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Large amounts of microdata are collected by data custodians in the form of censuses and
administrative records. Often, data custodians will collect different information on the same
individual. Many important questions can be answered by linking microdata collected by
different data custodians. For this reason, there is very strong demand from analysts, within
government, business, and universities, for linked microdata. However, many data custodians
are legally obliged to ensure the risk of disclosing information about a person or organisation
is acceptably low. Different authors have considered the problem of how to facilitate reliable
statistical inference from analysis of linked microdata while ensuring that the risk of
disclosure is acceptably low. This article considers the problem from the perspective of an
Integrating Authority that, by definition, is trusted to link the microdata and to facilitate
analysts’ access to the linked microdata via a remote server, which allows analysts to fit
models and view the statistical output without being able to observe the underlying linked
microdata. One disclosure risk that must be managed by an Integrating Authority is that one
data custodian may use the microdata it supplied to the Integrating Authority and statistical
output released from the remote server to disclose information about a person or organisation
that was supplied by the other data custodian. This article considers analysis of only binary
variables. The utility and disclosure risk of the proposed method are investigated both in a
simulation and using a real example. This article shows that some popular protections against
disclosure (dropping records, rounding regression coefficients or imposing restrictions on
model selection) can be ineffective in the above setting.
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1. Introduction

Large amounts of microdata are collected by data custodians in the form of censuses and

administrative sources. Often, data custodians will collect different information on the

same individual. Many important questions can be answered by linking microdata

collected by different data custodians. For this reason, there is very strong demand from

analysts, within government, business and universities, for linked microdata. However,

many data custodians are legally obliged to ensure the risk of disclosing information about

a person or organisation is acceptably low. For simplicity, in the rest of this article it is

assumed that there are only two data custodians and the linked microdata are the result of

linking two sets of microdata collected by the two data custodians. Potential analysts of
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the linked microdata are the two data custodians and noncustodians (e.g., academics,

members of the public). There are two reasons the disclosure risks are significantly greater

if an analyst of the linked microdata is also a data custodian. First, because data custodians

commonly collect name and address, any additional information that can be inferred about

a record on the microdata it collected, can be directly associated with the person who

provided it. Second, a data custodian can use information on the linked microdata

collected to disclose information about a person or organisation on the linked microdata

that was collected by the other data custodian.

There has been some work in the literature on managing the disclosure risks from

analysts who are also data custodians. When unique identifiers, such as name and address,

are available, record linkage techniques (see Herzog et al. 2007) are frequently used to

identify records belonging to the same individual. Secure Record Linkage (SRL) (see, for

example, Churches and Christen 2004) suggests a way in which a third party can link

microdata without each data custodian disclosing the identity of nonlinked records to the

other data custodian and without the data custodians revealing any sensitive information to

the third party. The data custodians attach a unique record identifier to their microdata

(e.g., random number) and agree on a common way of encrypting the linking variables,

which are sent to the third party to perform the record linkage. The third party links the

microdata and returns the record identifiers of the linked pairs to the data custodians.

Therefore, each data custodian could identify the names and addresses of the people who

were linked, which in turn could disclose sensitive information (e.g., knowing a person’s

record has been linked to an unemployment register discloses the person is unemployed).

For many data custodians, such as the Australian Bureau of Statistics (ABS), revealing

such information would be a breach of their legal obligations and would mean that SRL is

not a viable option. If instead the third party was allowed access to linking variables (e.g.,

name and address), the linkage could be of much higher quality, since clearly unencrypted

linking variables are more useful in identifying matches than encrypted linking variables.

It would be interesting to study the extent to which encryption of linking variables reduces

the quality of the linkage.

Once the linked pairs are determined, each data custodian will need to ensure that any

statistical output from the linked microdata has an acceptable disclosure risk. Secure

computation algorithms allow data custodians to compute matrix operations, such as those

involved in regression, from linked microdata without sharing individual records (see, for

example, Karr et al. 2009). Among the major limitations of this approach are that it relies

on SRL, allows only datacustodians to analyse the microdata (i.e., non-data custodians

cannot perform analysis) and that it is currently limited to a certain set of models.

Alternatively, Kohnen and Reiter (2009) consider the novel problem of how data

custodians, without sharing sensitive variables, can together produce synthetic linked

microdata for public use. Limitations of this approach are that synthetic data can be time

consuming to produce and that it can be hard to guarantee that the synthetic data do not

distort some important relationships.

In contrast to the above approaches discussed in the literature, this article considers a

more practical and straightforward approach to managing disclosure risk from linked

microdata. In particular, this article considers the presence of a so-called Integrating

Authority (IA) that is trusted to perform the following roles:
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1. Link microdata collected by two data custodians.

2. Maximise the inherent utility or value of the linked microdata. This may include

application of consistent standards and classifications, statistical editing and

imputation.

3. Allow analysts to access the linked microdata in order to fit models.

4. Ensure the level of disclosure risk of the regression output is acceptable to the data

custodians.

The IA is allowed to observe the microdata collected by the data custodians. The data

custodians do not mask the microdata they provide to the IA in any way. The data

custodians not only have access to the microdata they provided to the IA but, as analysts,

they also have access to the regression output released by the Integrating Authority.

There are at least three benefits to an IA. First, the IA manages the complexity involved

in linking microdata and managing disclosure risk – this is important since many data

custodians do not have the specialised capability in, for example, standardising linking

fields, editing and imputation, record linkage and data access. Second, since the IA

observes the linking fields, it is possible to conduct a clerical review on the set of links and

to refine the method of record linkage. This essential task appears impractical when

linking fields are encrypted. Third, a more optimal trade-off between disclosure risk and

the utility of the analysis is possible. With an IA, only the disclosure risk of the regression

output needs to be managed; under the alternatives mentioned above, the disclosure risk

must be managed from record linkage to construction of the regression output itself.

There are some major potential disadvantages of the IA framework. First, some data

custodians may be prohibited by law, from disclosing information to any another

organisation. This would mean the IA framework would not apply. Second, fulfilling the

role of an IA is potentially a costly exercise. This may lead the IA to pass this cost burden

onto analysts by charging a substantial fee for access. Moreover, it is the IA that decides

how to fulfil its roles in any given situation. For example, the IA decides which variables to

include on the linked microdata and how analysts will access the linked microdata (e.g.,

public use file or via a remote server, as discussed below). These decisions may suit some

analysts but not others.

Once the record linkage step is completed by the IA, its next step is to facilitate access to

the microdata. In this article, the IA releases regression output via a remote analysis server

(see Reiter 2002, Gomatam et al. 2005, Sparks et al. 2008, Lucero and Zayatz 2010).

A simple model for a remote server is:

1. An analyst submits a query, via the Internet, to the analysis server.

2. The analysis server processes the analyst’s query on the linked microdata. The

statistical output (e.g., regression coefficients) is modified or restricted in order to

ensure the risk of disclosure is acceptably low.

3. The analysis server sends the modified output, via the Internet, to the analyst.

One key protection against disclosure afforded by remote analysis is that the analyst

is restricted from viewing the microdata. However, an analyst may attempt to use the

regression output to infer the value of variables on the linked microdata. Such attempts are

commonly called data attacks. Once the value of these variables is inferred, the attacking
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analyst can attempt one of the well-understood methods of disclosure (e.g., attribute

disclosure through linkage); for a review see Shlomo (2007). The IA can provide analysts

with disincentives to conducting attacks in the first place. For example, analysts could be

required to sign confidentiality agreements to access to the remote server. If the agreement

is violated by an analyst, access to the server could be revoked.

This article is about how an IA can manage the risk of a data custodian successfully

attacking the linked microdata. A data custodian’s attack would involve using the

microdata it supplied to the IA and the regression output released by the remote server to

infer the value of variables about a person or organisation that were collected by the other

data custodian. Data custodians will commonly collect name and address, which means if

such an attack is successful, the value of any variables that are inferred could be directly

attributed to the person or organisation who provided that information. In other words,

disclosure occurs automatically after a successful attack.

The problem of managing the disclosure risk of regression output released via a remote

server has been the subject of significant recent attention in the literature. The literature on

this problem focuses on the situation where there is a single data custodian responsible for

managing access to its microdata (i.e., unlinked microdata). In the case of remote analysis

for model fitting, most effort has been directed at linear regression. Gomatam et al. (2005)

considered imposing restrictions to stop analysts reconstructing coefficients for a sensitive

linear model, an example of which is a model with highly accurate predictions of a

sensitive characteristic (see Bleninger et al. 2010 for an empirical investigation). Taking

a completely opposite approach, Dwork and Smith (2009) describe the concept of

differential privacy, which imposes no restrictions but instead relies on perturbation of

statistical output alone to manage the disclosure risk. Many authors have considered

imposing both restrictions and perturbation (e.g., Sparks et al. 2008); this article takes such

an approach. One limitation of a remote server is that analysts are restricted to using the set

of statistical analysis procedures that are supported by the remote server. This article only

briefly mentions the more moderate disclosure risk of attacks made by noncustodians

since, as mentioned, there is a considerable literature on this problem.

Section 2 describes how a data custodian may attack the linked microdata when the

remote server naively releases standard regression output for models that are fitted to

binary data. Section 3 proposes simple protections that an IA can implement in a remote

server to reduce the success rate of these attacks. Section 4 evaluates the utility and

disclosure risk of the proposed approach in a real situation and in a simulation. Section 5

makes some final comments.

2. Attacks Without Any Protection

This section describes how a data custodian can attack the linked microdata if the remote

server naively releases standard regression output. Consider an IA linking microdata

collected by two data custodians, referred to as A and T. Data Custodian A is the attacker

and Data Custodian T is the target.

This article makes the assumption that all links between records are correct (i.e., each

pair of records that are linked correspond to the same person or organisation) and that the

name and address of all linked records are known to Data Custodian A. In practice, linkage
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is rarely perfect and it is well known that errors arising during the linkage process provide

some level of protection against disclosure (see Ch. 18 in Herzog et al. 2007). From the

perspective of managing disclosure risk, the assumption that linkage errors do not arise

is conservative.

Many authors distinguish between variables that are sensitive (e.g., income) and those

that are not sensitive, where only the risk of disclosing sensitive variables needs to be

managed. However, the legislation that guides how the Australian Bureau of Statistics, and

many other data custodians, manages disclosure risk does not distinguish between

sensitive and nonsensitive variables.

Let D be a set of records from the linked microdata comprising n records: a binary

outcome variable y and a vector of K binary covariates x. For the ith record, define ð yi; xiÞ

where xi ¼ ðx1i; x2i; : : : ; xki; : : : ; xKiÞ
0 and i ¼ 1; : : : ; n. Data Custodian T collected

y and the KT column vector xT and Data Custodian A collected the KA column vector

xA so that x ¼ ðx ¼ (x0T, x0A)0Þ0 and K ¼ KT þ KA. In other words, if we define X ¼

ðXT ;XAÞ ¼ ðx1; : : : ; xi; : : :xnÞ
0, Data Custodian T supplied y ¼ ð y1; : : : ; yi; : : : ; ynÞ

0

and the n £ KT matrix XT and Data Custodian A collected the n £ KA matrix XA.

Therefore we may now write D ¼ ðy;XÞ.

An attack by Data Custodian A involves using regression output released by the remote

server and XA to infer the value of one or more elements of ðy;XT Þ. Therefore, for the

purposes of this article, if a variable on the linked microdata is collected by both data

custodians (e.g., a linking variable), it is defined as a covariate in xA.

In general, a good strategy for Data Custodian A’s attack on a record involves ensuring

xA, used in the calculation of the statistical output, uniquely identifies the target record on

the linked microdata. This ensures there is 1–1 mapping between the target record’s value

of xA and name and address. As Data Custodian A collected XA, this could readily be

achieved.

Noncustodians present much less of a disclosure risk. Firstly, since they do not have

access to XA, they can only use the statistical output released by the remote server in an

attack. Secondly, even if an attack was able to reconstruct ð yj; xjÞ, attributing the jth record

to a person or organisation is more difficult without name and address (see Skinner and

Shlomo 2008).

Subsections 2.1, 2.2 and 2.3 describe attacks using standard regression output, including

estimates of regression coefficients, estimates of their variance and test statistics,

respectively.

2.1. Regression Coefficients

The standard estimate of the regression coefficient b for models fitted to binary variables

(e.g., logistic regression, linear regression), denoted by b̂, is obtained by solving the score

equation

Scðb;DÞ ¼ 0; ð1Þ

where ScðbÞ ¼ Six
0
ið yi 2 miÞ and mi ¼ gðx 0ibÞ for some link function g. It is well known

that fitting a model toD is equivalent to fitting a model to the C counts contained in the

vector n, where n ¼ {nc : c ¼ 1; : : : ;C} and nc is the number of records belonging to the
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cth pattern in ð y; xÞ (see McCullagh and Nelder 1989). As an aside, if y was instead a

multinomial response with M categories, the appropriate score function would involve

M 2 1 equations of the form of (1). A multinomial response model fits into the framework

developed here, but for simplicity we do not consider it further.

This section shows how Data Custodian A can attack ðy;XT Þ – this involves using

b̂ and XA in an attempt to infer the value of one or more elements of ðy;XT Þ.

2.1.1. Solving the Estimating Equations from a Single Model

Consider Data Custodian A substituting b̂ into (1) and then attempting to solve for some

elements of ðy;XT Þ. If the number of patterns in xA is CA, Data Custodian A’s attack can

exploit the following:

1. The K constraints imposed by b̂ through (1)

2. Knowledge of XA

3. ðy;XT Þ has only binary elements.

This attack can be as simple as conducting a grid search. Other more sophisticated search

techniques could also be used. Of course this search could be more targeted if, for instance,

Data Custodian T were to release frequency counts of y or xT to the public. For example,

the ABS, as potential Data Custodian T, releases frequency counts from its Census

microdata after the counts have been perturbed by a small amount.

2.1.2. Solving Estimating Equations from Multiple Models

This attack involves fitting different models to the same set of data values inD (i.e., the

same set of records and variables) by:

1. Changing the dependent variable

2. Changing the link function (e.g., linear, logistic and probit)

3. Transforming variables (e.g., creating an interaction term).

The regression coefficients for each fitted model impose additional constraints on ðy;XT Þ

via (1). The idea behind this attack is to impose sufficient constraints so that Data

Custodian A can solve for one or more elements of ðy;XT Þ.

Example 1: Solving for all unknowns. Denote the data values in D by

Z ¼ ðX; yÞ ¼ ðz1; : : : ; zi; : : : ; znÞ
0, where zim to be the mth element of zi. Consider

Data Custodian A fitting the mth model where the outcome variable for the ith record is

yðmÞi ¼ zim and the covariate for the ith record is xðmÞi , which is obtained by dropping zim

from zi. Denote the standard estimate of the regression coefficients from the mth model

by b̂ ðmÞ and denote m̂ðmÞi ¼ gðxðmÞ
0

i b̂ ðmÞÞ. Data Custodian A’s attack involves solving for one

or more elements of ðy;XT Þ given XA, b̂ ðmÞ and the constraint

Six
ðmÞ
i ðy

ðmÞ
i 2 m̂

ðmÞ
i Þ ¼ 0; ð2Þ

for m ¼ 1; : : : ;M. Clearly, as M increases so does the number of constraints.

Example 2: Solving for unknowns in one estimating equation. Continuing Example 1,

consider the lth estimating equation in (2) when Data Custodian A fits M models such

that yðmÞi ¼ yi and the lth element of xðmÞi is by definition xil, for all m ¼ 1; : : : ;M.
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Further consider that Data Custodian A collected xl so that it knows which H ¼ Sixil

records contribute to the lth estimating equation. The constraint imposed by the lth

estimating equation in (2) reduces to

Si;xil¼1yi 2 Si;xil¼1m̂
ðmÞ
i ¼ 0;

for m ¼ 1; : : : ;M. This imposes M constraints on the H £ ðKT þ 1Þ unknowns for the

H records contributing to the lth estimating equation. This number of unknowns could

be considerably less than Example 1. An extreme example is when H ¼ 1, which means

there are ðKT þ 1Þ unknowns and M constraints.

Example 3: Imposing more constraints by creating a new variable. If Data Custodian A

collected the variable t, it could repeat the attack in Example 1 or 2 but where yi is replaced

with ynew;i ¼ yiti for all i. By imposing the additional constraint ynew;i ¼ 0 if ti ¼ 0, Data

Custodian A can focus on solving yi for only records with ti ¼ 1. This additional constraint

could considerably reduce the number of unknowns.

2.1.3. Counts

Consider if Data Custodian A regresses y on x ¼ xA and aims to infer T ¼ Sixi
0yi, which

are counts of y in the margins of x. Given b̂ and (1), this is straightforward since

T ¼ Sixi
0mi. The disclosure risks of frequency counts are well known (see, for example,

Shlomo 2007). Counts of one would lead to disclosure. Counts of one can also be obtained

through differencing, as discussed below.

2.1.4. Differencing

A standard differencing (see, for example, Gomatam et al. 2005; Shlomo 2007) attack

involves fitting the same model to two sets of records that are identical except that one

record is dropped from one of the sets. Data Custodian A can be sure only the target record

is dropped if the dropping condition uniquely identifies the record and if it collected all the

variables in the dropping condition. Differences in the estimated regression coefficients

from the two models can be used in an attempt to infer the values of the dropped record’s

variables.

Example 4: Differencing attack by dropping a record. Consider if Data Custodian A

wants to infer yr, the value of y for rth record. Data Custodian A can fit a linear regression

model with x ¼ xA before and after dropping the rth record. Denote the value of the

estimated regression coefficients before and after dropping the rth record by bo and boðrÞ,

respectively. Also denote yðrÞ and XðrÞ by y and X after removing the rth row, respectively.

Since Data Custodian A knows bo, boðrÞ, XðrÞ and X, it can calculate So ¼ X 0Xbo ¼ X 0y

and SoðrÞ ¼ X 0ðrÞXðrÞboðrÞ ¼ X 0ðrÞyðrÞ and take the difference SoðrÞ 2 So ¼ xr
0yr. Since yr is

the only unknown, Data Custodian A can infer it directly.

2.1.5. Fishing

Fishing attacks involve fitting two models that are only different in one small way. Of

interest is whether the two sets of coefficients are the same or whether they are different;

how the coefficients change is not of interest. An example is given below.
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Example 5: Fishing by slightly changing the definition of a variable. Consider linked

microdata where Data Custodian A collected a variable for small area geography and age

in single years and Data Custodian T collected a sensitive variable. Data Custodian A

would know if there was one record in a particular small area with age equal to 100 years

and may seek to infer the value of the sensitive characteristic for the record. Data

Custodian A could fit two models to the records in the small area which are exactly the

same, except that the first includes a binary covariate that takes the value one when age is

between 40 and 100 and the sensitive characteristic is present and the second model

includes a binary covariate that takes the value one when age is between 40 and 99 and

the sensitive characteristic is present. If the regression coefficients from these two models

are different, Data Custodian A infers that the 100-year-old has the condition; otherwise

Data Custodian A infers that the 100-year-old does not have the condition.

2.2. Estimated Variance of Regression Coefficients

The estimated variance of b̂ is ^Varðb̂;DÞ ¼ ðX 0V̂XÞ21, where V̂ is diagonal with ith

element v21 ›m=›h
� �2

evaluated at x ¼ xi and b ¼ b̂, v is the variance function for the

model, and h ¼ x0b. Given b̂,^Varðb̂;DÞ can impose up to KðK 2 1Þ=2 constraints on X.

These constraints could be exploited to assist with an attack on estimated regression

coefficients. Consider the simple linear regression model where dVarVarðb̂;DÞ ¼ f̂ðX 0XÞ21

which, after taking the inverse and multiplying by released dispersion parameter f̂, gives

the table of counts X 0X ¼
X
0

T XT X
0

T XA

X
0

AXT X
0

AXA

0

@

1

A. Many of the attacks in Subsection 2.1 (e.g.,

differencing attacks and fishing) can be used against dVarVarðb̂;DÞ. They are not discussed

further here.

2.3. Other Statistical Output

Regression analysis would normally include exploratory data analysis, use of test statistics

and graphical plots to assess the model fit. Univariate and multivariate exploratory

analysis involving binary variables will often involve frequency counts, which are well

known to be a disclosure risk (see references below). Such work goes beyond the scope of

this article, but will form the subject of future work.

Statistics used to assess model fit or goodness-of-fit (see Hosmer and Lemeshow 2000),

say t ¼ tðb̂;DÞ, are functions of the microdata D and an estimate of b. Again, many of

the attacks in Subsection 2.1 (e.g., differencing attacks and fishing) can be used against t.

They are not discussed further here.

Graphical diagnostics are frequently used to assess model fit. The disclosure risk of

plotting record-level values is high and has been considered by many authors (see O’Keefe

and Good 2009 and O’Keefe et al. 2012). Consider if a remote server releases b̂ and a plot

which shows that the predicted value for a record is p. Given x has only binary elements,

there will in general be only a single value of x such that p ¼ mðxÞ. Furthermore, if the

record has a unique value for xA on the linked microdata, then Data Custodian A can infer

xT for the person about which the record relates.
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3. Attacks in the Presence of Protections

This section proposes some simple protections against the attacks described in the

previous section. The objective of these protections is to significantly reduce the likelihood

of a successful attack while making a small impact on the utility of the analysis.

Subsections 3.1 and 3.2 consider protections by imposing a general set of restrictions and

by introducing uncertainty into regression coefficients, respectively. Subsection 3.3

considers attacks on estimated regression parameters in the presence of these protections.

Subsections 3.4 and 3.5 describe protections for the variance of the estimated regression

parameters and for diagnostic test statistics, respectively.

3.1. Protection: Imposing General Restrictions

Several restrictions are suggested below. These restrictions do not necessarily defend

against a particular attack, but are designed to significantly hinder attacks while resulting

in only a minor reduction in utility. When designing a set of restrictions to manage

disclosure risk, it quickly becomes clear that a series of legitimate regression models could

be indistinguishable from a sophisticated data attack. Therein lies the challenge: not

restricting the former while thwarting the latter. This challenge is discussed in detail by

Cox et al. (2011).

Some analysts may have good reasons for fitting a model which is not permitted by the

set of restrictions below. The IA could decide to relax some restrictions if: the analyst

promises to fit a small number of predefined models (this could be verified by the IA); if

the IA believes errors, such as incorrect or missed links, in the linked microdata provide

substantial protection; or if the analysis has high utility. For obvious reasons, the IA would

be more willing to relax restrictions for analysts who are not data custodians, as long as

they promise not to share the regression output publically.

If the IA is not willing to relax one or more restrictions so that an analyst may fit a

particular model, the IA may provide the analyst with an alternative mode of access to the

linked microdata. One example would be for the IA to provide the analyst with the C

counts required to fit the model, though the counts will almost certainly need to be

carefully perturbed to manage the risk of disclosure.

Some possible general restrictions include:

(a) Limit the number of model covariates, K, by imposing the restriction that K , 30.

Models with a large number of covariates may impose considerable constraints on

unknowns. In very few cases would legitimate analysis be impacted by this restriction.

(b) Impose a minimum number of observations or covariate patterns by imposing the

restrictions n $ 50 and C . 50. This restriction aims to ensure a minimum number of

unknowns. Remembering that C is the number of counts to which the model is fitted,

C # 2K effectively means that K . 5.

(c) Adjusted R 2 squared , 0:95 (see also Gomatam et al. 2005). Other cut-off values

can be considered. Inferential disclosure occurs when a model’s prediction of a

sensitive variable, y, is highly accurate and all covariates for the target record are

known (e.g., x ¼ xA). This restriction is designed to prevent inferential disclosure.

This protection will rarely be required since accurate predictions of binary outcomes
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are rare. (Aside: inferential disclosure is fundamentally based on model assumptions.

Some would argue that inferences which rely on model assumptions cannot lead

to disclosure, because there is uncertainty about whether the model assumptions

are true.)

(d) Each variable in the model must be non-zero for at least ten records. As all variables

are binary this means Sixik $ 10 and Sið1 2 xikÞ $ 10 for all k, Siyi $ 10 and

Sið1 2 yiÞ $ 10. This provides some protection against attacking a single estimating

Equation (see Example 2) by ensuring there will be a minimum of ten unknowns.

(e) ðC 2 CAÞ $ 10K. This ensures that there are ten times the number of unknown counts

than there are constraints imposed by the estimating equation.

(f) New variables may only be created by multiplying two variables originally on the

microdata as long as both variables were collected by the same data custodian. This

restriction aims to prevent a data custodian from, almost arbitrarily, reducing the

number of unknowns as in Example 3.

(g) Exclude variables from the linked file if they have limited analytic value. This limits

the potential prior knowledge a data custodian can use in attacks. This decision must

be made by the IA after consultation with potential analysts.

(h) Restrict variables which are naturally only useful as model covariates (e.g., marital

status, age, sex, geography) from being dependent variables. This will hamper

attempts to solve the estimating equation by changing the choice of dependent

variable (see point 1 in Subsection 2.1.2). See also Gomatam et al. 2005 for another

justification for this restriction.

It makes sense to impose data custodian-specific restrictions (e.g., see (e) above) because

the disclosure risk naturally depends upon which data custodian is performing the attack.

For data custodian-specific restrictions to make sense it must be assumed that there is

restricted (e.g., to publications) sharing of regression coefficients between data custodians

and that data custodians are aware of what regression coefficients they are able to share.

What if this assumption is not realistic? The implication is that if one data custodian

is restricted from fitting a model then all data custodians and non-data custodians must

be restricted from fitting the model. In other words – restriction for one means restriction

for all.

While the details are not within the scope of this article (for details see O’Keefe and

Chipperfield 2013), the IA will need to decide what restrictions, if any, to place on

subsetting records (i.e., defining the records inD). If there is no restriction on subsetting,

a data custodian may be able to arbitrarily target records to drop in differencing attacks.

On the other hand, the flexibility of subsetting is very important since it allows analysts

to make inferences about a specific population of interest.

If the number of models that are fitted is allowed to be arbitrarily high, the

corresponding set of constraints may be such that an attacking data custodian can solve the

estimating equation. Therefore it is worth mentioning a basic indicator of the risk of this

attack succeeding. Consider when Data Custodian A fits its mth model to CðmÞ counts,

where CðmÞ is the same as C but for the mth model and CAðmÞ is the same as CA but for the

mth model. Consider LA ¼ SmLAðmÞ, where LAðmÞ ¼ C21
ðmÞCAðmÞ. The numerator of LAðmÞ is

the number of constraints Data Custodian A can impose on the CðmÞ counts (see point 2 in
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Subsection 2.1.1) to which the mth regression model was fitted. When LA . 1 there are

potentially more constraints than unknown counts, at which point the IA could perhaps

audit the models fitted by Data Custodian A. Refining this indicator and developing similar

indicators for other attacks would be an interesting line of future work.

3.2. Protection: Introducing Uncertainty into the Released Regression Coefficients

Two simple ways of introducing uncertainty into regression coefficients are now

mentioned. The first protection is that a different random sample of records is dropped (see

Sparks et al. 2008) for every distinct model that is fitted. Specifically, for each

k ¼ 1; : : : ;K, one record with xk ¼ 1 is randomly selected and dropped from D. This

means K records will be dropped. DenoteDdrop to beD after dropping records in this way.

Estimates of regression coefficients will not be biased by dropping records in this way,

since it does not affect the distribution of y conditional on x. As many applications

involving linked microdata have a large number of records, dropping records in this way

will generally only have a small impact on the accuracy of estimates. Note that dropping a

completely random sample of records for every model fitted (see Sparks et al. 2008)

provides limited protection in the present setting. Consider dropping 50 randomly selected

records as a protection against the attack in Example 2, where n ¼ 50,000 and H ¼ 5 so

that xk ¼ 1 for only five records. Since it is unlikely that xk ¼ 1 for any of the dropped

records, it is equally unlikely that the attack in Example 2 will be affected by dropping

records in this way.

The second protection involves adding noise (for a review see O’Keefe and Chipperfield

2013) to the RHS of (1). Consider the estimator b̂* of b, obtained by solving

Scðb;DdropÞ ¼ E*; ð3Þ

where the microdata used in the regression areDdrop notD, E* ¼ ðE*
1; : : : ;E

*
k ; : : : ;E

*
KÞ
0,

E*
k ¼ fu*

k , f is a scaling factor for the perturbation that needs to be set by the integrating

authority and u*
k s are independently generated variables from the uniform distribution on

the range (21,1). Other distributions can be considered. The regression coefficients b̂ are

perturbed via E*. The value for f is best determined through empirical investigation and

simulation, which is discussed below. The distribution for u*
k is bounded so that the impact

of perturbation is bounded. The contribution of a record to the kth estimating equation is

in the range (21,1), which is also the range of the perturbation, u*
k . As many attacks attempt

to uncover the values of variables for a single record, this is arguably a minimum degree

of perturbation.

The distribution of the perturbations in E* are independent so that VarðE*Þ is a diagonal

matrix. The joint distribution of E* across different models should also be independent

with an important exception: the same values of E* should be used if exactly the same

model is fitted. This condition stops estimation of b̂ by fitting exactly the same model a

number of times and averaging over the b̂*s.

3.3. Attacks Using the Released Estimated Regression Coefficients

Here we revisit the attacks of Section 2 in the presence of the protections mentioned above.

It is assumed here that f and the rules for dropping records are in the public domain.

Chipperfield: Disclosure-Protected Inference with Linked Microdata Using a Remote Analysis Server 133



3.3.1. Solving the Estimating Equation

Define b̂ ðmÞ* to be the same as b̂ ðmÞ except that it is obtained by solving (3) rather than (1).

Consider solving the estimating equation in Example 1 but where the regression

parameter, b̂ ðmÞ* instead of b̂ ðmÞ, is released. Define DðmÞdrop to be D after randomly

dropping records for the mth model. Data Custodian A’s attack now involves finding, over

all possible subsets DðmÞdrop of D, a unique solution for one or more elements of y given

2f1 # Si[DðmÞ
drop

xðmÞi ðy
ðmÞ
i 2 m̂*ðmÞ

i Þ
n o

# f1; ð4Þ

for m ¼ 1; : : : ;M, where m̂*ðmÞ
i ¼ gðxðmÞ

0

i b̂*ðmÞÞ and 1 is a K vector of 1s.

The protection provided by perturbation and dropping records depends upon the many

possibly interacting factors implicit in (4). This makes it difficult to make any general

conclusions about the protections they provide against disclosure. Clearly, the protection

provided by perturbation is driven by f. When looking at (4), it is clear that as f increases

the interval becomes wider and the probability of a unique solution (i.e., disclosure)

becomes smaller. The method of dropping records would ideally prevent strict constraints

being imposed on the terms in (4). If y ¼ 1 for 99% of records, then an attack could

assume, with high probability of being correct, that y ¼ 1 for all dropped records.

Making this assumption would impose a further constraint on the unknown values of y –

in particular, if the first element of x was a constant, then the first element of

A ¼ Si[DðmÞ
drop

xðmÞi yðmÞi in (4) would be constant over m. The first element of A could no

longer be assumed to be constant if there was some uncertainty about how many records

were dropped (e.g., instead of dropping one randomly selected record with xk ¼ 1, drop

1; 2; : : : ; or T randomly selected records with xk ¼ 1 with probability 1=T).

3.3.2. Counts

Consider how b̂* protects against estimating T ¼ Si[Dx
0

i yi. If Data Custodian A regresses

y on x ¼ xA, it can compute T̂* ¼ Si[Dxim̂
*
i , where m̂*

i ¼ gðx
0

i b̂
*Þ. Data Custodian A

knows the minimum and maximum value for the counts in T are given by the

corresponding elements of Tmin ¼ T̂* 2 ðfþ KÞ1 and Tmax ¼ T̂* þ f1, respectively.

The ‘K’ in the expression for Tmin reflects the fact that Data Custodian A knows that up to

K records could be dropped from each estimating equation.

3.3.3. Differencing

Consider how perturbation protects against differencing attacks on counts (see Example 4),

assuming for the moment that no records are randomly dropped (i.e., Ddrop ¼ D).

Consider if Data Custodian A regresses y on x ¼ xA before and after dropping the rth

record. Accordingly define DðrÞ, TðrÞ ¼ Si[DðrÞx
0

i yi, T̂
*

ðrÞ ¼ Si[DðrÞxim̂
*
iðrÞ, where

m̂*
iðrÞ ¼ gðx

0

i b̂
*

ðrÞÞ, and b̂
*

ðrÞ to be exactly the same as D, T, T̂* and b̂*, respectively,

except that they are computed after the rth record is dropped. Data Custodian A can

compute an estimate of x
0

ryr by

DðrÞ ¼ T̂* 2 T̂
*

ðrÞ: ð5Þ
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If any element of DðrÞ has magnitude greater than 2f, Data Custodian A can infer that

yr ¼ 1. It is also not hard to see that if yr ¼ 0 this differencing attack will never succeed.

This means the success rate of this attack depends upon the probability that y ¼ 1 for the

target records. It is also not hard to see that, as K increases and f decrease, the probability

of this attack succeeding increases.

Now consider the same differencing attack but where records are randomly dropped, as

discussed previously. DenoteDðrÞdrop to be the result of randomly dropping records from

DðrÞ. Now b̂* and b̂
*

ðrÞ are calculated from Ddrop and DðrÞdrop instead of D and DðrÞ,

respectively. Of course, the IA does not reveal which records are dropped so thatDðrÞdrop

andDdrop are not known to Data Custodian A. Accounting for this uncertainty, it is easy to

show if any element of DðrÞ has magnitude greater than 2fþ K (the difference between

Tmin and Tmax), Data Custodian A can infer that yr ¼ 1.

3.3.4. Fishing

Randomly dropping records as described above provides an effective protection against

fishing attacks since, for every distinct model that is fitted, a different random sample of

records is dropped. This will mean, continuing with Example 5, that the regression

coefficients for the two models will be different whether or not the 100-year-old has the

condition. Only if the same model is fitted repeatedly (i.e., the chosen link function, the set

of records, and dependent and independent variables are all the same) should the same set

of records be dropped. Otherwise this protection can be removed by averaging.

3.4. Variance of Estimated Regression Coefficients

Given the perturbation and model distributions are independent, the sandwich estimator

for the variance of b̂* is

dVarVar b̂*;Ddrop

� �
¼dVarVar b̂;Ddrop

� �
þ ðX 0V̂XÞ

21

dropVar*ðE
*ÞðX 0V̂XÞ

21

drop; ð6Þ

The first term in (6) is the estimated variance of the standard estimator of b obtained from

solving (1), but based onDdrop rather thanD. An analytic expression for the first term is

ðX 0V̂XÞ
21

drop, where ðX 0V̂XÞdrop is X 0V̂X but based on Ddrop rather than D. Alternatively

the first term can be calculated fromDdrop using the Bootstrap or Jackknife (see Chambers

and Skinner 2003 p. 105). The second term in (6) measures the variation due to

perturbation where it is easy to show, using the variance of the Uniform distribution, that

Var*ðE
*Þ is diagonal with kth element var*ðfu*

kÞ ¼ f2=3. The analyst can make valid

inferences about b using b̂* and (6), without knowing anything about the perturbation

itself. It is interesting to note that the first and second terms of (6) are Oðn21Þ and Oðn22Þ

respectively, which means that the impact of perturbation on variance is small.

Using the same reasoning as in Subsection 2.2, releasing (6), where the first term is

computed analytically, would represent a high risk of disclosure. Instead consider

computing the first term using the Jackknife. Denote u as the analytic variance estimate of

b̂ and denote û as the corresponding Jackknife variance estimate of u. The Jackknife

estimate has a level of uncertainty due to the process, denoted by v, of allocating selection

units to replicate groups. In particular, the coefficient of variation of û due to this process is

CVv û
� �

< 2ðR 2 1Þ21, where R is the number of replicate groups, CVvðûÞ ¼ VarðûÞû22
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(see Shao and Tu 1995, p. 196) and m=n is negligible. As long as R is not too large, this

uncertainty in û will mask u. This means that computing the first term in (6) using the

Jackknife will mask the entire RHS of (6). For example, if the Jackknife standard error

estimate is 0.2 and is based on R ¼ 50, a 95% confidence interval for the estimate is

ð0:31; 0:46Þ.

It is difficult to see how (6) could be used in a differencing attack or be used to impose

any constraint that would be useful to help solve the estimating equation. Since (6) is based

on Ddrop it is protected from fishing attacks. A further protection is to release only

the diagonal elements of (6) so that only the variances of the regression coefficients are

released.

3.5. Other Statistical Output

Given b̂* instead of b̂ is released, it makes sense that an analyst would be interested in

t * ¼ tðb̂*;DdropÞ rather than t. The statistic t * for the adjusted R2, leverage, dispersion

parameter and the Hosmer Lemeshow and chi-squared statistics will have their usual

interpretation (i.e., replacing b̂ and D with b̂* and Ddrop does not affect their

interpretation).

Since b̂* is not a likelihood estimator, it is not strictly valid for b̂* to be used to evaluate

likelihood-based diagnostic statistics. However, it is easy to show that it is approximately

valid to do so in large samples. Standard likelihood-based test statistics (e.g., Likelihood

Ratio Test and Deviance Test) involve evaluating the model log-likelihood lðb̂jDÞ, where

b̂ is the standard ML estimator and D are the microdata used to fit the model. Using a

second order Taylor Series approximation to lðbjDÞ centred around b̂ and noting

b̂* ¼ b̂þ ðX 0V̂XÞ21E*, it follows that lðb̂*jDÞ < lðb̂jDÞ2 321trace{ðX 0V̂XÞ21} which

means for large n that lðb̂*jDÞ < lðb̂jDÞ. Furthermore, if the number of dropped records

is small then lðb̂*jDDropÞ < lðb̂jDÞ. For large n, this means that a standard likelihood-

based test statistic evaluated at b̂* and Ddrop is approximately the same as a standard

likelihood test statistic (i.e., t * < t). This approximation is verified in empirical

evaluations.

In small samples, it may be worthwhile to adjust some statistics to make them valid.

For example, the standard Wald Test statistic is tW ¼ b̂ 0ðX 0V̂XÞ21b and is distributed as

chi-squared with K degrees of freedom. The adjusted Wald statistic is

t*
W ðb̂

*;DdropÞ ¼ b̂*
0

ðX 0V̂XÞ
21

drop þ ðX
0V̂XÞ

21

dropVarðE*ÞðX 0V̂XÞ
21

drop

h i
b̂*;

and is chi-squared with K degrees of freedom.

The only protection of t * from attacks is that it is calculated fromDdrop rather thanD.

To be consistent with the protections given to regression parameters (see Subsection 3.2),

consider the perturbed statistic

t ** ¼ t * þ eðtÞu*; ð7Þ

where eðtÞ bounds the maximum influence that a record on the microdata has on the

statistic t, and u* is a random variable sampled from the uniform distribution on the range

(21,1). If the same model is fitted then the same value for u* must be generated (cf.

averaging over E* s). All the attacks discussed previously on regression parameters can be
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reformulated to be attacks on diagnostic statistics, t **. For reasons of space these are

not mentioned.

For example, in the case of the dispersion parameter for a logistic regression, ideally

f̂* ¼ ðn 2 KÞ21Sið yi 2 m*
i Þ

2v21ðm̂*
i Þ would be released. Since eðfÞ < n21, the released

dispersion parameter f** ¼ f* þ eðfÞu* ¼ f* þ Oðn21Þ, which means that perturbation

will only have a small impact. Moreover, it is easy to show, using first-order Taylor Series

approximations, that for many test statistics t ** ¼ t þ Oðn21Þ – implying that the

difference between the standard and released statistics will be small. This is verified in a

limited empirical study.

For statistics used in hypothesis testing, only the ranged p-value for the test statistic, t **,

should be reported, rather than the value of the test statistic and the degrees of freedom.

The degrees of freedom for t and t ** for the above mentioned test statistics are the same,

using as justification the fact that f** < f. Sparks et al. (2008) suggest reporting the

p-values in the ranges ½0; 0:001Þ, ½0:001; 0:01Þ, ½0:01; 0:05Þ, ½0:05; 0:1Þ and ½0:1; 1Þ.

The challenge of confidentialising graphical output, including exploratory data analysis,

in remote analysis systems is discussed by Sparks et al. (2008) and by many other authors

(for a review see O’Keefe and Chipperfield 2013). This however, has not considered the

risks from linked data. This is an interesting and useful avenue for future work.

4. Evaluation of Risk and Utility of a Remote Server: Linking the Australian

Census to the Migrants Database

The ABS Census of Population and Housing provides economic and social information

about migrants living in Australia. However, there are certain questions of great interest

about migrants that the Census data alone cannot answer. One key question is how migrant

visa class, assigned prior to arrival in Australia, is related to post-arrival social and

economic outcomes. The different visa classes include family, humanitarian, skilled,

onshore and other. Answering such a question is made possible through linking the Census

with the Department of Immigration and Citizenships (DIAC) Settlement Database (SDB)

which collects visa class. These answers would assist with the future development and

evaluation of immigration programs and support services for migrants.

The Census 2006 microdata are made up of more than 20 million records. The reference

period for the Census is 8 August 2006. For this study, the SDB had a reference period

from 1 January 2000 to 8 August 2006 (Census night) and contained the records of

861,000 persons who, during that period, were granted visas to live permanently in

Australia. DIAC provided the SDB to the ABS for the purpose of linking it with the

Census. The variables used to probabilistically link records on the SDB and Census were

age (in years), month and day of birth, marital status (five categories), sex, country of

birth, year of arrival, religion, main language and small area geography. About 530,000

records were linked. For the purposes of this study, the linked file includes select Census

variables, the SDB variable visa class and the linking variables age, marital status, sex,

country of birth, year of arrival, main language and small area geography. For the purpose

of this study we assumed that the linking variables religion and month and day of birth

were not included on the linked data. This means DIAC would have access to seven

variables and small area geographic information on the linked microdata. If more SDB
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variables were included on the linked microdata, the disclosure risk would likely be

greater than that measured below.

In this study the ABS is the IA and Data Custodian T and DIAC is Data Custodian A.

The ABS, as an IA, is planning to release the SDB Census-linked microdata through its

remote server. The ABS is legally obliged to ensure that the risk of disclosing information

about a particular person is unlikely. This legislation (Census and Statistics Act 1905) does

not distinguish between sensitive and nonsensitive variables and does not make a special

provision for trusted analysts. (The case study here is an example of a general strategy

of the ABS to link its Population Census to microdata collected by select government

departments. Details on the legal framework behind an IA in Australia can be found on the

ABS website).

Subsection 4.1 considers the utility of modelling with and without the protections of

Section 3, and Subsection 4.2 considers the disclosure risk in a high-risk scenario.

4.1. Empirical Evaluation of Utility

While there are many possible research questions, one of particular importance to policy

makers is to what extent migrants have difficulty finding employment after they arrive in

Australia and how this is related to visa class. A useful way to answer such a question is to

fit a regression model to employment with a range of covariates, including visa class.

Tables 1 and 2 give the results of fitting such a model to two populations- the first is all

migrants living in the Australian Capital Territory (ACT) and the second is all migrants

living in the ACT who arrived after 2001, respectively. The set of restrictions of

Subsection 3.2 did not prevent the models being fitted.

The results show that b̂* with f ¼ 1 (remembering that f controls the magnitude of the

perturbation) and the standard estimator b̂ were very similar. As mentioned above, the

standard errors of b̂* can be computed by using either an analytic or Jackknife expression

for the first term in (6). Tables 1 and 2 show that the difference between the two variance

estimates is generally small and tends to be larger for coefficients of covariates that have a

low frequency. Consequently, the tests for the statistical significance of the regression

coefficients were almost identical whether they were based on b̂* with Jackknife standard

errors or b̂ with analytic standard errors. The one exception was in Table 1, where the

coefficient 55 , age , 64 was not statistically significant at the 95% level after the

protections were applied. Coefficients of covariates with a low frequency tend to be more

influenced by perturbation of the score function. Tables 3 and 4 illustrate that the standard

and released diagnostics statistics are very similar. Overall, this section illustrates that the

protections had only a small impact on inference.

4.2. Simulated Evaluation of Risks

This section simulates attacks that could be conducted by an analyst with access to the

SDB. The aim of such simulated attacks is to infer the value of one or more Census

variables, using statistical output released by the remote server and the SDB. While the

simulation does not involve use of the DIAC Census-linked microdata, it aims to replicate

the possible attacks on the linked microdata. The benefit of simulation is that it is

Journal of Official Statistics138



T
a
b
le

1
.

Im
p
a
ct

o
f

P
ro

te
ct

io
n
s

o
n

R
eg

re
ss

io
n

C
o
ef

fi
ci

en
ts

(A
C

T
)

V
ar

ia
b

le
n

am
e

F
re

q
u

en
cy

(n
¼

)
b̂

b̂
*

A
n

al
y

ti
c

S
ta

n
d

ar
d

E
rr

o
r

o
f
b̂

A
n

al
y

ti
c

S
ta

n
d

ar
d

E
rr

o
r

o
f
b̂

*
Ja

ck
k

n
if

e
S

ta
n

d
ar

d
E

rr
o

r
o

f
b̂

*

co
n

st
an

t
5

,1
6

1
2

1
.1

3
2

1
.0

6
0

.1
9

0
.2

0
0

.1
9

sc
h

o
o

l
q

u
al

.
3

0
3

0
.3

9
0

.4
1

0
.1

5
0

.1
5

0
.1

3
fe

m
al

e
2

,8
2

5
1

.1
4

1
.1

4
0

.0
8

0
.0

8
0

.0
8

te
rt

ia
ry

q
u

al
.

4
,0

4
5

2
0

.5
6

2
0

.5
5

0
.0

9
0

.0
9

0
.0

9
p

ar
t-

ti
m

e
st

u
d

en
t

4
9

3
2

0
.2

0
2

0
.2

0
0

.1
4

0
.1

4
0

.1
4

fu
ll

-t
im

e
st

u
d

en
t

9
3

5
2

.0
0

1
.9

9
0

.1
0

0
.1

0
0

.1
0

n
o

n
-u

rb
an

2
5

2
0

.1
1

2
0

.1
1

0
.6

0
0

.6
1

0
.7

9
n

o
t

m
ar

ri
ed

1
,7

9
8

2
0

.3
9

2
0

.4
2

0
.1

0
0

.1
0

0
.0

8
fa

m
il

y
v

is
a

2
,1

9
7

0
.4

0
0

.3
9

0
.0

8
0

.0
8

0
.0

8
h

u
m

an
it

ar
ia

n
v

is
a

1
9

1
0

.5
6

0
.5

7
0

.1
9

0
.1

9
0

.1
7

o
th

er
v

is
a

4
9

0
.3

5
0

.4
8

0
.3

9
0

.3
8

0
.4

1
o

n
sh

o
re

v
is

a
2

,1
6

2
2

0
.1

9
2

0
.1

9
0

.0
8

0
.0

8
0

.0
8

E
n

g
li

sh
sp

o
k

en
at

h
o

m
e

1
,3

2
4

2
1

.1
8

2
1

.2
1

0
.1

5
0

.1
5

0
.1

7
E

n
g

li
sh

p
ro

fi
ci

en
t

3
,4

5
8

2
0

.7
5

2
0

.7
7

0
.1

3
0

.1
3

0
.1

6
2

5
#

a
g

e
#

3
4

2
,3

3
1

2
0

.0
8

2
0

.1
3

0
.1

2
0

.1
2

0
.1

2
3

5
#

a
g

e
#

4
4

1
,4

5
6

2
0

.0
5

2
0

.1
1

0
.1

4
0

.1
4

0
.1

4
4

5
#

a
g

e
#

5
4

5
0

6
2

0
.2

4
2

0
.3

0
0

.1
8

0
.1

8
0

.1
7

5
5

#
a

g
e

#
6

4
1

1
6

0
.5

4
0

.4
6

0
.2

6
0

.2
6

0
.2

7

Chipperfield: Disclosure-Protected Inference with Linked Microdata Using a Remote Analysis Server 139



T
a

b
le

2
.

Im
p

a
ct

o
f

P
ro

te
ct

io
n

s
o

n
R

eg
re

ss
io

n
C

o
ef

fi
ci

en
ts

(A
C

T
a

n
d

Y
ea

r
o

f
A

rr
iv

a
l

P
ri

o
r

to
2

0
0

1
)

V
ar

ia
b

le
n

am
e

F
re

q
u

en
cy

(n
¼

)
b̂

b̂
*

A
n

al
y

ti
c

S
ta

n
d

ar
d

E
rr

o
r

o
f
b̂

A
n

al
y

ti
c

S
ta

n
d

ar
d

E
rr

o
r

o
f
b̂

*
Ja

ck
k

n
if

e
S

ta
n

d
ar

d
E

rr
o

r
o

f
b̂

*

co
n

st
an

t
1

,5
2

9
2

1
.5

1
2

1
.4

2
0

.4
6

0
.5

0
0

.5
6

sc
h

o
o

l
q

u
al

.
8

8
0

.8
3

0
.8

6
0

.2
7

0
.2

8
0

.2
7

fe
m

al
e

8
2

5
1

.3
0

1
.3

1
0

.1
8

0
.1

8
0

.1
9

te
rt

ia
ry

q
u

al
.

1
,2

2
6

2
0

.7
5

2
0

.7
4

0
.1

9
0

.1
9

0
.1

6
p

ar
t-

ti
m

e
st

u
d

en
t

1
5

6
2

0
.2

9
2

0
.3

1
0

.2
9

0
.2

9
0

.2
8

fu
ll

-t
im

e
st

u
d

en
t

1
3

4
1

.9
7

1
.9

3
0

.2
6

0
.2

6
0

.1
9

n
o

n
-u

rb
an

1
1

0
.9

2
1

.4
9

1
.1

4
1

.3
7

0
.9

9
n

o
t

m
ar

ri
ed

4
8

1
2

0
.4

5
2

0
.4

5
0

.2
0

0
.2

0
0

.2
2

fa
m

il
y

v
is

a
7

2
7

0
.5

8
0

.5
7

0
.1

8
0

.1
8

0
.1

8
h

u
m

an
it

ar
ia

n
v

is
a

4
4

1
.0

6
1

.1
0

0
.4

0
0

.4
0

0
.4

4
o

th
er

v
is

a
3

8
0

.0
1

2
0

.1
7

0
.5

3
0

.5
5

0
.8

0
o

n
sh

o
re

v
is

a
7

9
5

0
.1

0
0

.1
0

0
.1

6
0

.1
6

0
.1

7
E

n
g

li
sh

sp
o

k
en

at
h

o
m

e
4

2
2

2
1

.0
5

2
1

.0
7

0
.3

2
0

.3
2

0
.3

2
E

n
g

li
sh

p
ro

fi
ci

en
t

1
,0

3
2

2
0

.9
5

2
0

.9
5

0
.3

0
0

.3
0

0
.2

9
2

5
#

a
g

e
#

3
4

5
8

3
2

0
.3

0
2

0
.3

9
0

.3
3

0
.3

3
0

.3
6

3
5

#
a

g
e

#
4

4
5

8
7

0
.0

9
0

.0
0

0
.3

4
0

.3
4

0
.3

3
4

5
#

a
g

e
#

5
4

1
8

1
2

0
.0

5
2

0
.1

4
0

.3
9

0
.4

2
0

.3
8

5
5

#
a

g
e

#
6

4
2

7
0

.6
8

0
.3

9
0

.5
9

0
.6

1
0

.6
6

Journal of Official Statistics140



possible to readily construct a situation that both is realistic and presents a high risk of

disclosure.

The ABS, as an IA, would not reveal to data custodians which records were linked (e.g.,

in the Census-SDB linkage only 530,000 of the 861,000 SDB records were linked).

However, it is assumed in this simulation that the attacker could identify a specific

subpopulation of records that are very likely to be linked correctly. For example, in the

Census-SDB linkage it may be inferred that certain subpopulations of records (e.g.,

proficient in English and high level of education) have a very high chance of reliably

reporting linking variables, and so are likely to be linked correctly to their corresponding

Census records.

4.2.1. Simulated Subpopulation

Assume the attacker fits models to a subpopulation of the linked microdata of size n ¼ 30

or 50 records. This subpopulation could be defined in terms of small area geography,

available on the SDB. Given the previous assumption, the attacker knows the exact set of

records in the subpopulation. To make this simulation realistic, the attacker chooses to use

eight variables on the linked microdata: small area geography to define the subpopulation

of size n, the six other remaining SDB variables (see above), denoted by x, and one Census

variable (e.g., employment), denoted by y. In the notation of Section 2, the attacker knows

X and seeks to infer yi for some or all i. The variables for records in the subpopulation were

independently generated 200 times in the following way:

. Each record has a unique covariate pattern in x. Since x has dimension six, there are

26 ¼ 64 possible covariate patterns, of which n ¼ 30 or 50 are randomly selected for

the subpopulation.

. Sy ¼ Siyi ¼ 3; 6 where y is generated from the logistic model 1=ðexpð2hiÞÞ,

hi ¼ 1:6þ x1i 2 1:5x2i þ 1:3x3i 2 0:8x4i þ 1:3x5i þ 0:9x6i þ ei and the ei s are

independent standard normal random variables. These model parameters were chosen

arbitrarily but to be within the range of those in Tables 1 and 2 and to generate the

desired range in Sy.

Table 4. Impact of Statistical Disclosure Control on Diagnostic Statistics (ACT and

Year of Arrival Prior to 2001)

Statistic Standard (t) 95% interval for t **

Dispersion, f 0.93 (0.91, 0.94)
R 2 square 0.18 (0.18, 0.19)
Likelihood Ratio 257 (,0.001) (240, 261) (,0.001)c

conly the ranged p-value is released.

Table 3. Impact of Statistical Disclosure Control on Diagnostic Statistics (ACT)

Statistic Standard (t) 95% interval for t **

Dispersion, f 0.93 (0.92, 0.93)
R 2 square 0.18 (0.18, 0.18)
Likelihood Ratio 1052 (,0.001) (1035, 1057) (,0.001)c

conly the ranged p-value is released.
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Since each value for x is unique and SDB contains the name and address for every

record, disclosure automatically occurs if the attacker who has access to the SDB is able to

infer the value of yi for any xi. This is because there is a 1-1 correspondence between xi

and name and address for all i.

The ABS releases frequency counts from its Census microdata via its remote server.

While a small amount of noise is added to these counts before they are released, it is

frequently assumed in this simulation that Sy is in the public domain. This is a strong

assumption since, as mentioned above, such counts are perturbed by a small amount.

In reality, it is unlikely all of the above conservative assumptions made for this

simulation will be true. As a result, the disclosure risks would in reality be significantly

lower than those measured in this section.

4.2.2. Attacks Using Regression Coefficients

The effectiveness of two attacks were measured on the 200 independently simulated

subpopulations. It was interesting to see how the success of an attack was influenced by

whether the remote server released:

. b̂. This effectively means there is no (N) protection.

. b̂*ðDÞ computed from (3) but using D instead of Ddrop. The protection is from

perturbation (P) of the score function.

. b̂*ðDdropÞ computed from (3). The protection is from perturbation and dropping a

single randomly selected record (O,P), where O denotes dropping.

The first attack was Solving the Estimating Equation (SEE) (see Example 1 and

Subsection 3.3). When the remote server uses the O and P protections, SEE involved

finding all possible values for y that are solutions to (4) given Sy, X and b̂*ðmÞ for

m ¼ 1; : : : ;M. Disclosure occurred for record j if, across all possible solutions, the

value for yj was always unique. Table 5 gives the proportion of SEE attacks that were

successful in a range of scenarios. For example, Table 5 shows that when n ¼ 50 and

there were no protections, all values in y were disclosed in every one of the 200

simulated subpopulations from only a single model; if instead the P protection was used

with f ¼ 1, the success rate fell to 2%. A summary of the findings from Table 5 are

described below.

. Releasing b̂ was a high disclosure risk. The risk was 100% when y was the dependent

variable.

. As f increased the success rate reduced. However, the P protection on its own did not

reduce the success rate to zero.

. The success rate increased as M, the number of fitted models, increased.

. The O protection on its own did not reduce the success rate.

. If only the P protection was used, uncertainty in Sy (see 6c in Table 5) did not seem to

provide much protection.

. If both the P and O protections were used, the disclosure risk was zero.

The second attack was Differencing Counts (DC) (see Subsection 2.1.3 and

Subsection 3.3). The target record for a differencing attack was chosen completely at
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random. Table 6 shows that the proportion of differencing attacks that were successful

when protections N, P and (P and O) were used was 100%, 5% and 0% respectively.

For the results in Table 5, LDIAC ¼ 0:5 (see Subsection 3.1 where A ¼ DIAC) for fitting

a single model and LDIAC ¼ 3:5 when seven models were fitted. By contrast, for the

models in Tables 1 and 2, LDIAC ¼ 0:001 and 0.002 respectively; these values are

considerably smaller since most variables in the model were not SDB variables and the

sample size was larger. Interesting further work would identify the optimal value for LDIAC

to trigger an audit by the ABS. If LDIAC . 1 was to trigger such an audit, the audit would

readily identify that the fitted models have the distinctive feature of the SEE attack (see

Subsection 2.1.2). Remedial action could then be taken by DIAC and ABS to prevent

further attacks.

The ABS, as an IA, could consider dropping variables from the linked microdata that

are common to Census and SDB. If a common variable has limited analytic value, the

ABS, as the IA, should consider dropping it from the linked microdata. This is particularly

the case if a common variable is useful in uniquely identifying a record. Dropping such

variables will limit the prior knowledge, and hence the effectiveness, of an attack.

5. Discussion

Modern advances have allowed vast amounts of microdata to be collected by data

custodians. With increasing sophistication of policy makers and the consequent demand

for more detail, linking such microdata across data custodians is becoming increasingly

important. While the benefits to society of allowing access to linked microdata are

significant, data custodians need to ensure that allowing access is unlikely to result in the

disclosure of information about a particular person or organisation. The Australian Bureau

of Statistics (ABS) is playing a lead role in developing a framework for the integration of

Australian Commonwealth data. The role of an Integrating Authority (IA) is to maximise

the inherent value of Commonwealth data to society, to facilitate access to the linked data

and to ensure disclosure risk is acceptable. The ABS is developing infrastructure in the

areas of record linkage and remote analysis to support its goal to become the lead IA

in Australia.

This article proposes a set of protections that an IA can apply to statistical output from

linked microdata. The evaluations show that the protections prevent disclosure in a high-

risk scenario and have only a small impact on inferences for analysis involving moderate

sample sizes. The method in the article can be readily extended to three or more data

custodians. Importantly, this article shows that some popular protections against

disclosure (e.g., dropping records, rounding regression coefficients or imposing

restrictions on model selection) are perhaps not as effective as previously thought.

Table 6. Differencing Attack

Defence Sy Success Rate (%)

N 30 100
P 30 5
O,P 30 0
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There is a need to extend the approach here to include analysis of continuous variables.

Extensions to multilevel models is also important, since linked administrative data are

often longitudinal in nature or contain a natural hierarchy.
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