of the street

confined by the closest intersection in either direction] OR [complex includes all the

housing units in your complex or development].

2.3. Main Study

All totaled, 32,826 randomly selected telephone numbers were worked to complete 3,390

hidden homeless interviews. The overall selected sample of telephone numbers was

disproportionately allocated among the twelve strata, following a similar allocation

pattern of disproportionality to that observed in the HC09 survey. Data collection took

place from January 16, 2011 to April 10, 2011. The CSRL has an advanced CATI

operation consisting of 42 interviewer workstations and three monitoring stations.

Supervisors and clients can silently monitor interviewers’ audio and keyed responses from

computers in the monitoring room. This monitoring capability helps ensure that data

Agans et al.: Enumerating the Hidden Homeless 219



collection for the study meets the highest quality standards. During data collection,

interviewing took place Saturday through Thursday (EST). Monday through Thursday

shifts typically were conducted from 12 noon to 12 midnight. Saturday sessions occurred

between 1:30 pm until 5:30 pm. Sunday shifts were typically held from 5:30 pm to 12

midnight.

In addition to questionnaire programming, the CSRL also utilizes Blaise’s (Version 4.8,

2008) call-scheduling capabilities to maximize the probability of contacting potential

respondents. A central file server takes sample telephone numbers and arranges automatic

call scheduling for interviewer administration. The system enables calls to be scheduled so

that different times of the day and week are represented. In this study, no cases were

withdrawn from calling until a minimum of eight unsuccessful call attempts were made

and had been at least one weekend call, one evening call, and one daytime call. Calls could

also be scheduled at times specified by the respondent, thus ensuring that calls were made

at optimum times.

CSRL supervisors closely monitor data collection to ensure that data are being collected

and entered correctly according to guidelines and policies reviewed in training. In

addition, several steps were taken to both reduce the occurrence of refusals and to improve

refusal conversion. First, we attempted to minimize refusals by introducing techniques for

dealing with reluctance and refusal during general interviewer training. This was often

accomplished through role-playing sessions that enable trainees to become familiar with

and to rehearse a variety of refusal situations. Upon encountering a refusal, interviewers

documented the following information for each refusal: reason for the refusal, the point in

the interview at which the refusal occurred, and the gender and approximate age of the

respondent. Refusal documentation is standard procedure at the CSRL because it enables

the next interviewer, the refusal converter, to tailor her approach in eliciting participation

from the potential respondent, thereby optimizing the likelihood of conversion. Finally, as

part of interviewer monitoring, interviewers’ individual refusal rates were closely

watched. Only experienced refusal converters recontact respondents who initially refuse.

2.4. Final Outcomes and Response Rates

The final outcomes from calling may be grouped into four broad categories (see Table 2)

that were used to calculate the overall response rate: (i) a complete interview (I ¼ 3,390);

(ii) not eligible (NE ¼ 13,503) because the telephone numbers were found to be

nonworking, dedicated fax or computer lines, or a business/cell line; (iii) no interview or

response from an eligible household (NR ¼ 2,593); or (iv) unknown or indeterminate

Table 2. Final dispositions for hidden homeless survey by strata

STRATA

OUTCOME 1 2 3 4 5 6 7 8 9 10 11 12 Totals

I 590 379 608 209 151 39 85 88 440 254 316 231 3,390

NR 518 357 467 94 120 32 50 48 378 190 192 147 2,593

NE 1,147 859 838 289 3,150 1,056 1,670 2,795 662 441 271 324 13,503

U 1,983 1,563 2,047 685 1,085 322 532 735 1,497 916 1,027 948 13,340
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(U ¼ 13,340) because we never had the opportunity to talk to a person or someone in the

household refused participation before we could verify eligibility.

The response rate was based on the American Association for Public Opinion Research

(AAPOR) Standard Definitions (2011). Weighted (42.6%) and unweighted (33.6%)

response rates were determined by AAPOR’s Response Rate 3 (RR3).

2.5. Final Sample Weights

A standard three-step sample weighting procedure was followed in producing sample

weights (Kalsbeek and Agans 2008). The base weight was computed using the sampling

rate for telephone numbers in each stratum, adjusted for the portion of the stratum samples

that were placed in calling and the number of phone lines that reached the household

(Step 1). The base weight was then adjusted for differential household-level nonresponse

among sampling strata using the inverse of the stratum-specific household-level RR3

response rate as the adjustment factor (Step 2). The nonresponse-adjusted household

sample weight was then calibrated to population counts as estimated from the American

Community Survey sample by cross-tabulating on: (i) the race-ethnicity of the reference

person/knowledgeable adult (white non-Hispanic/Hispanic/Other), (ii) the type of

dwelling (single-family/all other types), and (iii) the education of the reference person/

knowledgeable adult (, college bachelor’s degree/$ college bachelor’s degree) (Step 3).

The multiplicative effect of variable sample weights or Meff w (Kish 1965) was somewhat

large (Meff ¼ 2.44), so weights were trimmed at the nonresponse adjustment stage as

recommended by Potter (1988).

2.6. Horvitz-Thompson Estimator

The Horvitz-Thompson (HT) estimator of a population total was used to estimate the

number of hidden homeless on private property for the HC11 survey. This conventional

method was also employed to estimate the total number of hidden homeless individuals in

the LA for the HC09 survey. First, we define

N Number of closed street block neighborhood (SBN) networks in the

target population

Yi The actual number of hidden homeless persons in the i-th SBN

Mi Number of household residences in the i-th SBN

Iij Sample selection indicator for the j-th household in the i-th SBN

) 1 if household is selected, 0 otherwise

pij ¼ EðIijÞ The selection probability for the j-th survey household in the i-th SBN

Now let tHH denote the total (relevant) hidden homeless count that is to be estimated

such that

tHH ¼
XN

i¼1

Yi ¼
XN

i¼1

XMi

j¼1

HðResÞ
ij ;

where HðResÞ
ij denotes the number of hidden homeless persons located on their private

property at the j-th survey household in the i-th SBN. Then the HT estimator of a
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population total for the number of hidden homeless people identified in the HC11 survey is

given as:

t̂HT ¼
XN

i¼1

XMi

j¼1

IijHij
ðResÞ

pij

:

2.7. Multiplicity-Based Estimator

To apply the multiplicity-based alternative approach, the telephone survey interview

required all respondents (located in the j-th household in the i-th SBN) to provide the

number of hidden homeless persons located on the property of all other surrounding

households in their SBN, also denoted as HðSBNÞ
ij Respondents who did not provide SBN

size data were called back for data retrieval. Hot deck imputation was used to handle

missingness for households still missing SBN size data after unsuccessful attempts to

retrieve the information through a callback. Specifically, records for which measure of size

data was missing were imputed using the mean SBN value of other record that shared that

particular record’s household type: For instance, in the case where a participant informed

the interviewer that they lived in an apartment but refused or were unable to provide SBN

size data, missing information was imputed using completed SBN data collected from the

other participants who also classified their residence as an apartment.

Following the Birnbaum and Sirken (1965) approach to multiplicity estimation,

an estimator of the overall number of hidden homeless persons in the target population

is given as

t̂HH ¼
XN

i¼1

XMi

j¼1

IijYij

pijMi

; where Yij ¼ HðResÞ
ij þ HðSBNÞ

ij

h i
:

Ignoring the biasing effects of nonsampling error (i.e., due to frame, nonresponse,

and measurement), t̂HH can be shown to be an unbiased estimator of tHH :

E t̂HH

� �
¼
XN

i¼1

XMi

j¼1

Yij

pijMi

� �
E Iij

� �
¼
XN

i¼1

XMi

j¼1

Yij

pijMi

� �
pij ¼

XN

i¼1

XMi

j¼1

Yij

Mi

� �

Noting that Yij ¼ Yi for all Mi households in the i-th SBN

E t̂HH

� �
¼
XN

i¼1

XMi

j¼1

Yij

Mi

� �
¼
XN

j¼1

MiYi

Mi

� �
¼
XN

i¼1

Yi ¼ tHH :

The variance of t̂HH can be obtained using the standard formula

XN

i¼1

XMi

j¼1

XN

i 0¼1

XMi

j 0¼1

pijpi 0j 0 2 piji 0j 0

pijpi 0j 0

Yij

Mi

Yi 0j 0

Mi 0
;

where piji 0j 0 is the second inclusion probability of the j-th household in the i-th block

and the j-th household in the i-th block. As compared to the variance of the Horvitz-

Thompson’s estimator t̂HT ¼
Pn

i
yi

pi
¼
PN

i¼1

PMi

j¼1
Iij

pij
HðResÞ

ij , whose variance is
PN

i¼1

PMi

j¼1

PN
i 0¼1

PMi

j 0¼1

pijpi 0 j 02piji 0 j 0

pijpi 0 j 0
HðResÞ

ij HðResÞ
i 0j 0 , we can see that the only difference is
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that we replace HðResÞ
ij by

Yij

Mi
. Since the latter tends to be less variable for the households in

the same block (ideally, zero variability) as compared to the homeless count from each

individual household, we expect that in our stratified simple random sampling design,

the multiplicity estimator should have a smaller variance as compared to the Horvitz-

Thompson estimator.

2.8. Producing the Estimates

Hidden homeless estimates were produced using SUDAAN (Version 10), a statistical

software package developed by RTI International that specializes in providing efficient

and accurate analysis of data from complex studies. The estimated total number of hidden

homeless persons in the Los Angeles CoC was produced using the DESCRIPT procedure

in SUDAAN. A stratified with replacement (STRWR) design nested by stratum was

specified in the procedure. A weight statement was also used in the procedure to account

for varying selection probabilities in the telephone sample. The final calibrated household

sample weight (without adjustment for neighborhood reporting) was used to produce the

total number of hidden homeless individuals in a fashion similar to the way it was obtained

for HC09. To obtain the total number of hidden homeless individuals using the

multiplicity-based approached, a sample weight was used that applied an adjustment

for the size of each respondent’s SBN – specifically, the conventional calibrated

HH weight for each respondent was divided by the respondent’s estimated SBN count of

HHs (or its multiplicity). Taylor series linearization methods are employed for robust

variance estimation of descriptive statistics in the DESCRIPT procedure.

3. Results

The estimated total of hidden homeless persons in the Los Angeles CoC using the Horvitz-

Thompson method in 2011 was 10,800 (SE ¼ 3,421) and was based on the entire sample

of 3,390 completed interviews in which only 13 households responded that a hidden

homeless person was present (see Table 3). This estimate was comparable to the HC09

estimate of 9,451 (SE ¼ 2,339). Again, a household could only qualify as having a hidden

homeless person if they had someone living on their property in an unconverted garage,

a back porch, or in an encampment, camper or car. These individuals were considered

homeless by HUD and estimated counts were added to the total homeless estimate.

The hidden homeless estimate based on the multiplicity-based approach (see Table 4)

led to a substantial increase in the hit rate of hidden homelessness (n ¼ 322), which

Table 3. Hidden homeless estimate using conventional (Horvitz-Thompson) method

Overall Hidden Homeless Estimate (Personal Residence)

Survey
year

Raw
count

Weighted
estimate

Weighted
standard error

Relative
standard error

2011 13 10,800 3,421 32%
2009 16 9,451 2,339 25%
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improved the precision around the weighted estimate as demonstrated by a major

reduction in the relative standard error (32% vs. 15%). The estimated total, however, was

substantially higher (10,800 vs. 18,622) but was not significant based on a normal

distribution test ( p ¼ 0.06).

3.1. Quality of Reported Data

The success of the neighborhood reporting approach, however, hinges on the accuracy of

the data reported by respondents. Respondents were asked to identify homeless persons

living on their personal property and persons living on their neighbor’s property

(immediate neighborhood). When asked about homeless persons living on a neighbor’s

property, respondents were also required to remark whether they were very sure,

somewhat sure, or not very sure at all. To ensure that the count was computed using

quality responses, only hidden homeless individuals reported by respondents who were

very sure and somewhat sure of the status and number of homeless individuals residing on

their neighbors’ properties were counted. Of the 118 households who provided a response

to the question and reported homeless persons living on their neighbor’s property, 101

(86%) respondents were very sure of the status and number of homeless individuals

residing in their immediate neighborhood, while just 17 (14%) were somewhat sure.

Confidence in the quality of the counts reported by respondents is gained based on this

knowledge. An inconsistency may however be present in the respondents’ reporting of the

size of their street block neighborhood (SBN).

3.2. Simulations

We have conducted extensive simulation studies to compare the performance of the

multiplicity-based estimator versus the Horvitz-Thompson estimator. To imitate the actual

LA homeless study, we generated a population of N households randomly assigned to d

blocks. A proportionp of these households were assumed to have hidden homeless people

on property. We used simple random sampling to select n of these households to collect

whether there was a homeless person in the selected property. For comparison, we

estimated the total count of homeless using the Horvitz-Thompson estimator and the

multiplicity estimator. In the simulation studies, we varied the number of blocks (N), the

hidden homeless proportion ðpÞ and the selected household number (n). The results from

1,000 replicates are summarized in the table in the Appendix.

It is clear from the table that both the Horvitz-Thompson estimator and the multiplicity-

based estimator produced a precise estimate of the total count of the homeless. However,

the multiplicity-based estimator has a greater efficiency gain: The ratio of the mean

Table 4. Hidden homeless estimate using multiplicity-based method

Overall Hidden Homeless Estimate (Neighborhood Network)

Survey
year

Raw
count

Weighted
estimate

Weighted
standard error

Relative
standard error

2011 322 18,622 2,889 15%
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squared errors of the Horvitz-Thompson estimator versus the multiplicity-based estimator

ranges from 15 to about 20, while the ratio of the relative standard error is between 4 and 5.

The efficiency gain of the multiplicity-based estimator seems to increase with increasing

sample size and the prevalence of the homeless. All simulation work was done in

SAS (Version 9.3).

4. Discussion

Our estimation approach produced hidden homeless estimates within the methodological

framework utilized in the 2009 Los Angeles Homeless Count (HC09) and successfully

employed an alternative, multiplicity-based method in the 2011 Los Angeles Homeless

Count (HC11). The Horvitz-Thompson (HT) estimate in HC09 (9,451 hidden homeless)

is comparable to the HT estimate in HC11 (10,800 hidden homeless). As similar as these

two estimates are, they have large standard errors thereby producing wide intervals at the

95 percent confidence level (HC09 ^ 4,584; HC11 ^ 6705). In terms of relative standard

errors, both estimates are not very reliable (HC09 ¼ 25%; HC11 ¼ 32%), thus providing

the motivation for multiplicity sampling.

Our approach takes the simplest form of multiplicity sampling in that we only have to

adjust for the size of the network, which here was operationalized as a respondent’s street-

block neighborhood. Unlike other network approaches (viz., snowball or respondent-

driven sampling), we did not have to interview the subjects of our investigation (i.e., the

hidden homeless), only count them. To produce unbiased estimates using a multiplicity-

based approach, eligible respondents need only to report the size of their network (n)

which is then weighted by the reciprocal 1/n. The main benefit of such an approach is the

reduction of sampling error due to the increase in sample size. When costs are fixed, the

multiplicity-based approach, we argue, will produce a more precise estimate of a rare

event, as we found in the present study (RSE 32% in HT versus RSE 15% in MB). While

significantly decreasing the amount of variance around our estimate, we can also see that

the multiplicity approach produced a more sensitive measure that detected an additional

7,822 cases of hidden homeless (versus 10,800). Consequently, the multiplicity-based

approach produced a more sensitive estimate of the hidden homeless population in Los

Angeles, which was more precise than the conventional approach and should be

implemented in the next homeless enumeration. Sudman and Freeman (1988), however,

suggest that network sampling will lose it attractiveness as the proportion of an event in

the population grows and that more conventional methods (such the Horvitz-Thompson

estimator) will remain superior. Future research should explore what that cut-off in the

population is likely to be and under what conditions it best applies.

Future work should also look for ways to improve the measure of network size needed

to adjust for multiplicity. Recall that in our case, to adjust for the wider reporting

framework developed through the multiplicity approach all sample weights were reduced

by a factor of the size of each respondent’s SBN. Initial framing of the neighborhood

network size question required respondents to provide an estimate of how many

houses/units were on their block or in their development. Because the selection of random

telephone numbers allowed the chance of a house, apartment, or mobile home to be

included in the sample, neighborhood network size questions were tailored to household
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type. Respondents living in homes or townhomes were asked to provide the number of

homes on their block, which consisted of both sides of a street between the two nearest

intersections. Respondents living in condominiums or an apartment complex were asked

to approximate how many units were in their building and how many buildings were in

their complex. The purpose of these questions was to quantify the size of each SBN for

which the respondents were reporting hidden homeless. However, the analysis of the data

showed that the framing of the question may have been confusing to the complex

respondents. In fact, some of these respondents were initially unable to estimate the size of

their SBN. As a consequence, imputation techniques and callbacks were used to retrieve

missing and erroneous neighborhood size values for nearly a quarter of the households

reporting hidden homeless persons. Callbacks were issued for cases where abnormally

high values of neighborhood network size were observed. Distinguishing between which

measures were valid and which were erroneous, an inherently subjective task, required all

neighborhood size data to be re-evaluated. In general, any respondent reporting their SBN

size as having more than 500 households/housing units was flagged for further

investigation. Nearly all the cases where a respondent reported their SBN size as being

more than 500 households/housing units also identified their housing type as a condo or

apartment. A potential limitation to this approach might be the difficulties some

respondents have estimating SBN. Further research should examine ways to reduce this

error, perhaps by shrinking large multi-unit complexes into smaller, manageable units,

such as the respondents’ street block as contained within the complex, thus reducing the

area to be covered within large multiunit complexes. Successfully addressing these

limitations holds the promise of making multiplicity-based estimation a more stable,

statistically precise and preferred approach for estimating hidden homeless individuals in

future homeless counts.
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