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The National Ambulatory Medical Care Survey collects data on office-based physician care
from a nationally representative, multistage sampling scheme where the ultimate unit of
analysis is a patient-doctor encounter. Patient race, a commonly analyzed demographic, has
been subject to a steadily increasing item nonresponse rate. In 1999, race was missing for
17 percent of cases; by 2008, that figure had risen to 33 percent. Over this entire period, single
imputation has been the compensation method employed. Recent research at the National
Center for Health Statistics evaluated multiply imputing race to better represent the
missing-data uncertainty. Given item nonresponse rates of 30 percent or greater, we were
surprised to find many estimates’ ratios of multiple-imputation to single-imputation estimated
standard errors close to 1. A likely explanation is that the design effects attributable to the
complex sample design largely outweigh any increase in variance attributable to missing-data
uncertainty.
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1. Background

The National Ambulatory Medical Care Survey (NAMCS) has been administered by the

National Center for Health Statistics (NCHS) since 1973. While aspects of the sample

design and survey instrument have evolved over the past twenty-five years, its objective

has always been to collect and disseminate nationally representative data on office-

based physician care. The ultimate sample unit is a doctor-patient encounter, drawn

systematically from the terminus of a multistage, clustered sample design. Like many

other surveys, the NAMCS is not immune to the potentially detrimental effects of missing

data. As Figure 1 demonstrates, the (unweighted) item nonresponse rate for patient race,

one of the most analyzed demographics, increased appreciably between 1999 and 2008.

Such nonresponse on race has been experienced in the context of other NCHS health care

surveys as well. For example, Kozak (1995) found that hospitals participating in the

National Hospital Discharge Survey underreported race to varying degrees.

q Statistics Sweden

1 National Center for Health Statistics, 3311 Toledo Road, Hyattsville, MD 20782, U.S.A
Email: tlewis@survey.umd.edu
Acknowledgments: The findings and conclusions in this article are those of the authors and do not necessarily
represent the views of the National Center for Health Statistics, Centers for Disease Control and Prevention.
The authors thank the Editor, Associate Editor, and referees for comments that helped to improve the article.

Journal of Official Statistics, Vol. 30, No. 1, 2014, pp. 147–161, http://dx.doi.org/10.2478/jos-2014-0008

http://dx.doi.org/10.2478/jos-2014-0008


Groves et al. (2002, Sec. 1.2) cited three issues that can arise with missing data due to

nonresponse: (1) biases in point estimators; (2) inflation of the variances of point

estimators; and (3) biases in customary estimators of precision. In this article, we focus on

the third issue, and in particular the extent to which multiple imputation (Rubin 1987)

results in estimates of precision that differ from those under single imputation in the

context of the NAMCS with missing data on race.

Variance estimates for situations such as ours have been explored by Li et al. (2004),

who used a bootstrap re-imputation scheme adapted to complex surveys (Shao and

Sitter 1996) to account for missing-race uncertainty in the 2000 NAMCS. Li and her

colleagues observed a few instances where the bootstrap re-imputation suggested standard

errors should be inflated by up to 30%, but concluded most estimates necessitated an

inflation of 6% or less. Their findings quelled concerns for a while, but as one can infer

from Figure 1, the item nonresponse rate for race in the 2000 NAMCS was roughly half

where it stood in 2008.

This article reports on research conducted at NCHS, using data from the 2008 NAMCS,

to assess whether multiple imputation would better reflect the missing-data uncertainty

than single imputation, which is currently used in the NAMCS, in light of the recent

nonresponse rates of about 30% on race. Using a model-based imputation method with

predictors similar to those used in the 2008 NAMCS cell-based procedure, we compared

results under multiple imputation to those under single imputation, and we found that the

increase in the estimated standard errors with multiple imputation tended to be small. We

concluded that the extremely large design effects (Kish 1965) for estimates involving race

tended to transcend the additional missing-data uncertainty that would be reflected by

multiple imputation. This is discussed with the help of some basic theory partitioning the

overall estimated variance increase into a component attributable to the complex survey

design and a component attributable to missing-data uncertainty.

Section 2 of the article provides an overview of the NAMCS sample design and

describes the imputation method used in our study. In Section 3, we present the major

results from the comparison of multiple imputation with single imputation. Section 4

concludes the article with a brief discussion pointing out limitations and suggestions for

further research.
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Fig. 1. Patient Race Item Nonresponse Rate Trend in the National Ambulatory Medical Care Survey,

1999 – 2008.
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2. Data and Methods

2.1. NAMCS Sample Design

As previously noted, the NAMCS employs a multistage, clustered sample design. The

primary sampling units (PSUs) consist of either single or grouped counties (or their

equivalent), derived from a probability subsample of 112 PSUs from the 1985–1994 National

Health Interview Survey (NHIS) design period. Within these PSUs, lists of non-federally

employed physician practices obtained from the American Medical Association and

American Osteopathic Association are stratified into fifteen specialty groups. A sample of

physician practices is then selected from each stratum and randomly allocated into 52

subsamples, each corresponding to a week within the data collection period, the calendar year.

NCHS contracts with the U.S. Census Bureau to collect the patient visit information

from sampled practices. Prior to their assigned one-week collection period, field

representatives (FRs) meet with the physician or, more commonly, the physician’s

administrative staff, and analyze the expected count of pending patient visits. Based on

this information, a systematic sampling interval is determined and utilized such that

approximately thirty visits are selected over the course of the week. FRs try to recruit and

train office staff to collect the sampled visits’ data in real time, but more than half of the

patient record forms (PRFs) are filled out by the FR using maintained patient files after the

weeklong data collection period has concluded.

According to the 2008 NAMCS public-use data file documentation (NCHS 2009), a

total of 3,319 physicians were selected, of whom 1,090 were ruled ineligible. Aside from

having retired, common causes for ineligibility include a physician practicing in an

institutional setting or as part of an emergency department outpatient facility. Of the 2,229

eligible physicians, 1,334 were contacted and agreed to participate, although 201 saw no

patients during the data collection period randomly assigned. In the end, data were

collected for 31,146 distinct visits. This number includes data from a supplemental sample

of community health centers (CHCs) drawn with assistance from the Health Resources

Services Administration and the Indian Health Service, of which a portion involved visits

to non-physicians (e.g., nurse practitioners). Non-physician visits are excluded from the

public-use file, which explains why the number of visits contained in the 2008 NAMCS

public-use file (28,741) is fewer than analyzed in this article.

To compensate for the differential patient visit selection probabilities and physician-

level nonresponse, a four-step weighting procedure yielded a final set of weights that can

be used to better represent the target population. For more details on the weighting

process, refer to Section I.K of NCHS (2009).

In addition to unit nonresponse caused by the fact that not all sampled physicians

participate, the NAMCS is subject to item nonresponse in the returned PRFs. Some

variables are more susceptible to missingness than others. Whereas most items’ nonresponse

rates are less than five percent, Section I.I.3 of NCHS (2009) lists specific rates for variables

where the item nonresponse rate exceeds that threshold. Patient race has one of the highest

rates: Of the 31,146 visits in the 2008 NAMCS, it is unknown for 10,149, or 32.6%.

The PRF extracts ethnicity and race from the physician records in accordance with

the two-item format standardized by the U.S. Office of Management and Budget (1997).
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The first item records whether the patient is Hispanic or Latino. Regardless of the response

to the first, the second is a mark-all-that-apply with five races listed. A typical

categorization for analysis breaks responses into six groups, cases where one and only one

race was selected and a catch-all for individuals identifying with two or more races.

Although we did investigate the imputation models’ impact on the first question and the

six racial categorizations, many are rare and yielded unstable estimates and standard

errors. Because of this and for brevity purposes, we report a simplified, three-level race

breakout: patients identified as white only, black only, or any other race (whether singly or

in combination with white or black).

2.2. Imputation Methods

In this section we discuss the cell-based method used to impute missing race in the 2008

NAMCS, and contrast it with a model-based procedure that we felt was better suited to

quantify the additional uncertainty reflected by multiple imputation. We also detail how

we accounted for features of the complex sample design using this model-based approach.

The single-imputation method used in 2008 was based on a SASw macro developed by

Valverde and Marsteller (2007) that imputes missing race using a hybrid approach falling

somewhere between a hot- and cold-deck (Andridge and Little 2010) and what Kalton and

Kasprzyk (1986) term hierarchical imputation. When race is missing, the macro works

dynamically to search for a donor on up to twenty-five matching criteria. For instance, the

first criterion is to select a patient race randomly from a pool of donors within the same

survey year, three-digit diagnosis code (see Section II.A.28 of NCHS 2009), and patient

ZIP code. If no match can be found, the macro seeks a record of the same diagnosis code

and patient ZIP code, but from the previous year’s data.

Simply running the macro more than once to generate multiple imputations would not

be prudent, since it ignores the imputation model’s uncertainty. Rubin (1987) terms such a

procedure improper (pp. 112–128). Rubin and Schenker (1986) offer the approximate

Bayesian Bootstrap (ABB) as a way to perform proper multiple imputation in the cell-

based setting. The ABB is akin to independently drawing a set of regression parameters

from the posterior predictive distribution of an explicit imputation model prior to drawing

each set of imputations. It was not immediately evident, however, what effect the

hierarchical nature of the imputation macro would have on the theory underlying the ABB.

We considered applying a bootstrap re-imputation scheme of the sort proposed by Efron

(1994) and adapted to complex survey designs by McCarthy and Snowden (1985) and

Shao and Sitter (1996), in the spirit of analyses undertaken by Li et al. (2004). In the end,

we deemed a model-based multiple-imputation procedure most directly amenable to

quantifying the increase in estimated variance in transitioning from single to multiple

imputation.

The model-based procedure, sequential regression multivariate imputation

(Raghunathan et al. 2001), was implemented using IVEware (http://www.isr.umich.edu/

src/smp/ive/), free SAS-callable software developed by the Institute for Social Research at

the University of Michigan, capable of imputing continuous, semicontinuous, categorical,

and count variables. It uses an iterative algorithm which cycles through the variables with

missing data, imputing the missing values of each variable conditional on the other
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variables (Raghunathan et al. 2001). By imputing each variable in turn using those that

came before or after, it builds interdependence among the data. Another useful feature is

the ability to bound imputations within a specified range, something utilized in this and

other NCHS imputation projects (e.g., Schenker et al. 2011).

In determining which covariates to include in the model-based procedure, we began by

incorporating those utilized in the cell-based procedure and, based on input from subject

matter experts, added variables we anticipated would help explain the missing data pattern

and race itself, including patient age, sex, urban/rural indicator based on metropolitan

statistical area (MSA), physician specialty group, reason for visit, natural logarithm of

time spent with physician, and an indicator of who entered data into the PRF.

In addition to as many known covariates as possible, Rubin (1996) asserts imputations

should be conditional on the sample design: “Minimally, major clustering and

stratification indicators and sample design weights (or estimated propensity scores of

being in the sample) should be included in imputation models” (p. 478). Indeed, a

simulation by Reiter et al. (2006) exposes severe biases that can result from excluding such

indicator variables when they explain the underlying mean function, even if the

missingness mechanism is fully captured.

Nearly all the matching criteria in the cell-based method are at a finer level than PSU

(i.e., ZIP codes generally lie within PSU boundaries). For the model-based method, we

tried to include stratum and PSU indicators and sample weights as prescribed, but

encountered convergence issues for the logistic regression parameters that did not cease

until the PSU indicators were omitted. Reiter et al. (2006, p. 148) warn of such a problem:

In some surveys the design may be so complicated that it is impractical to include

dummy variables for every cluster. In these cases, imputers can simplify the model for

the design variables, for example collapsing cluster categories, or including proxy

variables (e.g., cluster size) that are related to the outcome of interest.

As a compromise, we incorporated local race distribution information from the U.S.

Census Bureau’s American FactFinder tool (http://factfinder2.census.gov/main.html).

Specifically, we created two variables to house Census 2000 estimated proportions of

non-Hispanic whites and non-Hispanic blacks at the ZIP code tabulation area level. For a

portion of the cases (roughly 10%), patient ZIP code was unavailable. Where possible, we

substituted physician practice ZIP code. For the remaining 3% of cases without a patient or

physician ZIP, the race distribution variables were imputed, using IVEware’s bounding

feature to ensure proportions remained within [0, 1]. Kozak (1995) used a similar method

at the county level, reporting: “Although not exact, the population distribution of a county

appeared useful as a general indicator of the racial distribution of discharges from a

hospital in the county” (p. 4).

2.3. Multiple-Imputation Inferences

In this section we introduce notation and formulas pertinent to inferences from multiply-

imputed data as well as a few related metrics facilitating comparisons to singly-imputed

data. Instead of a missing value being filled in once, multiple imputation calls for a missing

value to be imputed M times (M $ 2). In our study with the 2008 NAMCS, M ¼ 5.
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Each of the m ¼ 1, : : : , M completed (observed plus imputed) datasets are analyzed

individually and a particular quantity and its variance can be estimated through Rubin’s

(1987) straightforward combination rules given below.

If we let Q̂mdenote the m th completed-dataset estimate of a quantity Q, the quantity’s

overall multiple-imputation estimate is simply the average of the M estimates,

�QM ¼
1
M

M

P
Q̂m.

Let Um denote the m th completed-dataset estimated variance for Q̂m. The multiple-

imputation estimated variance is the average of the M completed-dataset variances,

UM ¼
1
M

M

P
Um, plus a term reflecting the between-imputation variance of the estimate,

BM ¼
M

P Q̂m2 �QM

� �2

M21
.

After a finite imputation correction factor 1þ 1
M

� �
is applied to the between-imputation

variance component, the overall multiple-imputation variance formula is given by

TM ¼ UM þ 1þ
1

M

� �

BM : ð1Þ

A useful metric with a simple interpretation is the ratio of a quantity’s multiple-

imputation estimated standard error to its average single-imputation counterpart,

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TM=UM

q

: ð2Þ

The degree to which R exceeds 1 represents the percent increase in the estimated

standard error attributable to multiple imputation.

Another related quantity is the fraction of missing information (FMI) (Rubin 1987,

sec. 3.3; Wagner 2010), which can be approximated by the between-imputation variance

component over the total variance,

FMIapprox ¼ 1þ
1

M

� �

BM=Tm: ð3Þ

Although the FMI typically depends to some extent on the percent of observations

missing, it also depends on the analysis of interest and the extent to which the imputation

model is predictive of the missing values. For example, if the imputation model is highly

predictive, the FMI will tend to be substantially smaller than the item nonresponse rate.

3. Results

In an attempt to gauge the magnitude of missing-data uncertainty unaccounted for by

single imputation, we calculated the ratio of multiple-imputation to average single-

imputation estimated standard errors – Equation (2) in Subsection 2.3 – across a

multitude of domains. For brevity, we present results from only a subset of those domains:

the overall race distribution and the distribution by United States region, age group, and

whether the patient has been diagnosed as diabetic. The estimated standard error ratios and

other statistics related to these estimates are tabulated in Appendix.
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The ratios for all domain estimates are plotted against their respective percent of

observations missing in Figure 2. Most ratios exceed 1.0 only slightly, and just two surpass

1.1. These figures are in line with what was reported by Li et al. (2004), despite the patient

race item nonresponse rate nearly doubling since the 2000 NAMCS data analyzed therein.

Intuition might lead one to expect the standard error ratios to increase with a higher item

nonresponse rate. However, the plot exhibits no such trend. At least for the data at hand,

the percent of missing observations alone does not predict the increase in estimated

standard errors after multiply imputing. Estimates subject to 30% or more missingness are

apparently no more severely underestimating the missing-data uncertainty by singly

imputing than estimates with less than 30% missingness.

We followed numerous leads to explain the phenomenon, but most proved futile.

For instance, we hypothesized the lopsided distribution of race might have triggered a

software glitch. However, other than convergence issues discussed in Section 2, we

concluded that IVEware performed soundly. As we will now discuss, the most reliable

determinant of a small standard error ratio was found to be a large design effect in the

underlying estimates.

Kish (1965, p. 193) defines a design effect as the ratio of the estimate’s variance

incorporating the complex design to the variance under a simple random sample of the

same size

deff ¼
var complexðQ̂Þ

var SRSðQ̂Þ
: ð4Þ

The quantity we report in this article could perhaps more aptly be termed the

misspecification effect, as it is the estimated variance accounting for the complex design

features (i.e., stratification, clustering, and weights) over the estimated variance ignoring

those features. Nonetheless, because these two terms are often colloquially exchanged for

one another, we retain the more frequently utilized phrase.
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Figure 3 illustrates the inverse relationship between the estimated standard error

ratio and estimated design effect for the 2008 NAMCS data. Estimates with a larger

design effect are clearly associated with a smaller increase in estimated standard error

after multiple imputation. In one of Reiter et al.’s (2006) simulations a similar

observation was made, where the multiple-imputation estimated standard error, even

in the presence of a 30% item nonresponse rate, was only slightly larger than the

complete data estimated standard error (i.e., the estimated standard error that would

be obtained in the absence of nonresponse). The authors reason that the complex

design “makes the within-imputation variance a dominant factor relative to the

between-imputation variance. That is, the fraction of missing information due to

missing data is relatively small when compared to the effect of clustering” (p. 146).

Figure 3 demonstrates this concept over a range of design effects, using real data.

Note that the x-axis scale was truncated at a design effect of 50 to allow for a clearer

visualization of the patterns we wished to highlight. Although the truncation omits the

two data points in the Appendix with the largest design effects – 70.38 and 97.34 –

it does not substantively alter any of our observed patterns and conclusions. (A similar

truncation is applied in Figure 4.)

Mentioned previously, an alternative gauge of missing-data uncertainty is the FMI

(Wagner 2010). In fact, reproducing Figure 3 with FMIapprox of expression (3) on the

vertical axis (not shown here) tells the same story. As the design effect increases,

FMIapprox tapers. This occurs because the two metrics are monotonically related – our

ratio of estimated standard errors is 1 2 FMIapprox

� �21
2.

To further elucidate the relative impact of the design effect we can partition the

increase in estimated variance into two components, that attributable to the complex

sample design and that attributable to missing-data uncertainty as measured by using
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Multiple-imputation (MI) to Single-imputation (SI) Estimated Standard Errors for Select Domain Estimates of

Patient Race in the 2008 National Ambulatory Medical Care Survey.
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multiple rather than single imputation. Specifically, we can conceptualize the term UM

in Equation (1) as being the product of UMðSRSÞ, the average completed-data-set

variance assuming simple random sampling, and deff. Therefore, the approximate

variance increase due to both the complex design and missing-data uncertainty can be

written as

DM ¼ UMðSRSÞ* ðdeff Þ þ 1þ
1

M

� �

BM 2 UMðSRSÞ: ð5Þ

The proportion of DM attributable to missing-data uncertainty is simply the between-

imputation term over the increase, or 1þ 1
M

� �
BM=DM , whereas the proportion attributable

to the complex design is the complement about 1, or 1 2 1þ 1
M

� �
BM=DM . We

acknowledge, however, that this might not account perfectly for the two sources of

increase, because the complex sample design could also affect the between-imputation

term, BM .

Figure 4 demonstrates the relationship between the design effect and the percent of the

variance increase attributable to missing-data uncertainty as measured by multiple

imputation. The pattern mirrors that appearing in Figure 3. In the presence of a larger

design effect, the variance increase is dominated by the component attributable to the

complex sample design. The figure suggests that, despite item nonresponse rates

often exceeding 30%, a design effect of 10 or greater limits the impact of

missing-data uncertainty to generally no more than 5% of the overall variance increase.

Put another way, the portion of variance attributable to the complex design in these

settings is at least 95% / 5% ¼ 19 times greater than the portion attributable to missing-

data uncertainty.
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Another way to evaluate the relative increase in estimated variance due to the use

of multiple rather than single imputation is to consider what the relative increase

would be if the design effect were equal to 1. To approximate the answer, we fitted

Lowess smoothers (Cleveland 1979), not shown here, to the data in Figure 3 with a

variety of bandwidths that were large enough to avoid major jaggedness in the fitted

curves. Extrapolating the curves to a design effect of one suggested a ratio of

multiple-imputation to single-imputation estimated standard errors in the range of 1.08

to 1.1. Since, as mentioned earlier, the ratio equals ð1 2 FMIapproxÞ
21

2, it follows that

the suggested range for FMIapprox is 14% to 17%. This range is consistent with a

nonresponse rate of about 30% and an imputation model that is partially, not fully,

predictive of the missing values.

4. Discussion

In this article, we presented results from a case study in which we evaluated the potential

impact on estimated variances if a multiple-imputation strategy were adopted to handle

instances of missing patient race in the 2008 NAMCS. The NAMCS sample design

involves features such as clustering and highly variable analysis weights that result in

extremely large design effects for estimates involving race. In these settings, we found

multiple imputation increased estimated variances only modestly. Revisiting our key

analytic quantity, the ratio of estimated standard errors in Equation (2), we can reason that

as M goes to infinity, the ratio can be rewritten as

R <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
BM

UM

s

: ð6Þ

With a large design effect, the within-imputation component, UM , tends to be large

relative to the between-imputation component, BM , pulling the ratio towards 1.

At least among the domains investigated, the item nonresponse rate itself was not found

to be predictive of the increase in estimated variance after multiply imputing the missing

data. Even when the percent of imputed observations tops 30%, a large design effect can

render multiple-imputation estimated standard errors only slightly greater than their

single-imputation counterparts. For this reason, together with the increased complexity

that multiple imputation poses to the typical NAMCS data user, it was decided to maintain

a single-imputation approach for the NAMCS for the time being.

Despite the growing class of techniques available to compensate for missing data,

the best way to handle nonresponse is to design data collection protocols preventing it

from occurring in the first place (Lohr 1999). In mid-2009, NCHS raised FR

awareness of the increased patient race item nonresponse rate, stressing the

demographic’s importance for analyses. The intervention appears to have been

effective, as the item nonresponse rate for race dropped to 24% in the 2009 NAMCS

and to 23% in the 2010 NAMCS. Albeit still high by many standards, at least the

trend in Figure 1 has begun to reverse course.

Our study is not without limitations. For one, the domains analyzed herein are coarse in

nature. It seems plausible that design effects may be attenuated for racial distributions
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estimated for finer domains, which could produce scenarios where the proportionate

increase in estimated variance due to using multiple imputation is larger than is reflected

in this study.

Another limitation is that focus was restricted to only one variable, despite the fact

that the NAMCS collects data on hundreds of other variables pertaining to the visit.

In addition to feedback from NAMCS data users that patient race is a frequently

utilized demographic, as previously mentioned, it is also subject to one of the highest

item nonresponse rates. Although not presented here, we investigated another variable

of key analytic interest, time spent with the physician, which was also susceptible to a

high level of item nonresponse (26%) in the 2008 NAMCS. Similar findings were

observed. Due to large design effects in the domains analyzed, multiple imputation

increased estimated standard errors only slightly. As noted on page 18 of NCHS

(2009), the item nonresponse rate for most other variables is 5% or less, so these are

naturally of less concern.

A final limitation, noted in Subsection 2.2, is that we used a “compromise” method

to reflect the features of the complex sample design in our imputation model. Had

we accounted for those features perfectly, our results might have changed somewhat.

However, we believe that our case study demonstrates an actual phenomenon for

multiple reasons. First, variables related to the design features were included in the

model. Second, as mentioned in Section 3, our case study yields results consistent

with simulations reported in Reiter et al. (2006). Finally, if the survey clustering were

more fully reflected in the imputation model, a likely result would be imputed values

that are more differentiated, that is, less homogeneous, across the clusters. This

might very well increase the design effects for each dataset completed by imputation,

which, all else being equal, would accentuate the phenomenon displayed by our

case study. Development of methods for reflecting design features parsimoniously in

imputation models, such as by using random effects, is an important area for future

methodological research.

Recent changes to the NAMCS sample design may prompt a re-evaluation at some point

in the future. Beginning with the 2012 NAMCS, PSUs are no longer comprised of

geographically clustered units. Instead, the universal list of physician offices is stratified

by state and a sample selected within each, so the physician office now serves as the PSU.

To the extent this new sample design alters the variability of weights or the heterogeneity

of PSUs with respect to patient race, the magnitude of the design effects could change.

Aside from more empirical analyses such as the one discussed in this article, a

simulation study and further theoretical research could foster a better understanding of the

relationship between the design effect and the between-imputation component of

variability reflected by multiply imputing missing data. Of particular interest would be

to determine if and how the relationships we observed are moderated by how predictive

the imputation model is and/or by alternative patterns of nonresponse.
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