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Two sets of diagnostics are presented to evaluate the properties of generalized variance
functions (GVFs) for a given sample survey. The first set uses test statistics for the coefficients
of multiple regression forms of GVF models. The second set uses smoothed estimators of the
mean squared error (MSE) of GVF-based variance estimators. The smooth version of the
MSE estimator can provide a useful measure of the performance of a GVF estimator, relative
to the variance of a standard design-based variance estimator. Some of the proposed methods
are applied to sample data from the Current Employment Statistics survey.

Key words: Complex sample design; degrees of freedom; design-based inference;
model-based inference; quarterly census of employment and wages; superpopulation
model; U.S. current employment statistics (CES) survey; variance estimator stability.

1. Introduction

In the analysis of sample survey data, statisticians generally prefer to use variance

estimation and inference methods that account for the complex design used in the selection

of sample units. However, in some cases (especially those involving relatively small

domains or other specialized subpopulations), standard design-based variance estimators

may be unstable. For such cases, some analysts prefer to use “generalized variance

functions” estimators, in which one seeks to approximate the true design or design-model

variance as a function of known predictors X.

For some background on generalized variance functions for survey data, see Johnson

and King (1987), Valliant (1987) and the references cited therein. (Some of this literature

discusses other reasons for use of GVFs, for example, simplicity of use for secondary data

analysts. The remainder of this article will not consider these other reasons in further

detail.) Much of the GVF literature has focused on the variances of point estimators of

population proportions or population totals related to a binary outcome variable (see, e.g.,

Bureau of Labor Statistics 2006, pp. 189–193). The current article, however, considers the

more complex setting in which the point estimator of interest depends primarily on survey

variables that are not binary. For example, the Current Employment Statistics survey

q Statistics Sweden

1 U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington, DC 20212, U.S.A. Emails:
Cho.Moon@bls.gov, Eltinge.John@bls.gov, Gershunskaya.Julie@bls.gov, and Huff.Larry@bls.gov
Acknowledgments: The authors thank Pat Getz and Ken Robertson for many helpful discussions of the CES and
an associate editor and three referees for their insightful suggestions on earlier versions of this article. The views
expressed in this article are those of the authors and do not necessarily reflect the policies of the U.S. Bureau of
Labor Statistics.

Journal of Official Statistics, Vol. 30, No. 1, 2014, pp. 63–90, http://dx.doi.org/10.2478/jos-2014-0004

http://dx.doi.org/10.2478/jos-2014-0004


application in Subsection 2.1 and Section 5 depends on unit-level employment count

reports that may range from one to tens of thousands.

Following the introduction of an illustrative example and a development of notation and

prospective models in Section 2, this article develops two sets of diagnostic tools for

GVFs. First, Section 3 presents design-based estimators of the variance-covariance matrix

of the coefficient estimators for a GVF. The covariance-matrix estimators in turn lead to

construction of test statistics and confidence sets for the GVF coefficients under standard

large-sample conditions. Second, Section 4 develops diagnostics for the mean squared

error of a GVF as an estimator of the true design variance of a given point estimator. An

initial development reviews the relative magnitudes of error terms associated,

respectively, with pure sampling variability of the design-based variance estimators; the

deterministic lack of fit in the proposed GVF model; and the random equation error

associated with the GVF model. Subsection 4.4 characterizes the unbiased MSE

estimators of the GVF-based variance estimators in terms of the direct variance estimators.

Subsection 4.5 fits models of these MSE estimators; produces a smooth version of the

MSE estimators; and presents some simple methods of evaluating the relative magnitudes

of the sampling error and equation error terms. Section 5 applies the proposed diagnostics

to data from the U.S. Current Employment Statistics survey. Section 6 presents a

simulation study that evaluates the properties of GVF coefficient estimators and of the

related predictors of the true design variance. Section 7 summarizes the main ideas of this

article and outlines some possible extensions. In addition, Table 1 provides a summary of

the notation used in this article.

2. Illustrative Example, Background, Notation, and GVF Models

2.1. Illustrative Example: Subpopulation Total Estimators for the U.S. Current

Employment Statistics Survey

The CES survey collects data monthly on employment, hours, and earnings from nonfarm

establishments. Employment is the total number of persons employed full or part time in a

nonfarm establishment during a specified month. One important feature of the CES survey

is that complete universe employment counts of the previous year become available from

the Unemployment Insurance (UI) tax records on a lagged basis (Butani et al. 1997). U.S.

Bureau of Labor Statistics (2011, Ch. 2) describes the design features relevant to the

analysis of the historical data considered in this article.

The CES sample design uses stratified sampling of UI accounts. UI account is a cluster

that may contain a single or multiple establishment(s). An establishment is defined to be an

economic unit, generally located at a single place, which is engaged predominantly in one

type of economic activity. All establishments within a sampled UI account are included in

the sample. When establishments are rotated into the sample, they are retained for two

years or more. The strata are defined by state, industry, and the size class of UIs. The

sample units in areas within each stratum are sorted in a way ensuring that the number of

sampled units in each area is proportional to the area’s size (i.e., proportional to the

number of UIs in the frame for a given stratum).
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For this article, the survey variable of main interest is yjtk, defined to equal the total

employment reported by establishment k within domain j for reference month t. The

universe data, known as Quarterly Census of Employment and Wages (QCEW) data, are

used annually to benchmark the CES sample estimates to these universe counts (Werking

1997). Specifically, let xj0 equal the known QCEW employment total within domain j for

the benchmark month 0. In addition, let yjt equal the unknown true employment total

for domain j in month t. CES uses a “weighted link relative estimator” of yjt, computed as

Table 1. Description of notation

Notation Description

b index for elements of the coefficient vector g
B dimensionality of g
C dimensionality of v
D set of all j distinct domains
djt degrees of freedom associated with the design-based

distribution of Vpjt

d* degrees of freedom associated with the superpopulation
distribution of ðV*

pjtÞ
21Vpjt

dw degrees of freedom in the Wishart distribution for V̂ŵðĝÞ
hf smooth version of EfðV*

pjt 2 VpjtÞ
2jXjtg

i industry
j domain
njt number of responding sample UI accounts in domain

j at time t
p sample design
qjt equation error
rjt residuals with expectation Eðq2

jtjXjtÞ

R̂ growth ratio estimate

SE1 square root of ð2V̂
2

pjtÞ=ðdjt þ 2Þ

SE2 square root of ð2V*2
pjtÞ=d

t months from benchmark month
Vpjt design variance of ûjt

V̂pjt variance estimator based on the design

V*
pjt variance estimator based on the model

X vector of predictor variables for GVF model
y unknown true employment total
Z vector of predictor variables for the residual

Models (21) through (24)
g variance function parameters in Model ( f )
1jt sampling error V̂pjt 2 Vpjt

hjt error term in Model (22)
ujt finite population quantity
uj jt superpopulation analogue of ujt

ûjt point estimator of ujt

j superpopulation index
ŝ2

e residual mean squared error terms
v variance function parameters
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the product,

ŷjt ¼ xj0R̂jt;

where R̂jt is an estimator of the relative employment growth that took place from

benchmark month 0 to the current month t. Specifically,

R̂jt ¼
Yt

t¼1

R̂
*

jt;

where R̂
*

jt ¼
P

k[sjt
wkyjk;t21

� �21P
k[sjt

wkyjkt, sjt is the matched sample of establishme-

nts in domain j that report positive employment in both months t 2 1 and t, and wk is

the sampling weight of establishment k. Note especially that R̂jt equals the product of t

separate estimators of one-month change. Consequently, under regularity conditions, one

may anticipate that R̂jt and ŷjt may have design variances that are increasing functions of t.

For more detailed information on the weighted link relative estimator, see BLS Handbook

of Methods (2011) and Gershunskaya and Lahiri (2005). For data used in this article, the

benchmark month (t ¼ 0) is March 1999 and our sample data will lead to employment

estimates for each month from January through December 2000 (t ¼ 10 to t ¼ 21).

The primary CES design goal is to satisfy the precision requirements specified for the

national estimates. However, there is strong substantive interest in finer domains which are

defined by geographic characteristics and industrial classifications. For example, the data

analyses in Section 5 focus on estimates of total employment for 430 domains defined by

the intersection of metropolitan statistical area (MSA) with industry, for example, durable

goods manufacturing in the St. Louis MSA or wholesale trade in the Charleston MSA.

Within these domains, effective sample sizes become so small that the standard design-

based estimators are not precise enough to satisfy the needs of prospective data users

(Eltinge et al. 2001). It is necessary to have stable estimators of VðŷjtÞ for the finer

domains. Consequently, we considered the use of GVF methods to produce domain-level

variance estimators that would be more stable than direct design-based variance

estimators.

2.2. Background and Notation

Let ujt be a finite population mean or total for period t, and let ujjt be a superpopulation

analogue of ujt where j is the domain index. For example, in the CES survey, domains are

the combinations of industries and areas, and are generally studied for a sequence of

months t ¼ 1; : : : ; T . In addition, let ûjt be a point estimator of ujt; and define Vpjt ¼

VpðûjtÞ to be the design variance of ûjt. Throughout this article, the subscript “p” denotes

an expectation or variance evaluated with respect to the sample design. The GVF models

the variance of a survey estimator, Vpjt, as a function of the parameter ujt and possibly

other variables (Wolter 2007, sec. 7.2). A common specification is

Vpjt ¼ f ðXjt;gÞ þ qjt; ð1Þ

where Xjt is a vector of predictor variables potentially relevant to estimators of Vpjt, qjt is a

random univariate “equation error” with the mean 0, and g is a vector of B-dimensional

variance function parameters which we need to estimate. Note especially that qjt
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represents the deviation of the true design variance Vpjt from its modeled value f ðXjt;gÞ.

One generally would view the error term qjt as arising from the superpopulation model that

generated our finite population.

In some GVF applications, one may consider functions f ð�Þ that depend on the domain-

specific parameter ujt and may also consider cases for which some predictors Xjt are

unknown and replaced by estimated terms, say X̂jt. However, these cases did not arise in

the CES application considered here, so this article will limit its attention to forms of the

Model (1) with known predictors Xjt.

In general, it is not possible to observe the true design variance Vpjt. Instead it is possible

to compute an estimator V̂pjt ¼ V̂pðûjtÞ based on, for example linearization or replication-

based methods. Consequently, Model (1) must be supplemented with the decomposition

V̂pjt ¼ Vpjt þ e jt; ð2Þ

where e jt is a random term that reflects sampling error in the estimator V̂pjt. Under the

assumption that V̂pjt is design unbiased for Vpjt, the error term e jt has design expectation

equal to zero. The distinction between the equation error in Model (1) and the sampling

error in Model (2) has been considered in other settings for analysis of experiments

with replicates (e.g., Draper and Smith 1998, p. 47) and measurement error models (e.g.,

Fuller 1987).

Our CES applications will use a special form of Model (1) on the logarithmic scale,

ln ðVpjtÞ ¼ Xjtgþ q*
jt; ð3Þ

where q*
jt is a general error term with mean equal to zero; Appendix C provides some

related details. A relatively simple form of Model (3) that incorporates factors related to

domain size (xj0), number of respondents (njt) and distance from benchmark month 0 to

the reference period (t) is:

ln ðVpjtÞ ¼ g0 þ g1 ln ðxj0Þ þ g2 ln ðnjtÞ þ g3 ln ðtÞ þ q*
jt: ðf 1Þ

To estimate the parameters of Models (2) and (3), let D be the set of all J distinct domains

(area-industry combinations) and for each j [ D, let Djt be the set of responding sample

establishments in domain j for month t. In addition, let Yj be a T £ 1 vector with t-th

element ln ðV̂jtÞ and define the ðJ�TÞ £ 1 vector Y ¼ ðY 01;Y
0
2; : : : ;Y

0
JÞ
0. Similarly, let Xj

be a T £ B matrix with t-th row Xjðt; :Þ equal to the predictors used for the specified GVF

model. Also, define the ðJ�TÞ £ B matrix X ¼ ðX 01;X
0
2; : : : ;X

0
JÞ
0 and B £ 1 vector

g ¼ ½g1; : : : ; gB�
0. For example, under the Model ( f1), Xjðt; :Þ ¼ ½1; ln ðxj0Þ; ln ðnjtÞ; ln ðtÞ�

and g ¼ ½g0; g1; g2; g3�
0. Then one may compute the ordinary least squares estimator of the

coefficient vector in (3) as

ĝ ¼ ðX 0XÞ21X 0Y: ð4Þ

2.3. GVF Models

We used the logarithms of direct variance estimators V̂pjt from the survey as the dependent

variables in GVF models. The CES data we considered were from reference year 2000,

and direct estimators, V̂pjt of Vpjt, were computed from Fay’s variant of the balanced
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half-sample replication method with adjustment term K ¼ 0.5. For general background on

balanced half-sample replication and Fay’s method, see Wolter (2007, Ch. 3) and Judkins

(1990). For sampling within a given industry, the CES uses eight size classes. For variance

estimation, the CES combines the three largest size classes (6, 7 and 8). So there are six

size-based variance strata within each area-industry domain.

We assume that V̂pjt is a design-unbiased estimator for Vpjt, i.e., EpðV̂pjtÞ ¼ Vpjt. Let njt

be the number of responding sample UI accounts within the domain j and month t. In this

article, we consider only domains with at least twelve reporting UI accounts. There are 430

area-industry combinations in our CES data. Each area-industry combination has data

from January to December of the year 2000. For the current analysis, we considered data

from the six industries described in Table 2. For areas with a substantial amount of mining

activity, CES produces separate employment estimates for the mining and construction

industries respectively. For other areas, CES produces a single employment estimate for

the combined mining and construction industries. For the 430 domains considered here,

the mean number of reporting sample UI accounts was 475. For the CES application, this

article will consider three special cases of Model (1) on a logarithmic scale. First, note that

Model ( f1) from Subsection 2.2 constrains both intercepts and slopes to be constant across

industries and areas. A generalization that allows the intercepts to vary across industries is:

ln ðVjtÞ ¼ g0ið jÞ þ g1 ln ðxj0Þ þ g2 ln ðnjtÞ þ g3 ln ðtÞ þ q*
jt; ðf 2Þ

where i( j ) represents the industry i that is represented in a specific domain j. A further

generalization that allows all coefficients to vary across industries is:

ln ðVjtÞ ¼ g0ið jÞ þ g1ið jÞ ln ðxj0Þ þ g2ið jÞ ln ðnjtÞ þ g3ið jÞ ln ðtÞ þ q*
jt: ðf 3Þ

Thus, Model ( f3) allows interaction between the industry classification and the predictors

xj0, njt and t. Note that in the notation of the general expression (1), Models ( f1) through

( f3) involve only predictors X determined by the respondent count njt, the time lag t and

the terms xj0. In contrast with GVFs used for binary outcome variables (e.g., Johnson and

King 1987), Models ( f1) through ( f3) do not use the population parameters ujt as scale

factors. Instead, our models use the known benchmark total xj0 as the scale-factor

predictor. Also, for each industry considered in Model ( f3), we used data from twelve

months and from two to 131 areas, as specified in Table 2. In addition, Wolter (2007,

Sec. 7.3) and others have noted the importance of fitting GVF models for groups of

Table 2. Number of metropolitan areas (MSAs) and UIs in each

industry

Industry description MSAs Sample UIs

1 Mining 2 549
2 Mining and construction 36 22,359
3 Construction 61 54,552
4 Durable manufacturing 131 76,150
5 Nondurable manufacturing 100 50,717
6 Wholesale trade 100 58,424
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statistics ûjt for which a “common model” will hold. Model ( f1) uses a common model for

all domains ( j ), while Model ( f3) has distinct coefficient vectors g for each industry i. In

other words, Model ( f1) uses a single large “group” while Model ( f3) allows each industry

to be a separate group.

3. Estimation and Inference for Coefficients in a GVF Model

3.1. Point Estimation Methods

For each of Models ( f1) through ( f3), we computed estimators ĝ of the coefficients g

through ordinary least squares (OLS) regression of ln ðV̂jtÞ on the corresponding vector of

predictors. In principle, one could consider alternative coefficient estimators based on

weighted least squares or generalized least squares approaches. However, the efficiency

gains from these alternative approaches, if any, would depend on the covariance structure

of the error terms; details will not be considered in the current article. See Valliant (1987)

for a discussion of conditions under which weighted least squares estimation may be

preferred to ordinary least squares estimation for GVFs.

3.2. Design-Based Variance Estimation for GVF Coefficients

We obtain an estimator V̂pðĝÞ of the variance of the approximate distribution of ĝ from an

extension of standard estimating equation approaches for complex-survey estimators

(Binder 1983). Then the estimator ĝ in Expression (4) can be rewritten as the solution of

the estimating equation,

0 ¼ ŵðgÞ

¼ X 0Y 2 X 0Xg

¼
j[D

X
ŵj�ðgÞ;

where ŵj�ðgÞ ¼ X 0jðYj 2 XjgÞ. In addition, let ŵjbðgÞ be the b-th element of ŵj�ðgÞ and let

ŵ�bðgÞ be the b-th element of ŵðgÞ. The Taylor expansion of ŵðgÞ at g ¼ g*, where g* is

the population parameter value, leads to:

0 ¼ ŵðĝÞ

¼ ŵðg*Þ þ ŵð1Þðg*Þðĝ 2 g*Þ þ R;

where ŵð1Þðg*Þ ¼
›ŵðgÞ

›g

���
g¼g*

and R is a B £ 1 vector with b-th element equal to

221ðĝ 2 g*Þ
0 ›2ŵ�bðgÞ

›g›g 0

���
g¼g**

� �
ðg 2 g*Þ for some g** with g** 2 g*j j , ĝ 2 g*j j. Thus,

ŵðg*Þ ¼ 2ŵð1Þðg*Þðĝ 2 g*Þ2 R: ð5Þ

Under regularity conditions, the second term on the right-hand side of Expression (5) is

of a smaller order of magnitude than the first term. Consequently, an estimator of the
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variance-covariance matrix of the approximate distribution of ĝ is

V̂ðĝÞ ¼ ŵð1ÞðĝÞ
� �21

V̂ ŵðĝÞf g ŵð1ÞðĝÞ
� �� 	21

; ð6Þ

where ŵð1ÞðĝÞ ¼ ›ŵðgÞ
›g

���
g¼ĝ

and V̂ ŵðĝÞf g is an estimator of the variance of ŵðĝÞ,

evaluated at the point g ¼ ĝ.

3.3. Application to the Current Employment Statistics Program

Let T be the total number of months covered by the data; for the CES design, T ¼ 12. Then

ŵð1ÞðĝÞ ¼ 2
j[D

XXT

t¼1

X 0 jtX jt:

In addition, under the CES design, selection of sample units is essentially independent

across domains. However, due to the CES design and estimation methods, estimators

within a domain may be strongly correlated across consecutive months. Consequently, an

estimator for the middle term in Expression (6) is

V̂ ŵðĝÞf g ¼ V̂
j[D

X
ŵjðĝÞ

0
@

1
A

¼ J 2V̂ J 21

j[D

X
ŵjðĝÞ

0
@

1
A

¼ ðJ 2 1Þ21J
j[D

X
ŵjðĝÞ2 �ŵðĝÞ
� �

ŵjðĝÞ2 �ŵðĝÞ
� �

0;

ð7Þ

where �ŵ¼ J 21
P

j[D ŵjðĝÞ. Note that the final equality in Expression (7) uses the

independence across domains j and accounts for correlation across periods t. Under

regularity conditions (e.g., Korn and Graubard 1990) dwV̂ðĝÞ is distributed approximately

as a Wishart random matrix on dw degrees of freedom and matrix parameter VðĝÞ.

4. Comparison of the Direct and GVF Methods in Prediction of the True Variance

4.1. Decomposition of Differences of V̂pjt 2 V*
pjt

Once we have selected and estimated a specific GVF Model ( f ), it is useful to evaluate the

properties of the resulting predictors of Vpjt: Suppose that a model-fitting method (e.g.,

ordinary least squares, perhaps on a transformed scale; or nonlinear least squares) leads to

the coefficient point estimator ĝ, and define the resulting variance terms,

V*
pjt

def
f ðXjt; ĝÞ: ð8Þ

Appendix C presents two options for specific ways in which to incorporate parameter

estimators into the adjusted predictors V*
pjt. The data analysis for this article will use a

fairly conservative predictor V*
pjt. Note that V*

pjt is based on the general model (1) given
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on the original variance scale. Under the variance function model (1), error model (2)

and the definition of V*
pjt in Expression (8), V̂pjt 2 Vpjt ¼ e jt, and V*

pjt 2 Vpjt ¼

f ðXjt; ĝÞ2 f ðXjt; gÞ þ qjt þ EðqjtÞ2 EðqjtÞ
� �

. Consequently, we may decompose the

difference V̂pjt 2 V*
pjt as

V̂pjt 2 V*
pjt ¼ ðV̂pjt 2 VpjtÞ2 ðV*

pjt 2 VpjtÞ

¼ e jt þ {qjt 2 EðqjtÞ}þ EðqjtÞ2 { f ðXjt; ĝÞ2 f ðXjt; gÞ}:
ð9Þ

In Equation (9), e jt is a pure estimation error in the original V̂pjt estimates with Eðe jtÞ ¼ 0;

{qjt 2 EðqjtÞ} is a random equation error; and EðqjtÞ represents the deterministic lack-of-fit

in our model attributable, for example, to omitted regressors or a misspecified functional

form. The last term in Equation (9), {f ðXjt; ĝÞ2 f ðXjt; gÞ}, is a parameter estimation error

attributable to the errors ĝ 2 g.

Exploratory analysis of the adequacy of our estimated values, V*
pjt, may focus on the

magnitude of the prediction errors V*
pjt 2 Vpjt

� �
, relative to the errors V̂pjt 2 Vpjt


 �
, in the

original estimators V̂pjt. If E V*
pjt 2 Vpjt

� �2

is smaller than the variance of V̂pjt, then we

would prefer V*
pjt. In addition,

dðXjt; gÞ
def

E½{f ðXjt; ĝÞ2 Vpjt}
2jXjt; g�

may vary across values of Xjt with dðXjt; gÞ ,, VpðV̂pjt 2 VpjtÞ only in some cases. In this

case, we might prefer V*
pjt for some, but not all values of Xjt.

4.2. Properties of the Direct Estimator V̂pjt

We evaluate error sizes in terms of conditional expected squared error. In keeping with

standard evaluation of design-based variance estimators, assume that for positive djt,

EpðV̂pjtjVpjtÞ ¼ Vpjt; VpðV̂pjtjVpjtÞ ¼
2V2

pjt

djt

: ð10Þ

The moment properties (10) would hold if V21
pjt djtV̂pjt followed a x2ðdjtÞ distribution.

However, the current article will assume that V̂pjt follows a lognormal distribution that in

general would allow somewhat greater modeling flexibility; see Appendix B for related

comments. Note that

EpðV̂
2

pjtjVpjtÞ ¼ {EpðV̂pjtÞjVpjt}
2 þ VpðV̂pjtjVpjtÞ

¼ V2
pjt þ

2V2
pjt

djt

¼ d21
jt ðdjt þ 2ÞV2

pjt:

ð11Þ

Consequently from (11), an unbiased estimator of VpðV̂pjtjVpjtÞ is:

V̂pðV̂pjtjVpjtÞ ¼ ðdjt þ 2Þ212V̂
2

pjt: ð12Þ

Six employment size classes were used for stratification for our CES survey example,

so the data analysis in Section 5 will use djt ¼ 6. In addition, sample sizes within
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employment class generally were large enough for each t that stratum-level sample means

were considered to follow an approximate normal distribution.

4.3. Properties of the GVF Estimator V*
pjt

Now consider the properties of V*
pjt, and the conditions under which V*

pjt may have a

smaller mean squared error than V̂pjt. In the general case,

Vpjt 2 V*
pjt ¼ qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}: ð13Þ

To simplify the discussion, assume that the product (J�T) is increasing without bound.

This would occur with, for example, increases in the number of geographical areas or the

number of time periods. For example, the CES application uses data from 430 area-

industry combinations and 12 time periods, so the product J�T is relatively large. Then,

under mild regularity conditions on the function f ð�Þ,

E½{f ðXjt; ĝÞ2 f ðXjt; gÞ}
2jXjt� ¼ Op{ðJ�TÞ21}; ð14Þ

while the domain-specific term E q2
jtjXjt

� �
does not necessarily decrease as the product

(J�T) increases. For example, result (14) generally holds for each of Models ( f1)-( f 3)

because these models do not include terms ujt; include only known predictors Xjt; and

involve errors ĝ 2 g that are Op{ðJ�TÞ21=2}. Under result (14) and additional technical

conditions,

E{ðV*
pjt 2 VpjtÞ

2jXjt} ¼ Eðq2
jtÞ þOp{ðJ�TÞ21} ð15Þ

and the leading term Eðq2
jtÞ will generally be of larger magnitude than the Op{ðJ�TÞ21}

term associated with the error f ðXjt; ĝÞ2 f ðXjt; gÞ. Consequently, our task of evaluation of

the approximate mean squared error of V*
pjt simplifies to an evaluation of the expected

square of qjt.

4.4. Diagnostics for Comparison of V̂pjt And V*
pjt

We do not observe qjt directly, but we can estimate its expected square through the

following steps. First, note from Expression (9) that

V̂pjt 2 V*
pjt ¼ e jt þ qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}

and so

V̂pjt 2 V*
pjt

� �2

¼ e2
jt þ q2

jt

þ {f ðXjt; ĝÞ2 f ðXjt; gÞ}
2

þ 2qjt f ðXjt; ĝÞ2 f ðXjt; gÞ
� �

þ 2e jt qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}
� 	

:

ð16Þ

Under condition (14), the conditional expectation E {f ðXjt; ĝÞ2 f ðXjt; gÞ}
2jXjt


 �
is small

relative to Eðq2
jtjXjtÞ. Under additional mild conditions, the conditional expectations

E 2qjt f ðXjt; ĝÞ2 f ðXjt; gÞ
� ���Xjt

� 	
and E 2e jt qjt 2 {f ðXjt; ĝÞ2 f ðXjt; gÞ}

� 	��Xjt


 �
are small
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relative to E q2
jtjXjt

� �
, so

E V̂pjt 2 V*
pjt

� �2

jXjt

� 

8 VpðV̂pjtjVpjtÞ þ E q2

jtjXjt

� �
: ð17Þ

Expressions (9) and (16) lead to two general conclusions regarding diagnostics for V*
pjt.

First, due to distinctions between Vðe jtÞ and Eðq2
jtÞ, care is required in the interpretation of

standard regression diagnostics when applied to GVF models like the general model (1), or

the specific models ( f1) through ( f3). For example, the customary regression mean

squared error, ŝ2
e , is an estimator of the sum Vðe jtÞ þ Eðq2

jtÞ. In addition, under regularity

conditions, the customary squared coefficient of variation, R 2, satisfies the approximate

relationship,

1 2 R2 8 Vðe jtÞ þ Eðq2
jtÞ þ ðJ 2 1Þ21

XJ

j¼1

f ðXjt; ĝÞ2 V̂�
n o2

( )21

Vðe jtÞ þ Eðq2
jtÞ

n o
;

ð18Þ

where V̂� ¼ J 21
PJ

j¼1V̂jt. Under an ideal fit for Model (1), Eðq2
jtÞ would be

approximately equal to zero, but 1 2 R2 would not necessarily be close to zero,

due to the presence of Vðe jtÞ in the numerator of Expression (18). Thus, relatively small

values of R 2 by themselves do not necessarily indicate a poor fit for GVF Model (1).

Similar comments apply to other regression goodness-of-fit diagnostics used for GVF

models.

Second, to address these limitations, it is useful to consider estimators of Eðq2
jtjXjtÞ and

related diagnostics that adjust for the effects of Vðe jtÞ. In particular, Expression (12) is

an unbiased estimator of the first term on the right-hand side of Expression (17).

Consequently, we may define a direct estimator of Eðq2
jtjXjtÞ to be

rjt
def

V̂pjt 2 V*
pjt

� �2

2ðdjt þ 2Þ212V̂
2

pjt: ð19Þ

Note that rjt is a random variable with properties that depend on the distributions of both

the equation error term qjt and the sampling error term e jt. For example, if Eðq2
jtjXjtÞ ¼ 0,

then the leading terms of a Taylor expansion of rjt would have an expectation equal to

zero. Similarly, if Eðq2
jtjXjtÞ is not large relative to Eðe2

jtjXjtÞ, then there is a substantial

probability that a given value of rjt is less than zero. These results are similar to properties

of unadjusted estimators of “between group” variance terms in standard variance

component models. For example, for the data analysis detailed in Section 5, approximately

36% of the rjt values were less than zero.

Consequently, in assessment of Eðq2
jtjXjtÞ, use of smoothed versions of rjt would generally

be preferred. For example, one could extend the standard variance-component literature on

“restricted maximum likelihood” (REML) estimation (e.g., Patterson and Thompson 1971;

Corbeil and Searle 1976; and Harville 1977). However, a detailed extension of REML

methods to the current setting is beyond the scope of the current work. Instead, the next

subsection presents a relatively simple regression approach to estimation of Eðq2
jtjXjtÞ.
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4.5. Model Fitting for Conditional Expected Squared Equation Error

In general, one may consider a model

Eðq2
jtjXÞ ¼ Zjtvþ hjt

¼
XC

c¼1

Zcjtvc þ hjt

ð20Þ

for the conditional expectation of q2
jt, where Zjt ¼ ðZ1jt; : : : ; ZCjtÞ is a 1 £ C vector of

predictors (generally functions of ujt;Xjt and g); v ¼ ðv1; : : : ;vCÞ
0 is a C £ 1 column of

fixed regression coefficients; and hjt is a random error term arising from the underlying

superpopulation model. Let rj be a T £ 1 vector with t-th element rjt and define the

ðJ�TÞ £ 1 vector r ¼ ðr 01; r
0
2; : : : ; r

0
JÞ
0. Similarly, let Zj be a T £ C matrix with t-th row

Zjðt; :Þ equal to the predictors used for the specified model. Also, define the ðJ�TÞ £ C

matrix Z ¼ ðZ 01;Z
0
2; : : : ;Z

0
JÞ
0. Define v̂ ¼ ðZ 0ZÞ21Z 0r. See Appendix A for development

of the variance estimators and inferential statistics for v̂. Finally, define an estimator of

EðrjZÞ by

ĥf ¼ Zv̂: ð21Þ

For example, in keeping with the general approach to error analysis in variance function

models (e.g., Davidian et al. 1988), a quadratic function version of Model (20) is

Vðqjtjujt;Xjt; gÞ ¼ v0 þ v1f ðXjt; gÞ þ v2 f ðXjt; gÞ
� �2

þhjt; ð22Þ

where EðhjtÞ ¼ 0. Under approximation (15) and Model (22), the relative variance of the

prediction error Vpjt 2 V*
pjt is

RelVar Vpjt 2 V*
pjtjXjt

� �

8 f ðXjt; gÞ
� �22

V Vpjt 2 V*
pjt

� �

8 f ðXjt; gÞ
� �22

v0 þ f ðXjt; gÞ
� �21

v1 þ v2 þ f ðXjt; gÞ
� �22

hjt:

ð23Þ

When condition (14) does not hold, one could consider an expansion of Model (22) to

account for predictors of the additional components of RelVar Vpjt 2 V*
pjtjXjt

� �
. For a

given function f ðXjt; gÞ, we may consider a model to produce a smooth version, hf ðXjt;vÞ,

of the conditional expectation, E{ðV*
pjt 2 VpjtÞ

2jXjt}, such that:

E V*
pjt 2 Vpjt

� �2

jXjt

� 

¼ hf ðXjt;vÞ þ hjt:

For example, Expression (22) leads to

rjt ¼ v0 þ v1V*
pjt þ v2V*2

pjt þ ajt; ð24Þ

where we substitute the observed values V*
pjt for the unknown quantities f ðXjt; gÞ, and ajt is

a remainder term. In addition, it is of interest to consider the reduced form of Model (24)
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in which v0 ¼ 0 ¼ v1:

�V*22rjt ¼ �V*22V*2
pjtv2 þ �V*22ajt; ð25Þ

where �V* ¼ J 21
PJ

j¼1V*
pjt. For example, under Model (24), Zjðt;�Þ ¼ ½1;V

*
pjt;V

*2
pjt� and

v ¼ ½v0;v1;v2�
0 where j is the number of domains, and C ¼ 3 is the number of

coefficients in (24). Similarly, for Model (25), Zjðt;�Þ ¼ V*2
pjt

h i
and C ¼ 1.

4.6. A Degrees-of-Freedom Interpretation of Prediction Error Properties

Application of the ideas in Appendix B indicate that under Model (22), the term

f ðXjt; gÞ
� �21

d*
jtVpjt ð26Þ

has the same first and second moments as a x2
d*

jt

random variable where

d*
jt ¼ 2 RelVarðVpjt 2 V*

pjtÞ
n o21

8 f ðXjt; gÞ
� �22

v0 þ f ðXjt; gÞ
� �21

v1 þ v2 þ f ðXjt; gÞ
� �22

hjt

h i21

2:

ð27Þ

In addition, under Model (24), results presented in Appendix B indicate that

2 V*22
pjt ĥf

� �21

is an estimator of Expression (27) provided the error difference V*22
pjt ajt 2

V*22
pjt hjt is small. Thus, the degrees-of-freedom attributable to the error term qjt may in

general depend on the function f ðXjt; gÞ and thus vary across domains.

However, under the reduced Model (25), if the remainder term ajt is small, then

d*
jt 8 v21

2 2; ð28Þ

that is, the degrees-of-freedom term d*
jt is approximately constant and can be estimated on

the basis of the estimated coefficient v2 from the reduced Model (25).

5. Data Analysis

5.1. Estimation for GVF Model Coefficients

For the CES example introduced in Section 2, Tables 3 through 5 report coefficient

estimates, standard errors and inferential statistics for Models ( f 1) through ( f 3)

respectively. The reported standard errors equal the square root of the variance estimates

Table 3. Coefficient estimates and inferential statistics for Model ( f1)

Intercept ln ðxj0Þ ln ðnjtÞ ln ðtÞ
g0 g1 g2 g3 R2 ŝ2

e

EST. 21.43 1.16 0.22 1.17 0.52 1.31
s.e. 0.66 0.09 0.12 0.07
tg 22.17 12.77 1.78 16.72
meff 5.45 9.87 10.63 1.02
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computed from Expression (6). In addition, the design-based test statistic for the

coefficient gb is:

tgb
¼ V̂pðĝbÞ
� �21=2

ĝb:

Recall that Model ( f1) has coefficients that are constant across all industries, Model ( f2)

allows different intercept terms across industries and Model ( f3) allows all coefficients to

vary across industries. Also, note that Models ( f1) through ( f3) all include both lnðxj0Þ and

lnðnjtÞ. In general, subpopulations with a larger benchmark employment, xj0; will tend to

receive larger initial sample sizes and thus also have larger numbers of respondents, njt,

in month t. Consequently, ln ðxj0Þ and ln ðnjtÞ will tend to be positively correlated across

our 430 domains j. However, inclusion of both predictors allowed us to account for the

effects of the changes in numbers of respondents across months. In Table 3, the positive

coefficient on ln ðnjtÞ is an outcome of this positive association between ln ðxj0Þ and ln ðnjtÞ:

On the other hand, after incorporation of industry-specific intercept terms in Models ( f2)

and ( f3), the estimated coefficients for ln ðnjtÞ are negative.

In addition, the final rows of Tables 3 through 5 present “misspecification effect” ratios

for each of the estimated coefficients. In a slight extension of the ideas in Skinner (1986),

define the misspecification effect ratio for the coefficient estimator ĝb as:

meffmb ¼
sef m;complexðĝbÞ

sef m;directðĝbÞ

� �2

; ð29Þ

where sef m;complexðĝbÞ is the estimated standard error of the ordinary least squares

coefficient estimator ĝb computed with Expression (6) for model f m; and sef m;directðĝbÞ is

the corresponding standard error obtained directly from ordinary least squares results,

without any adjustment for the correlation across V̂pjt terms induced by the CES design and

estimation methods. For cases in which meffmb is greater than one, direct use of unadjusted

errors from ordinary least squares regression output will lead to confidence intervals for ĝb

that are too narrow and that have coverage rates below their nominal levels. As one would

expect in the analysis of data with relatively strong correlation over time, Table 3 reports

misspecification effect ratios that are substantially greater than one for the coefficients

g0; g1 and g2: For g3 (the coefficient of the lnðtÞ predictor), the misspecification effect

ratio is close to one. Tables 4 and 5 display qualitatively similar patterns for their

misspecification effect ratios, with the exception of the coefficients for Industry 1. This

industry had data for only two MSAs, while Industries 2 through 6 had data for 36, 61, 131,

100 and 100 MSAs, respectively.

Table 4. Coefficient estimates and inferential statistics for Model ( f 2)

Intercept
ln ðxj0Þ ln ðnjtÞ ln ðtÞ

g01 g02 g03 g04 g05 g06 g1 g2 g3 R 2 ŝ2
e

EST. 23.98 23.28 23.44 24.85 24.89 24.26 1.70 20.57 1.25 0.61 1.06
s.e. 1.08 0.65 0.66 0.72 0.73 0.71 0.11 0.15 0.07
tg 23.68 25.03 25.23 26.76 26.74 25.99 16.06 23.86 17.93
meff 9.53 6.22 6.13 6.72 6.00 6.81 11.77 12.19 1.26
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In applying the residual-analysis methods developed in Section 4 and Appendix C,

we used the estimators

V*
pjt; f m

¼ exp Xj; f m
ĝf m
þ 221ŝ2

e; f m

� �

where Xj;f m
and ĝf m

are respectively the vectors of predictor variables and ordinary least

squares coefficient estimators for a given model m, with each of Models ( f 1) through ( f 3)

considered separately. In addition, ŝ2
e;f m

is the residual mean squared error from the ordinary

least squares regression fit for model m. See Karlberg (2000) for related comments.

5.2. Goodness-of-Fit Measures for the GVF Models

To evaluate the goodness-of-fit of our GVF models, note first that Tables 3, 4 and 5 present

the aggregate measures R 2 equal to 0.52, 0.61 and 0.62 for Models ( f1) through ( f3),

respectively; and the corresponding residual mean squared error terms ŝ2
e are 1.31, 1.06

and 1.04, respectively. Thus, in a summary evaluation of fit across all domains, Model ( f2)

is somewhat better than ( f1), but ( f3) is only marginally better than Model ( f2). In keeping

with the comments following Expression (17), interpretation of R 2 and ŝ2
e values warrants

careful consideration of the effect of Vðe*
jtÞ. Specifically, applications of the residual-

analysis methods from Section 4 indicate several important ways in which Model ( f3) may

provide a better fit than Models ( f1) or ( f2) for the CES data.

First, for each of Models ( f1) through ( f3), Table 6 reports the results of standard Wald

test statistics for the null hypothesis H0 : v0 ¼ 0 ¼ v1:

W ¼ v̂0; v̂1


 �
V̂{ðv̂0; v̂1Þ

0}
� 	21

ðv̂0; v̂1Þ
0;

where v̂ ¼ v̂0; v̂1; v̂2

h i 0
is computed through an ordinary least squares fit to Model

(24) with V̂ðv̂0; v̂1Þ computed as shown in Appendix A. In addition, v̂ and V̂ðv̂Þ are based

on data from a total of 430 area-industry combinations. Application of the quadratic

form ideas reviewed in Appendix A, with d ¼ 430 2 1 ¼ 429 and p ¼ 2, indicates

that (W/429){(429 2 2 þ 1)/2} has approximately a noncentral F distribution with 2 and

429 2 2 þ 1 ¼ 428 degrees of freedom and with noncentrality parameter

W0 ¼ ðv0;v1Þ V{v̂0; v̂1Þ
0}

� 	21
ðv0;v1Þ

0. In our example, all test statistics from Models

Table 6. Wald test of v0 ¼ v1 ¼ 0 for Model (24).

(Reference value: 6.00 at a ¼ 0.05)

First phase model f 1 f 2 f 3

Test statistics 3.22 2.63 3.13

Table 7. Degrees of Freedom (d*) among

Models ( f ) given Model (24) with v0 ¼ v1 ¼ 0

Model f 1 f 2 f 3

v2 0.484 0.216 0.004
se(v2) (0.053) (0.048) (0.001)
d* 4.13 9.25 468.77
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( f1) to ( f3) were smaller than the reference value, F{2;428}ð2Þð429Þ=428 ¼ 6:00, at

a ¼ 0:05.

Table 7 reports the estimates v̂2 and their standard errors computed under the reduced

form of Model (25) with the constraints v0 ¼ 0 ¼ v1. Note that Model ( f3) has large

estimated values for d* ¼ v̂21
2 2, while Models ( f1) and ( f2) have much smaller estimated

values for d*.

Second, we computed the terms rjt from Expression (19) for each of Models ( f1) through

( f3) respectively. Figure 1 presents a plot of the resulting rjt against the corresponding

predicted values lnðV*
pjtÞ for Model ( f3). The grey circles display the plot of rjt, an

approximately unbiased estimator of the mean squared error of V*
pjt, against lnðV*

pjtÞ; and the

solid black circles display the values of ĥf 3
, the smoothed version of rjt based on Expression

(21) computed for the reduced Model (25). Figure 1 also includes results from a

nonparametric regression method known as locally weighted regression (loess) with a span of

0.1. For general background on loess methods, see Cleveland and Grosse (1991). Note that the

loess-smoothed estimates are relatively close to the corresponding values of ĥf 3
in Figure 1.

Similar plots were produced for Models ( f1) and ( f2) but are not shown in the article.

For the relatively simple Model ( f1), the resulting plot indicates that ĥf 1
, the estimator of

Eðq2
jtjXjtÞ, is relatively large for large values of lnðV*

jtÞ, reflecting a potential lack of fit for

Model ( f1) in this upper range. For ( f2), which is a more refined model than ( f1), the

corresponding values of ĥf 2
are not as large as ĥf 1

for high values of lnðV*
jtÞ, indicating a

somewhat better fit of ( f2). In addition, for cases with positive values of rjt, we plotted

12 14 16 18

−2.0e+15

0.0e+00

2.0e+15

4.0e+15

6.0e+15

8.0e+15

1.0e+16

1.2e+16

log(Vstar)

r jt

hf3

Loess(span=0.1)

Fig. 1. Three overlaid plots of estimates of E q2
jtjXjt

� �
against ln V

*

pjt

� �
based on Model ( f 3). The grey circles

present rjt based on Expression (19). The grey line presents loess-smoothed values of rjt with span ¼ 0.1. The

solid black circles present values of hf 3 computed from the reduced Model (25)
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points of lnðrjtÞ against lnðV*
pjtÞ for Model ( f3) (again not included here). A loess-smoothed

line (span ¼ 0.1) drawn through the plotted points was roughly consistent with a linear

relationship between lnðrjtÞ and lnðV*
pjtÞ. Furthermore, for all values ( j,t), the computed

values ĥf 1
, ĥf 2

and ĥf 3
were all greater than zero, thus addressing the negative individual

values of rjt noted in Subsection 4.4.

Figure 2 plots three measures of uncertainty in prediction of the true design variance

Vpjt. The first measure, SE1, equals the square root of 2V̂
2

pjt

� �
=ðd þ 2Þ; which is an

unbiased direct estimator of the variance of the prediction error V̂pjt 2 Vpjt under the

moment condition (10). The second measure, SE2, equals the square root of 2V*2
pjt

� �
=d,

where V*
pjt is computed under Model ( f1). Under Model ( f1) and condition (10),

2V*2
pjt

� �
=d is approximately unbiased for the variance of the prediction error V̂pjt 2 Vpjt.

Thus SE2 may be considered as a smoothed version of SE1. The third measure,
ffiffiffiffiffiffi
hf 1

p
, is an

estimator of the standard deviation of the equation error term qjt under Model ( f1) and the

conditions outlined in Section 4. In Figure 2, the curve for lnð
ffiffiffiffiffiffi
hf 1

p
Þ falls slightly above

the curve for ln (SE2), which indicates that under the relatively simple Model ( f1), use

of the GVF will lead to an estimated standard error for prediction of Vpjt that is slightly

larger than the standard error of V̂pjt as a predictor of Vpjt. Figures 3 and 4 present the

corresponding plots of ln (SE1), ln (SE2) and ln ð
ffiffiffiffiffi
hf

p
Þ against ln ðV*

pjtÞ for Models ( f2) and

( f3), respectively. Note that in Figure 3, the curve for ln ð
ffiffiffiffiffiffi
hf 2

p
Þ is slightly below the curve

for ln (SE2), while in Figure 4, ln ð
ffiffiffiffiffiffi
hf 3

p
Þ is substantially below ln (SE2).

12

18

16

14

12

10

8

14 16 18

Log (vstar)

log (SE1)

log (SE2)

log (  hf1)

Fig. 2. Plot of ln (SE 1) (grey circles), ln (SE 2) (grey triangles) and ln ð
ffiffiffiffiffiffi
hf 1

p
Þ (black squares) against ln V

*

pjt

� �

for the reduced form (25) of the regression model for the error terms rjt . Here, SE 2,
ffiffiffiffiffiffi
hf 1

p
and V

*

pjt are all based

on Model ( f 1)
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Figure 5 displays plots of
ffiffiffiffiffi
hf

p
against lnðV*

pjtÞ where both
ffiffiffiffiffi
hf

p
and lnðV*

pjtÞ are

computed separately for each of Models ( f1) through ( f3). For relatively large values of

lnðV*
pjtÞ, the curve for ( f3) is substantially below the curves for ( f 1) and ( f 2). Thus,

Figures 2 through 5 indicate that for prediction of the true variances Vpjt; under the

specified conditions, use of Model ( f3) is substantially better than use of either Models

( f1) or ( f2), or use of the directly computed terms V̂pjt. Finally, note that all figures present

data for the same area-industry-month combinations from the calendar year 2000.

Consequently, some common outlier patterns appear in several of the figures. For

example, Figure 1 displays three large positive outliers corresponding to ln ðV*
pjtÞ values

approximately equal to 14.5. These three points represent three consecutive months for

one specific area-industry combination. Similar three-point outlier patterns for the same

area-industry combinations appear in Figures 2 through 4.

6. A Simulation Study

6.1. Design of the Study

To evaluate the properties of ĝ and V*
pjt, we carried out a simulation study based on the

following variables produced for each of R ¼ 1,000 replicates.

12

8

10

12

14

14

16

16

18

18
log(Vstar)

log(SE1)
log(SE2)
log(  hf2 )

Fig. 3. Plot of ln (SE 1) (grey circles), ln (SE 2) (grey triangles) and ln ð
ffiffiffiffiffiffiffi
hf 2

p
Þ (black squares) against ln V

*

pjt

� �

for the reduced form (25) of the regression model for the error terms rjt . Here, SE 2,
ffiffiffiffiffiffiffi
hf 2

p
and V

*

pjt are all based

on Model ( f 2)
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First, we computed the fixed values

f 1jt ¼ g0 þ g1 ln ðxj0Þ þ g2 ln ðnjtÞ þ g3 ln ðtÞ ð30Þ

based on the numerical values of the coefficient vector g for Model ( f1) presented in

Table 3 for all 5,160 combinations of domain j and month t considered in Section 5.

Second, we generated the normal ð0;s2
q*
Þ random variables q*

jtðrÞ for the 5,160 cases with

s2
q*

defined by Expression (C.6) using values of dq specified in Table 8. We then computed

VpjtðrÞ ¼ expð f 1jt þ q*
jtðrÞÞ:

In addition, we generated ûjtðrÞ as independent normal ðxj0;VpjtÞ random variables and

generated e*
jtðrÞ as independent normal ð0;s2

e*
Þ random variables with s2

e*
defined by

Expression (C.5) with de ¼ 6. We then computed

V̂pjtðrÞ ¼ VpjtðrÞ expðe*
jtðrÞÞ:

Based on the 5,160 vectors V̂pjtðrÞ;Xjt


 �
, where Xjt ¼ 1; lnðxj0Þ; lnðnjtÞ; lnðtÞ


 �
, we

carried out ordinary least squares regression of lnðV̂pjtðrÞÞ on Xjt to produce the coefficient

vector estimate ĝðrÞ; the term ŝ2
ðrÞ equal to the regression mean squared error; the term

ŝ2
q*ðrÞ

defined by Expression (C.6); and the predicted variances V**
pjtðrÞ defined by

Expression (C.9). In addition, we computed the confidence intervals for ujt,

ûjtðrÞ ^ tde ;12a=2 V̂pjtðrÞ


 �1=2
ð31Þ

12
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14

14

16

16

18

18
log(Vstar)

log(SE1)
log(SE2)
log(  hf3 )

Fig. 4. Plot of ln (SE 1) (grey circles), ln (SE 2) (grey triangles) and ln ð
ffiffiffiffiffiffi
hf 3

p
Þ (black squares) against ln V

*

pjt

� �

for the reduced form (25) of the regression model for the error terms rjt . Here, SE 2,
ffiffiffiffiffiffi
hf 3

p
and V

*

pjt are all based

on Model ( f 3)
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based on the direct variance estimates V̂pjtðrÞ; and

ûjtðrÞ ^ tdq;12a=2 V**
pjtðrÞ

� �1=2

ð32Þ

based on the GVF predictors V**
pjtðrÞ, where td;12a=2 is the upper 1 2 a=2 quantile of a t

distribution on d degrees of freedom. Finally, taking averages over the R replicates, we

computed estimates

R21
XR

r¼1

ĝðrÞ 2 g

 �

ð33Þ

of the biases of the coefficient estimates;

n21R21
XR

r¼1

X12

t¼1

X430

j¼1

Vpjt

 !21

n21R21
XR

r¼1

X12

t¼1

X430

j¼1

DpjtðrÞ

 !
ð34Þ

the aggregate relative bias of the predictors V**
pjtðrÞ where DpjtðrÞ ¼ V**

pjtðrÞ 2 Vpjt, and

n ¼ J £ T ¼ 430 £ 12 ¼ 5; 160;

n21R21
XR

r¼1

X12

t¼1

X430

j¼1

V21
pjt DpjtðrÞ

 !
ð35Þ

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

f1

f2

f3

12 14 16 18
log(Vstar)

h

Fig. 5. Three overlaid plots of
ffiffiffiffiffi
hf

p
against ln V

*

pjt

� �
. In the top curve (dark grey circles), both

ffiffiffiffiffiffi
hf 1

p
and

ln V
*

pjt

� �
are based on Model ( f1) for ln V

*

pjt

� �
. In the middle curve (light grey triangles), both

ffiffiffiffiffiffi
hf 2

p
and ln V

*

pjt

� �

are based on Model ( f 2). In the bottom curve (black crosses), both
ffiffiffiffiffiffi
hf 3

p
and ln V

*

pjt

� �
are based on Model ( f 3).

In all curves,
ffiffiffiffiffi
hf

p
is based on the reduced Model (25) for rjt .
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the average domain-specific relative bias of V**
pjt; and the coverage rates and mean widths

for the confidence intervals (31) and (32).

We repeated these steps for the eight values of dq ¼ 4; 6; 8; 16; 30; 60; 120 and 400.

Results are displayed in Table 8.

6.2. Numerical Results

The first two columns of Table 8 present the selected values of dq and the corresponding

values of s2
q*

based on Expression (C.6). Note that the value dq ¼ 4 corresponds

approximately to the value of d* for Model ( f1) in Table 7; and the value of dq ¼ 400 is

slightly less than the value of d* for Model ( f3) in Table 7.

The next four columns of Table 8 present the bias terms as given in Expression (33),

with the corresponding simulated standard deviations placed in parentheses. Note that the

bias terms are all small relative to the coefficient values in Table 3 and relative to the

reported standard deviations.

The next two columns report the relative bias values given by Expressions (34) and (35),

respectively. Note that the aggregate bias terms (34) are relatively small for all cases;

while the relative bias terms (35) are fairly large for dq ¼ 4, and decline to values close to

zero as dq increases. The ninth through twelfth columns report coverage rates and mean

widths for nominal 95% confidence intervals (31) and (32), respectively. Note that all

coverage rates exceed the nominal value of 0.95.

For dq ¼ 4, the intervals (31) based on V̂pjt have a mean width approximately 17% less

than the intervals (32) based on V*
pjt. This is not surprising, since in this case de is greater

than dq. For dq ¼ 6, the intervals (31) and (32) have approximately the same mean width.

As dq increases in the remainder of Table 8, mean widths of the intervals (32) became

progressively smaller relative to the widths of the interval (31). This reflects the increasing

efficiency of V**
pjt relative to V̂pjt as dq increases with de held equal to 6. We observed

similar patterns in comparisons of the quantiles of the widths of the confidence intervals

(31) and (32); details are omitted here in the interest of space.

In addition, we produced month-specific forms of the final six columns of Table 8, and

explored the numerical results for possible time effects. In results not detailed here, we did not

identify any substantial time effects for the relative-bias results related to Expressions (34)

and (35), nor for the coverage rates of confidence intervals for ujt based on Expressions (31)

and (32), respectively. As one would expect from the positive coefficient g3 in Expression

(30), the widths of the intervals (31) and (32) did increase over time, but for a given value of

dq, the relative widths of intervals (31) and (32) remained approximately the same.

7. Discussion

7.1. Summary of Ideas and Methods

This article has considered two related approaches to the evaluation of generalized

variance functions for the analysis of complex survey data. First, an extension of standard

estimating equation methods led to design-based variance estimators for the coefficient

estimators of a GVF model. This in turn led to design-based inferences for these

coefficients, as illustrated by the CES example in Tables 3 through 5. For many of the
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coefficients considered in Tables 3 through 5, the numerical values of the misspecification

effect ratio (29) were substantially greater than one. Thus, in inference for the CES

example, it was important to use the design-based variance estimator from (6) instead of

the customary variance estimates obtained directly from standard OLS output. Second,

additional conditions on the equation error terms qjt led to approximations for the mean

squared error of the GVF-based estimators V*
pjt. A regression model for these MSE terms

allowed the comparison of the predictive precision of the GVF V*
pjt with the direct design-

based variance estimators V̂pjt. Application of this second set of analyses in Tables 6 and 7

and in Figures 1 through 4 allowed the identification of some specific GVFs with smaller

MSEs than V̂pjt for our CES data.

7.2. Possible Extensions

In closing, we note several possible extensions of the current work. First, we have focused

on modeling of the variance of sampling error alone. In some work with small domain

estimation, there is also interest in modeling of the variances of prediction errors, which may

include components of both sampling error and model error. Second, one may develop

additional diagnostics that are specifically focused on evaluation of the effect of GVF lack of

fit on specific statistics, that is, confidence intervals for finite population means or variance-

based weights in construction of weighted least squares estimators. Third, in keeping with

the comments at the end of Subsection 4.4, one could consider estimators of Eðq2
jtjXjtÞ based

on restricted maximum likelihood methods from the variance component literature. Fourth,

Valliant (1987) explored questions regarding use of ordinary least squares or weighted least

squares methods in estimation of the coefficients of a GVF model. It would be useful to

extend his approach to the context defined in the current article, especially for estimation of

the coefficients of the hf models like (24) and (25). Fifth, the numerical work in this article

used the assumption that the equation errors qjt and estimation errors e jt followed lognormal

distributions. One could consider extensions of this work to cases in which qjt and e jt follow

chi-square distributions or other distributions in the gamma family. Finally, the simulation-

based evaluations in Section 6 used values q*
jtðrÞ; e

*
jtðrÞ and ûjtðrÞ generated from independent

normal distributions. As suggested by a referee, one could carry out related simulation work

by expanding the available CES data into a fixed finite population, and then drawing

multiple stratified samples from that population.

Appendix A

Development of the Variance Estimator V̂ðv̂Þ

Subsection 3.2 developed variance estimators V̂ðĝÞ for the GVF coefficient estimators ĝ:

To develop a similar estimator for the variance of the approximate distribution of v̂, define

r, Z, J and C as in Subsection 4.5. Under regularity conditions, v̂ follows approximately a

multivariate normal distribution with mean v and variance-covariance matrix Vðv̂Þ.

An estimator of Vðv̂Þ is

V̂ðv̂Þ ¼ ŵð1Þðv*Þ
� �21

V̂ ŵðv̂Þf g ŵð1Þðv*Þ
� �

0
� 	21

;
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where ŵð1Þðv*Þ ¼
›ŵðvÞ

›v

��
v¼v*
¼ Z 0Z. For Model (20),

v̂ ¼ ðZ 0ZÞ21Z 0Y

ŵðv̂Þ ¼ Z 0Y 2 Z 0Zv̂

V̂ ŵðv̂Þf g ¼ ðJ 2 1Þ21J
j[D

X
ŵjtðv̂Þ2 �ŵðv̂Þ
� �

ŵjtðv̂Þ2 �ŵðv̂Þ
� �

0

and �ŵðv̂Þ ¼ J 21

j[D

X
ŵjtðv̂Þ:

Under additional regularity conditions, dV̂ðv̂Þ follows approximately a Wishart d;Vðv̂Þ

 �

distribution. Standard arguments (e.g., Korn and Graubard 1990) indicate that for a fixed

p £ C dimensional matrix A, if we define the quadratic form

W ¼ Av̂ð Þ0 AV̂ v̂ð ÞA 0
� 	21

Av̂ð Þ;

then ðW=dÞ{ðd 2 pþ 1Þ=p} has approximately a noncentral F distribution with p and

ðd 2 pþ 1Þ degrees of freedom and noncentrality parameter W0 ¼

Avð Þ0 AV v̂ð ÞA 0
� 	21

Avð Þ:

Appendix B

Ad Hoc “Degrees of Freedom” Measures for Estimation and Prediction Errors Under

Variance Function Models

Numerical work in this article uses the assumption that the errors qjt and e jt follow

lognormal distributions. However, direct statements about the moments of qjt and e jt may

be somewhat difficult to interpret. Consequently, it is useful to provide the following ad

hoc “degrees of freedom” measures related to the moments of qjt and e jt.

Let A be a positive random variable with finite positive mean and variance. Then under

a standard approach (e.g., Satterthwaite 1941 and Kendall and Stuart 1968, p. 83), the

random variable {EðAÞ}21dA has the same first and second moments as those of a x2
d

random variable, where we define the “degrees of freedom” term

d ¼ {VðAÞ}212{EðAÞ}2: ðB:1Þ

Specifically, for the random variables Vpjt and V̂pjt defined in Expressions (1) and (2),

{f ðXjt; gÞ}
21dqjt

Vpjt has the same first and second moments as a x2
dqjt

random variable,

where

dqjt
¼ {VðqjtÞ}

21 2{f ðXjt; gÞ}
2: ðB:2Þ

Similarly, conditional on Vpjt, Vpjt


 �21
de jt

V̂pjt has the same first and second moments as a

x2
de jt

random variable, where

de jt
¼ Vðe jtjXjtÞ
� �21

2 Vpjt


 �2
: ðB:3Þ
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Appendix C

Predictors V*
jt of the Design Variance Vjt Under Lognormal Models for Equation Error

and Estimation Error

Under the model defined by Expressions (2) and (3), define e*
jt ¼ ln ðV̂jtÞ2 ln ðVjtÞ and

assume that

q*
jt , Nð0;s2

q*
Þ ðC:1Þ

and

e*
jt , N 0;s2

e*


 �
: ðC:2Þ

Then routine calculations show that

EðVjtjXjtÞ ¼ exp Xjtgþ 221s2
q*

� �
: ðC:3Þ

Let ŝ2
e be the customary mean squared error term from the regression of lnðV̂pjtÞ on Xjt

under the model defined by Expressions (2) and (3). Under additional regularity

conditions, ŝ2
e is a consistent estimator for the sum s2

q*
þ s2

e*
.

If one does not have satisfactory information about the estimation-error variance term s2
e*

,

then one may consider use of the predictor

V*
pjt ¼ exp Xjtĝþ 221ŝ2

e


 �
: ðC:4Þ

Expression (C.4) provides a predictor of the true variance Vpjt that is conservative in the

sense that EðV*
pjtÞ will tend to be larger than EðVpjtÞ. To develop a less conservative

predictor of Vpjt, suppose that under Expression (B.3), the term de jt
is known (up to a

reasonable level of approximation) and equals the constant de for all j and t. Additional

calculations for the moments of the lognormal distribution then show that

s2
e*
¼ C 1; 221de


 �
ðC:5Þ

where Cða; bÞ is the C function with arguments a and b (Abramowitz and Stegun 1972,

p 258). Similarly, under the lognormal model (C.1), define dq ¼ {VðqjtÞ}
212{EðVjt}

2,

then

s2
q*
¼ C 1; 221dq


 �
ðC:6Þ

In addition, define the function cðdÞ ¼ C 1; 221d

 �

. Expression (C.5) then leads to the

estimators

ŝ2
q*
¼ ŝ2

e 2 s2
e*

ðC:7Þ

and

d̂q ¼ c21 ŝ2
q*

� �
ðC:8Þ
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Finally, based on substitution of ĝ for g and ŝ2
q*

for s2
q*

in Expression (C.3), define the

predictor

V**
pjt ¼ exp Xjtĝþ 221ŝ2

q*

� �
: ðC:9Þ
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