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In recent literature on survey nonresponse, new indicators of the quality of the data collection
have been proposed. These include indicators of balance and representativity (of the set of
respondents) and distance (between respondents and nonrespondents), computed on available
auxiliary variables. We use such indicators in conjunction with paradata from the Swedish
CATI system to examine the inflow of data (as a function of the call attempt number) for
the 2009 Swedish Living Conditions Survey (LCS). We then use the LCS 2009 data file
to conduct several “experiments in retrospect”. They consist in interventions, at suitable
chosen points and driven by the prospects of improved balance and reduced distance.
The survey estimates computed on the resulting final response set are likely to be less biased.
Cost savings realized by fewer calls can be redirected to enhance quality of other aspects
of the survey design.
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1. Introduction

Large nonresponse is typical of many sample surveys today. This can be a serious

detriment to survey quality. Nonresponse causes systematic error, called bias, in the

survey estimates. The purpose of this article is to define and apply new tools, in the spirit of

responsive design, to the Swedish Survey of Living Conditions (LCS), so as to improve the

data collection for this important survey, which has become affected by high nonresponse

in recent years.

An extensive literature is devoted to survey nonresponse and its consequences. In

dealing with the problem, statisticians need to consider (a) measures to be taken at the data

collection stage, and (b) measures to be taken at the estimation stage.

With the data collection completed, the estimation stage begins, and the statistician’s

task is to produce estimates that are properly adjusted for the nonresponse bias still

remaining, despite efforts to achieve balance or representativity at the data collection

stage. The objective at the estimation stage is to achieve the best possible reduction of a

nonresponse bias that can never be completely eliminated. One way to do this is by

adjustment weighting, through calibration on selected auxiliary variables. Nonresponse
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weighting adjustment has been studied in several publications, including Särndal and

Lundström (2005, 2008, 2010), Särndal (2011b).

The focus in this article lies on the data collection. The nonresponse rate measures one

aspect of the data collection. It has become increasingly clear that the nonresponse rate by

itself is not suitable, or at least not sufficient, for effective monitoring of the data

collection. For example, it may be wasteful to continue a data collection according to an

unchanging scenario driven primarily by the desire to obtain the highest possible response

rate in the end, or to reach, by a costly and unrelenting effort, a predefined rate of response,

such as 70% for example.

Wagner (2012 p. 557) expresses the dilemma as follows: “To the extent that response

rates are not a good indicator for nonresponse bias, decisions about data-collection

activities or post-survey adjustments that are made based on the response rate will be

inefficient, biasing or both. Something is needed to fill this gap between response rates –

which are known – and nonresponse biases – which are unknown, but are the thing about

which we are really concerned.” In the typology of data sources in Wagner (2012), the type

that describes our approach is “the response indicator and frame data/paradata.”

Two important recent concepts with implications for this article are adaptive design

and responsive design. Bethlehem et al. (2011) regard responsive design as a special case

of adaptive design.

At the present stage of development, adaptive design appears to refer mainly to situations

where treatments applied to sampled elements are identified prior to the start of the data

collection, although they may also be revised or modified during the data collection.

Responsive design is an adaptive approach where available information is used to

modify the data collection for the remaining cases. The data collection may thus involve

two or more phases, with decisions taken underway about subsequent phases. The general

objectives of responsive design are formulated in Groves and Heeringa (2006). A number

of applications of related approaches have subsequently appeared. Options for responsive

design in a Canadian setting are discussed in Mohl and Laflamme (2007) and Laflamme

(2009). Work on the development of adaptive designs has been presented for example

in Wagner (2008). The present article draws mainly on the ideas of responsive

design. Groves and Heeringa (2006) use the term “phase capacity” for “the stable

condition of an estimate in a specific design phase”. When phase capacity has been

reached in a given phase, it is no longer effective to continue data collection in the same

mode or phase; there is an incentive to modify the design, if data collection is to be

continued at all.

Several directions have emerged in recent years in research on adaptive designs.

The question whether a definite relationship exists between nonresponse rates and bias in

the estimates is reviewed in Groves (2006). A meta-analysis on nonresponse studies is

reported in Peytcheva and Groves (2009). The conclusion, somewhat pessimistic about

the bias-reducing effect of demographic auxiliary variables, is that there is no strong

evidence that variation in response rates across sample groups can help reduce biases in

the study variables.

In the Scandinavian countries, the choice of auxiliary variables is much broader.

Indicators for the data collection were developed in Schouten et al. (2009) and in Särndal

(2011a). We apply the indicators to an existing data set: that of the 2009 Swedish Living
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Conditions Survey (LCS). Our objective is to demonstrate how the indicators work and to

suggest improvements for the data collection in future versions on the Swedish LCS.

Stopping rules for the data collection have been studied in Rao et al. (2008) and in

Wagner and Raghunathan (2010).

An approach with obvious appeal is to observe changes in survey estimates, for

variables that allow this, as a function of making additional contact attempts. It is one of

the techniques used in this article. Related to this is the question of whether respondents

interviewed early (say, in the first five attempts) differ considerably from those brought in

later with respect to important measurable variables. These questions are studied in

Peytchev et al. (2009) and in Peytchev et al. (2010). They conclude that focusing on

groups with low response probability may not be efficient in some surveys; it may be better

to identify those units with the greatest potential to induce bias in the survey variable

estimates.

Responsive design may take different forms. One option is to strive for an ultimate set

of respondents with measurable and favorable characteristics for the set of respondents.

Especially in the later stages of the data collection intervention is permissible in order to

realize an ultimate response set that is better balanced, or more representative of the total

sample, than if no special effort is made. Recently proposed indicators for balance and

representativity are important in this process; they are used in this article to monitor the

data collection and to implement changes. Both concepts build on a specified auxiliary

vector with values known for the full sample.

The 7th EU Framework Programme funded a project called RISQ, which stands for

Representativity Indicators for Survey Quality; on it, see, for example Schouten and

Bethlehem (2009). One of its objectives was to develop and study indicators for the

representativity of survey response. The R-indicator (with R for Representativity) was

proposed by Schouten et al. (2009) and further developed in Schouten et al. (2011).

One of its uses is in comparing surveys – the same survey in different countries, or

different surveys within the same country – with respect to the representativity of the

final set of respondents. The statistical concept behind the R-indicator is the variance of

the response probabilities, estimated with the aid of auxiliary variables. The motivation

is that a small variability of such estimates would suggest a “representative set of

respondents”.

Indicators based on the concept of a balanced response set were developed in Särndal

(2011a). The response set is said to be balanced if the means for specified important

auxiliary variables are the same or almost the same for the set of respondents as for all

those selected in the probability sample. That respondents should be on average like all

those sampled is an attractive notion. The balance indicators are computable from the

auxiliary variable values available for responding as well as for nonresponding units.

The present article presents general concepts for monitoring the data collection, and

they are applied to the 2009 LCS. We describe the survey in Section 3, and we analyze the

LCS 2009 data in Section 4. The concepts of balance (of the response set), distance

(between respondents and nonrespondents), and representativity are reviewed in Section 5,

then applied to the LCS 2009 data. In Section 6 we conduct several “experiments in

retrospect” with the LCS 2009 data. These experiments show that balance and distance can

be improved by interventions in the data collection with the aid of paradata from Statistics
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Sweden’s WinDATI system explained below. Implications for the future are discussed in

Section 7. The theoretical framework presented in the article is general in scope,

applicable to any probability sampling design.

The access to ample auxiliary information is of crucial importance. Statistics Sweden

operates in a data-rich survey environment, where high quality administrative registers

allow access to many auxiliary variables, particularly for surveys on individuals and

households. This also applies to the other Scandinavian countries and the Netherlands. The

whole issue of nonresponse adjustment will necessarily present itself in quite a different

light in countries where only highly limited auxiliary information is available, say at best a

few demographic variables. However, a trend towards increased availability and use of

high quality administrative data is evident in many countries.

2. Earlier Experiences at Statistics Sweden

Several earlier studies at Statistics Sweden illustrate that a data collection motivated

principally by a desire to achieve the best possible ultimate rate of response is inefficient.

They suggest that scarce resources are being spent with little effect on the estimates and

little improvement in representativity. Hörngren et al. (2008) and Lundquist and Särndal

(2012) summarize several studies of surveys with telephone interviewing of individuals

drawn by probability sampling from the Swedish Total Population Register (TPR).

We mention them briefly here.

A study of the November 2002 edition of the Swedish Labour Force Survey (LFS) had

found that the estimates change very little after the fifth contact attempt. It was concluded

that a less elaborate fieldwork strategy, with say four call attempts instead of twelve, could

considerably reduce the monthly cost for calls in the LFS.

A study along similar lines was carried out in 2007 for the Household Finances (HF)

survey. Estimates were computed successively over the data collection period, as a

function of the number of call attempts identified by “WD-events”, which are events

registered by the data collection instrument WinDATI. The simple expansion estimator

(the mean for units having responded up until a given number of attempts) stabilizes at an

early stage in the data collection: After about ten call attempts, the estimates change very

little. Since the total number of call attempts for a sampled person may exceed 20, there is

strong indication that resources are not effectively used. The calibration estimator based

on selected auxiliary variables stabilizes even sooner, at around five call attempts.

In a later project, the effect of a follow-up strategy for the HF survey was studied. Low

response rates had been observed in the primary data collection for several groups

expected to have a high impact on the nonresponse error. However, it was found that the

follow-up (the field work following the ordinary data collection) had little effect on the

estimates, and that follow-up respondents are not the ones that influence the nonresponse

error the most. In the end, the response rate remains disappointingly low for groups already

underrepresented in the ordinary data collection.

An earlier study of the LCS had found that the representativity (measured by indicators)

changes very little after an early point in the data collection, suggesting that the response

set fails to become more similar to the selected sample. In addition, the follow-up appears

to have little effect on the estimates. The present article examines the LCS in more depth.
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3. The Swedish Living Conditions Survey

The Swedish LCS is a yearly sample survey. It has a long tradition of providing important

information about social welfare in Sweden, in particular among different subgroups of

Swedish society. It has become increasingly affected by nonresponse. The sample consists

of individuals with an age of 16 or above drawn from the Swedish Total Population

Register. The data set used in the analysis in this article is a subsample of n ¼ 8,220

individuals, taken from the actual LCS 2009 sample. This subsample can be regarded as a

simple random sample from the population of individuals.

Telephone interviews were conducted by a staff of interviewers using the Swedish

CATI-system, WinDATI. All attempts by interviewers to establish contact with a sampled

person are registered by WinDATI. Those paradata are important for this article. For every

sampled individual, the WinDATI system records a series of events which we refer to as

“call attempts”. They play an important role in our analysis. The WinDATI events include

“call without reply”, “busy line”, “contact with household member other than the sampled

person”, and “appointment booking for later contact”. When contact and data delivery has

occurred, the data collection effort is completed for the sampled person in question. All

registered WinDATI events are taken into account in the analysis that follows.

The LCS 2009 ordinary field work lasted five weeks, at the end of which the response rate

was 60.4%; for some sampled persons, 30 or more call attempts had then been recorded.

This was followed by a three week break during which characteristics of non-interviewed

individuals were examined in order to prepare the three week follow-up period, which

concluded the data collection. All individuals considered by the survey managers to be

potential respondents were included in the follow-up effort, which brought the response rate

up to an ultimate 67.4%. However, there was no separate strategy or revised procedure for

the follow-up. It followed the same routines as the ordinary field work. Hence, there were no

attempts at responsive design where, for example, a follow-up would focus on

underrepresented groups, in an objective to improve balance and reduce nonresponse bias.

In addition to these paradata, the information recorded in the LCS 2009 data set includes

the response obtained on the survey target variables. In addition, it contains for all 8,220

individuals the values of a number of register variables, some of which we use as auxiliary

variables. Three other register variables are used as study variables ( y-variables), as

explained in Section 4. For these we can compute unbiased estimates, based on the full

sample, and compare them with estimates made under nonresponse.

We have chosen here to regard data inflow as a function of the attempt number rather

than as a function of time evolved (Day 1, Day 2, and so on) since the start of data

collection. Our analysis could have been conducted under the time-evolved perspective

instead, with somewhat different results. In a CATI data collection, the attempt number

concept is practical and natural.

4. An Analysis of the LCS 2009 Data

Results in this section reinforce the impression from earlier studies at Statistics Sweden

that a data collection (including a follow-up) that proceeds according to an essentially

unchanging format will produce very little change in the estimates beyond a certain

“stability point” reached quite early in the data collection.
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In this section, we study the dynamic behavior of survey estimates as the data collection

proceeds. We measure the progression of the population total estimates for three variables

as a function of the number of the call attempt, defined more precisely as the attempt at

which an interviewer made successful contact with a sampled person and data delivery

occurred. The three variables are register variables, used here as study variables. Their

values are therefore known for all sampled units, not only for responding ones. To let three

register variables play the role of study variables restricts to some extent the pool of

available auxiliary variables, but it is a price worth paying in order to realize the

methodological objectives.

Some notation is needed. The finite population U ¼ {1; : : : ; k; : : : ;N} consists of N units

indexed k ¼ 1; 2; : : : ;N. Aprobability sample s is drawn from U; in this sampling, unit k has the

known inclusion probability pk ¼ Pr ðk [ sÞ . 0 and the known design weight dk ¼ 1=pk.

We denote the value of the study variable y as yk. The target parameter for estimation is the

population total Y ¼
P

U yk. (A sum
P

k[A over a set of units A # U will be written as
P

A .)

Normally, the survey involves many study variables and many totals to be estimated.

The response set is the set of units for which the value yk has been recorded. Since we

follow the data collection as a function of the call attempt number, there is a series of

successively larger response sets. In a completely rigorous notation, we would denote

these increasingly large response sets as r (a), where a refers to “call attempt number”,

a ¼ 1; 2; : : : , and

r ð1Þ , r ð2Þ , : : : , r ðaÞ , : : : ð4:1Þ

But in order to not burden the notation, it is sufficiently clear to let the notation r refer to

any one of the increasingly larger response sets. Data collection stops before the

expanding r has reached the full probability sample s. The value yk recorded for k [ r

provide, together with auxiliary variable values, the material for estimating the parameter

Y ¼
P

U yk.

The (design-weighted) survey response rate is

P ¼
X

r

dk=
X

s

dk: ð4:2Þ

In the context of the LCS, all dk are equal because of simple random sampling from the

Swedish TPR, so P is simply number of individuals responding divided by number in

sample, but for more generality, the formulas that follow are expressed in arbitrary design

weights dk. The response probability of unit k, denoted uk ¼ Pr ðk [ rjk [ sÞ, is a

conceptually defined, nonrandom, unknown number. The response rate P is an estimate of

the (unknown) mean response probability in the population, �uU ¼
P

U uk=N.

Auxiliary information is crucial. We denote as xk the auxiliary vector value for unit k,

assumed available at least for all units k [ s, possibly for all k [ U. If J $ 1 auxiliary

variables are used, then xk ¼ ðx1k; : : : ; xjk; : : : ; xJkÞ
0, where xjk is the value for unit k of

the jth auxiliary variable, xj. We consider auxiliary vectors xk of a form such that for some

constant vector m we have m 0xk ¼ 1 for all k. This is not a major restriction. Vectors of

importance in practice are usually of this kind, such as when xk ¼ ð1; xkÞ
0 and m ¼ ð1; 0Þ0.

The LCS 2009 data file analyzed here contains the observed values yk of a number of

study variables (“the y-variables”) and the values xjk of a number of auxiliary variables
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(“the x-variables”) which may be either continuous or categorical equal to 1 or 0 to code

the presence or the absence of a given trait of unit k. Some of these auxiliary values are

obtained from the Swedish Total Population Register, while others are derived by

matching from other reliable Swedish administrative registers, using the personal

identification number.

We compute estimation weights calibrated on auxiliary information about xk for k [ s.

The weight given to the value yk observed for k [ r is dkmk, the product of the sampling

weight dk ¼ 1=pk and the adjustment factor

mk ¼
X

s

dkxk

 ! 0

X

r

dkxkx0k

 !21

xk:

Hence the resulting calibration estimator is

ŶCAL ¼
X

r

dkmkyk: ð4:3Þ

The weights dkmk are constructed to deliver unbiased estimates for the variables in the

auxiliary vector, as expressed by the calibration equation
P

r dkmkxk ¼
P

s dkxk. For any

x-vector and any response set r, the mean adjustment factor is
P

r dkmk=
P

r dk ¼ 1=P.

Consequently, when the data collection progresses and r gets increasingly larger, the

increasing proportion P of observed sample units in the Estimator (4.3) is correspondingly

matched by a decreasing average mean adjustment factor 1/P. But it is the composition of

the response set r, the particular units that are in r at any given point, that determines the

more or less pronounced bias of ŶCAL. We want “the right kind of units” to be in r in the end.

For the theory behind calibration for nonresponse, see, for example Särndal and

Lundström (2005). Calibration will generally reduce the nonresponse bias, and quite

considerably if the auxiliary vector is powerful, but without eliminating it entirely.

At Statistics Sweden, many potential auxiliary variables are typically available for the

estimation. The question then arises about the best choice among those. Indicators for this

purpose are given in Särndal and Lundström (2008, 2010).

Remark: The calibrated weights in (4.3) use an auxiliary vector xk known for the sample

units. In practice at Statistics Sweden the calibration estimates ordinarily draw on

auxiliary information at two levels: at the population level, transmitted by a vector x*
k , and

at the sample level, transmitted by a vector x+
k. The population total

P
U x*

k is known, while
P

U x+
k is unknown but estimated without bias by

P
s dkx+

k, which helps the reduction of

nonresponse bias. The auxiliary vector is xk ¼
x*

k

x+
k

0

@

1

A, and to benefit from the potential

for reduced variance when
P

U x*
k is known, the weights are calibrated to satisfy

P
r wkxk ¼ X ¼

P
U x*

k
P

s dkx+
k

0

@

1

A. The published survey estimate is Ŷ
*

CAL ¼
P

r wkyk with

weights wk ¼ dk X 0
P

r dkxkx 0 k
� �21

xk

n o
. But for the purposes of this article, it is deemed

appropriate to use ŶCAL ¼
P

r dkmkyk in (4.3) with weights calibrated as
P

r dkmkxk ¼
P

s dkxk.
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In our analysis of the LCS, the adjustment factors mk in (4.3) are computed on an

auxiliary vector xk of dimension eight considered suitable for monitoring the estimates

over the course of the data collection and composed of the following categorical auxiliary

variables: Phone access (equaling 1 for a person with accessible phone number;

0 otherwise), Education level (equaling 1 if high; 0 otherwise), Age group (four zero/one

coded groups; age brackets 224, 25–64, 65–74, 75þ years); Property ownership

(equaling 1 for a property owner; 0 otherwise); Country of origin (equaling 1 if born in

Sweden; 0 otherwise). We refer to this vector as the standard x-vector (to distinguish it

from the experimental x-vector needed in Section 6). These variables are a subset of those

used to produce the published calibration estimates in the LCS 2009.

The variable Property ownership equals one for a person identified in the property tax

register as having paid taxes on real estate property owned. The variable Phone equals one

for a person whose phone number is available and ready to be used at the very beginning of

the data collection period. All persons in Sweden have access to a phone, whether a

landline or cell phone. When the sample of persons has been drawn from the Swedish

Total Population Register, it is matched to the phone register and, if found, the number is

noted. “Found” or “not found” defines the dichotomous variable Phone. For different

reasons, not all phone numbers are in the phone register. About 90% of the needed phone

numbers are found. Before the start and during the field work, the interviewers try to trace

the persons with phone numbers as yet missing using various sources, for example the

internet. In this manner, telephone numbers are found and can be used for about one third

of those with initial value zero on the Phone variable.

In Tables 1 and 2 (as in later tables), the entries for “Attempt number” a (where a ¼ 1,

2, 3 : : :) are computed on the union of the sets of persons having responded at attempts 1,

2, : : : , a, as expressed by (4.1). Not all call attempts are shown in the tables, but changes

for deleted rows are minor. The entries for “End ordinary field work” are computed on the

respondents at the end of the five week ordinary data collection period; “Final” is based on

the total response recorded at the end of the follow-up period.

The three register variables used here as study variables are: Sickness insurance benefits

(for simplicity called Benefits, a categorical variable equaling 1 for a recipient of such

benefits; 0 otherwise), Income (a continuous variable including employment as well as

retirement income), and Employed (a categorical variable equaling 1 for an employed

person; 0 otherwise). We chose these three register variables because they are central

aspects of living conditions as studied in the LCS. The use of these register variables as

study variables meets a methodological objective: We can follow the progression of

estimators of interest, and study the benefits of calibrated weighting.

For the three register variables, yk is available for k [ s, and we can for comparison

compute the unbiased full sample (Horvitz-Thompson) estimate

ŶFUL ¼
X

s

dkyk: ð4:4Þ

The computable percentage relative difference between ŶFUL (unbiased) and ŶCAL (biased

to some extent) is

RDFCAL ¼ 100�ðŶCAL 2 ŶFULÞ=ŶFUL: ð4:5Þ
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The calibration estimator generated by the primitive auxiliary vector, xk ¼ 1 for all units k

serves as a benchmark; it is the expansion estimator given by

ŶEXP ¼
�X

s

dk

��X

r

dkyk

�
=
�X

r

dk

�
: ð4:6Þ

Its often large relative deviation from the unbiased ŶFUL is

RDFEXP ¼ 100�ðŶEXP 2 ŶFULÞ=ŶFUL: ð4:7Þ

Table 1 shows RDFCAL (computed with the standard x-vector) and RDFEXP for the three

variables and for a number of steps in the LCS 2009 data collection. We note that:

. The numerically important changes in RDFCAL and RDFEXP occur early in the series

of attempts because of important data inflows. From around attempt five onwards,

both follow quite a stable pattern; later changes are small, moving in smooth

continuous fashion. The changes are necessarily minute when the data collection has

gone on for some time, because small amounts of new data are added to a substantial

Table 1. The LCS 2009 data collection: Progression of the response rate P (in per cent) and of RDF for three

selected register variables. The calibration estimator is based on the standard x-vector explained in this section

Attempt
number

Benefits Income Employed

100 £ P RDFCAL RDFEXP RDFCAL RDFEXP RDFCAL RDFEXP

1 12.8 10.5 210.0 20.05 0.3 21.3 29.0
2 24.6 3.3 213.9 21.1 0.4 22.0 28.1
3 32.8 1.6 212.1 20.4 1.6 0.2 24.7
4 39.6 2.7 210.1 0.2 2.9 0.4 22.4
5 44.3 3.7 27.2 0.7 3.6 1.1 21.1
6 47.8 2.7 27.0 1.2 4.5 1.7 0.4
7 50.9 1.6 27.3 2.1 5.5 2.5 1.6
8 53.0 1.0 27.4 2.4 6.2 2.4 2.3
9 54.6 0.2 28.0 2.8 6.4 2.6 2.5
10 55.7 0.2 28.0 2.8 6.6 2.6 2.8
11 56.8 20.5 28.5 2.7 6.5 2.6 3.0
12 57.7 0.1 27.9 3.0 6.8 2.5 3.1
13 58.3 20.3 28.0 3.0 6.9 2.7 3.4
14 58.7 20.1 27.7 3.0 6.9 2.7 3.6
15 59.1 20.5 28.0 3.1 7.1 2.8 3.8
..
.

20 60.1 20.5 27.7 3.4 7.5 3.0 4.1
End ord.
fieldwork

60.4 20.9 27.9 3.3 7.4 2.9 4.2

Follow-up

1 61.4 21.0 28.0 3.3 7.1 2.9 4.1
2 62.6 21.6 28.2 3.1 6.7 3.0 3.9
3 63.8 22.5 29.2 3.0 6.7 3.2 4.2
4 64.6 22.8 29.3 3.1 6.7 3.3 4.3
5 65.3 22.7 29.0 3.1 6.8 3.1 4.3
..
.

10 66.8 22.9 28.9 2.9 6.7 3.0 4.5
Final 67.4 23.6 29.4 2.9 6.7 3.1 4.8
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body of existing data. Every new contact attempt brings progressively smaller

amounts of new information. For this we use the word “stabilization”, as evidenced in

Table 1 for RDF and in later tables for other statistics.

. For all three study variables, RDFCAL is small, in fact near zero, early in the data

collection. For example, for the Benefits variable, RDFCAL hovers around zero in the

range from 9 to 14 call attempts. The other two variables have near-zero RDFCAL

even earlier in the data collection. Nevertheless, at the very end (the row “Final”), the

value of RDFCAL is large, 23.6%, 2.9%, and 3.1% respectively. The LCS with its

unchanging data collection plan does not result in small estimation error.

. The large departures from the unbiased estimate ŶFUL, signaled by high values of

RDFEXP, indicate that the LCS 2009 data collection ends up with a markedly skewed

response. In most of the steps in Table 1, RDFEXP is greater than RDFCAL. Hence the

auxiliary information that ŶCAL ¼
P

r dkmkyk can draw on is valuable for reducing

the departure from the unbiased estimate for all three variables, although the end

result is short of satisfactory. The difference between RDFEXP and RDFCAL is less

pronounced for Employed; for this variable, the auxiliary vector is less effective.

5. Further Tools: Indicators of Balance, Distance and Representativity

In the theoretical first part of this section, we explain several indicators designed for

monitoring the data collection. The indicators reflect well known statistical concepts.

Later in the section we illustrate the indicators numerically by computing them on the LCS

2009 data. Furthermore, in Section 6, those indicators will be used in an experiment with

the LCS 2009 data, whereby we intervene “in retrospect” in the data collection process,

aiming to achieve a better balanced, or more representative, ultimate response set than if

no action were taken. The indicators can be computed from the auxiliary variable values,

known for both respondents and nonrespondents.

We distinguish three types of concept from which to construct an indicator: (i) Balance

(of the response set, for selected auxiliary variables), (ii) Distance (between respondents

and nonrespondents), and (iii) Variability of (estimated) response probabilities. All depend

on the idea of imbalance now to be defined. Desirable features are high balance, low

distance and small variability of the response probabilities. We use the indicators to

observe the dynamic pattern as the data collection unfolds and to allow interventions to be

made at suitable points.

All the indicators rely on an auxiliary vector, denoted in general by x with value xk ¼

ðx1k; : : : ; xjk; : : : ; xJkÞ
0 known for the units k [ s (or possibly for k [ U ). The dimension J

is arbitrary. For the j:th auxiliary variable xj, with value xjk for unit k, we compute the

difference Dj ¼ �xjr 2 �xjs between the respondent mean, �xjr ¼
P

r dkxjk=
P

r dk, and the full

sample mean, �xjs ¼
P

s dkxjk=
P

s dk. If Dj ¼ 0 for all J auxiliary variables, then r is a

perfectly balanced response set. In vector form, D ¼ ðD1; : : : ;Dj; : : : ;DJÞ
0 ¼ �xr 2 �xs

with vector mean �xr ¼
P

r dkxk=
P

r dk for the respondents and �xs ¼
P

s dkxk=
P

s dk for

the full sample. Under perfect balance, D ¼ 0, the zero vector.

We must seek balance on the auxiliary variables, because unlike real study variables, they

are individually known for the full sample (or for the whole population). What benefit can

we expect from balancing on a chosen vector xk? Is there reason to expect that balance on the
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x-vector will produce, if not perfect, at least good balance for the y-variables in the survey, in

particular for the highly important y-variable? Let us consider these questions. The concept

of balance refers to the equality of response set mean and full sample mean. We have

x-vector balance if �xr ¼ �xs. We can strive to come close to this during data collection.

The desirable goal of y-variable balance is expressed as �yr ¼ �ys. Whether or not this comes

close to being satisfied for a real study variable y will never be known. But balancing on a

chosen x-vector can bring us closer. Using the property m0xk ¼ 1 for all k, we express the

difference �yr 2 �ys (which we would like to be zero or close to zero) as a sum of two terms,

�yr 2 �ys ¼ ð�xr 2 �xsÞ
0br þ ðbr 2 bsÞ

0 �xs ð5:1Þ

where br ¼
P

r dkxkx 0k
� �21P

r dkxkyk and bs ¼
P

s dkxkx 0k
� �21P

s dkxkyk are linear

regression coefficients (regressing y on x), for the response set and for the full sample

respectively. That br and bs may differ is an expression of a dilemma well known

in regression analysis: Non-random selection of cases causes biased regression. The

computable first term of (5.1), ð�xr 2 �xsÞ
0br, is zero if the x-balance �xr ¼ �xs is realized.

This by itself does not imply that the second (not computable) term ðbr 2 bsÞ
0 �xs is zero or

small. But often that term, which is what remains of the difference �yr 2 �ys after complete

balance on the x-vector, is smaller than what that difference would be in the absence of any

balancing. One situation where the second term is small is when y is well explained by

the x-vector, so that yk < b 0xk and therefore br < bs. In other words, if the response is

balanced for a vector xk highly related to the study variable y, then we are close to y-variable

balance. Another condition under which the second term ðbr 2 bsÞ
0 �xs is small occurs if

the data collection can be directed to yield a response set r that is an essentially random

subset of s. In many situations there is a strong incentive to seek balance on a suitable

x-vector, because it will likely bring us closer to y-variable balance. Multiplying by

N̂ ¼
P

s dk shows Equation (5.1) in a different light:

ŶEXP 2 ŶFUL ¼ ðŶEXP 2 ŶCALÞ þ ðŶCAL 2 ŶFULÞ:

Here the computable difference ŶEXP 2 ŶCAL is the adjustment we apply to the primitive

estimate ŶEXP to arrive at the improved estimate ŶCAL. The term ŶCAL 2 ŶFUL, unknown for a

real y-variable, is not zero, but may be small compared with the adjustment ŶEXP 2 ŶCAL.

There is no choice of x-vector that will completely eliminate the nonresponse error

ŶCAL 2 ŶFUL. Some bias always remains after calibration. Expressed differently, there

exists no x-vector that realizes missing at random, given x.

Normally in practice, D – 0, suggesting departure from balance. We transform the

multivariate D into a suitable univariate measure of imbalance, for the given survey

outcome (s, r) and the given composition of xk. The imbalance is a quadratic form in D

defined as

D0S
21
s D ¼ ð�xr 2 �xsÞ

0S
21
s ð�xr 2 �xsÞ ð5:2Þ

with weighting matrix Ss ¼
P

s dkxkx 0k=
P

s dk. Increased mean differences Dj tend to

increase the imbalance D0S
21
s D. Interposing the inverse of the weighting matrix permits

an upper bound to be stated on the imbalance: For any outcome (s, r) and any composition

of xk we have 0 # D 0S
21
s D # Q 2 1 with Q ¼ 1/P (see Särndal 2011a). For most data
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encountered in practice, D 0S
21
s D is not a large number, often 0.3 or less. As the data

collection unfolds and the response rate P gets larger, one often finds that D 0S
21
s D

decreases, because �xr moves closer to �xs when the response r grows toward the full

sample s, although the question depends also on what particular units happen to be in the

set r at a given moment.

Balance is imbalance with a reversed sign. We use two indicators of balance, measured

on the unit interval scale and such that the value “1” implies perfect balance. The first is

BI1 ¼ 1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D 0S
21
s D

Q 2 1

s

: ð5:3Þ

It follows from 0 # D 0S
21
s D # Q 2 1 that 0 # BI1 # 1. Because Pð1 2 PÞ # 1=4, an

alternative indicator also contained in the unit interval is

BI2 ¼ 1 2 2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D 0S
21
s D

q

: ð5:4Þ

For most data, D 0S
21
s D does not come near Q 2 1. It is not a sharp upper bound.

Consequently, both indicators transmit an inflated notion of balance, often greater than 0.8

for both BI1 and BI2. The lower portion of the unit interval is not effectively used. The

notion of distance now to be discussed is less subject to this criticism.

Our concept of distance, which contrasts respondents with nonrespondents for the

chosen x-vector, is a transformation of mean difference vector, �xr 2 �xnr, where nr ¼ s 2 r

is the nonresponse set with mean �xnr ¼
P

s2r dkxk=
P

s2r dk. This distance is

distrjnr ¼ ½ð�xr 2 �xnrÞ
0S

21
s ð�xr 2 �xnrÞ�

1=2: ð5:5Þ

If respondents and nonrespondents agree on average for every variable in the x-vector,

then �xr ¼ �xnr and distrjnr ¼ 0. From (5.2) and the equation �xr 2 �xs ¼ ð1 2 PÞð�xr 2 �xnrÞ

follows that distrjnr is a simple transformation of the imbalance D 0S
21
s D:

distrjnr ¼
1

1 2 P
ðD 0S

21
s DÞ1=2 ð5:6Þ

From D0S
21
s D # Q 2 1 follows that distrjnr # 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 2 PÞ
p

. Thus for nonresponse in the

range 20% to 50%, distrjnr can never exceed 2.5. But for data encountered in practice

distrjnr is normally much lower, rarely exceeding 0.6. One reason is that the upper bound

covers any vector composition xk and even the most extreme response outcome r that

can occur for the given sample s. The measure distrjnr reacts distinctly but smoothly to

the steps in the data collection and is a more expressive indicator than BI1 or BI2, which

tend to concentrate in the upper quarter of the unit interval. For example, in Table 3

(Subsection 6.2), distrjnr roughly doubles from 0.23 at the beginning to 0.47 at the end

of the data collection, while BI1 only moves from 0.85 to 0.72.

Simple relationships between distrjnr and the balance indicators follow from (5.3), (5.4)

and (5.6):

BI1 ¼ 1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 2 PÞ

p
£ distrjnr ; BI2 ¼ 1 2 2Pð1 2 PÞ £ distrjnr: ð5:7Þ

The principal tools for the empirical work reported later are the balance indicator BI1 and

the distance distrjnr. It is important to follow their progression as the response set r expands
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and P increases. Increasing balance and decreasing distance are signs of a satisfactory data

collection. But the undesirable opposite can happen, as in an empirical illustration that

follows. The level of the indicators depend on the choice of xk, notably on the number of

x-variables in xk – it is harder to obtain balance on more variables – and on their

relationship with response. The ultimate response set r should have high balance and low

distance; however, it is hard to formulate definite ultimate target values for BI1 and distrjnr,

because of their strong dependence on xk.

If distrjnr decreases when P increases, then the balance, as measured by BI1 or by BI2, may

or may not improve, that is, get larger. If the distance distrjnr increases when P increases

towards 50%, then the balance, measured by BI1 or by BI2, will necessarily deteriorate.

The third concept behind an indicator for the data collection is the variability of

(estimated) response probabilities. It was used in the RISQ project mentioned earlier.

The resulting indicators are called R-indicators (with R for representativity); see, for

example Schouten et al. (2009). Let ûk be the estimated response probability for unit k [ s.

Their variance is

S2

ûs
¼
X

s

dkðûk 2 û
�

sÞ
2=
X

s

dk ð5:8Þ

where û
�

s ¼
P

s dkûk=
P

s dk. The R-indicator is defined as

R ¼ 1 2 2S
ûs ð5:9Þ

The rationale behind the construction (5.9) is that if the data collection can be directed

to reduce variability in the estimated response probabilities, then the representativity of

the response set, measured by R, is said to be improved.

For the chosen specification xk, the estimates ûk ¼ f ðx 0kb̂Þ can be obtained via different

link functions. For the linear response function, using weighted least squares, we

determine b to minimize
P

s dkðIk 2 x 0kbÞ
2, where Ik is the response indicator, Ik ¼ 1 for

k [ r and Ik ¼ 0 for k [ s 2 r. As a result, b̂ ¼
P

s dkxkx 0k
� �21 P

r dkxk

� �
, and for k [ s,

the response probability estimate is ûk ¼ tk with tk ¼ x 0k b̂. If we denote by S2
ts the variance

(5.8) computed with ûk ¼ tk, the R-indicator (5.9) is R ¼ 1 2 2Sts. Because

S2
ts ¼ P2 £ D 0S

21
s D, the R-indicator for the linear response function is equal to the

balance measure (5.4): 1 2 2Sts ¼ BI2.

Schouten et al. (2009) closely examine the case where ûk is obtained through a

logistic response function. By logistic regression fit, we obtain first b̂, then ûk; log ¼

exp ðx 0k b̂Þ=½1þ exp ðx 0k b̂Þ� for k [ s. Their variance, denoted S2

ûlog;s
, is computed in the

manner of (5.8) with ûk ¼ ûk; log , and the resulting logistic R-indicator is

R ¼ 1 2 2S
û log ;s: ð5:10Þ

Bethlehem et al. (2011) consider a bias-adjusted R-indicator, reflecting a desire to reduce

the bias that (5.10) may have when viewed as an estimate of a corresponding population

quantity. With our data, (5.10) differed negligibly from its bias-corrected counterpart, not

shown in Table 2.
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A noteworthy property of the imbalance D 0S
21
s D is its simple relation to the coefficient

of variation of the estimates ûk ¼ tk for k [ s. Because �ts ¼
P

s dktk=
P

s dk ¼ P we have

cvts ¼ Sts=�ts ¼ ðD
0S

21
s DÞ1=2: ð5:11Þ

Often close in value to cvts is the coefficient of variation of the adjustment factors mk in the

estimator Ŷ ¼
P

r dkmkyk. It can be shown that

cvmr ¼ Smr= �mr ¼ ðD
0S

21
r DÞ1=2

where Sr ¼
P

r dkxkx 0k=
P

r dk; Smr ¼
P

r dkðmk 2 �mrÞ
2=
P

r dk

� �1=2
and

�mr ¼
P

r dkmk=
P

r dk ¼ 1=P. The two coefficients of variation differ only in the

inverted weighting matrix: S
21
s in the former, S

21
r in the latter. The statistic cvmr is used in

Table 2. The LCS 2009 data collection: Progression of the response rate P (in per cent), balance BI1 and BI2,

logistic R–indicator (5.10), distance distrjnr, and square root of imbalance ðD 0S
21
s DÞ1=2 ¼ cvts. Computations

based on the standard x-vector explained in Section 4

Attempt
number

Balance
R-indicator
formula (5.10)

Distance
distrjnr

Sqrt. imbalance
cvts

100 £ P BI1 BI2

1 12.8 0.855 0.904 0.902 0.433 0.378
2 24.6 0.802 0.829 0.829 0.460 0.347
3 32.8 0.779 0.793 0.794 0.470 0.316
4 39.6 0.770 0.775 0.780 0.471 0.285
5 44.3 0.767 0.769 0.775 0.469 0.261
6 47.8 0.763 0.763 0.770 0.475 0.248
7 50.9 0.756 0.756 0.763 0.488 0.240
8 53.0 0.751 0.752 0.758 0.499 0.234
9 54.6 0.750 0.752 0.757 0.501 0.227
10 55.7 0.748 0.749 0.756 0.508 0.225
11 56.8 0.746 0.749 0.754 0.512 0.221
12 57.7 0.747 0.750 0.756 0.513 0.217
13 58.3 0.744 0.748 0.754 0.519 0.217
14 58.7 0.742 0.746 0.753 0.523 0.216
15 59.1 0.741 0.745 0.752 0.527 0.215
..
.

20 60.1 0.737 0.743 0.751 0.536 0.214
End ordinary 60.4 0.738 0.744 0.752 0.536 0.212

Follow-up

1 61.4 0.736 0.743 0.751 0.542 0.210
2 62.6 0.734 0.742 0.750 0.550 0.206
3 63.8 0.730 0.741 0.748 0.561 0.203
4 64.6 0.728 0.740 0.747 0.569 0.201
5 65.3 0.727 0.740 0.748 0.573 0.199
..
.

10 66.8 0.719 0.736 0.742 0.596 0.198
Final 67.4 0.717 0.735 0.742 0.603 0.197
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selecting auxiliary variables at the estimation stage, as in Särndal and Lundström (2010)

and Särndal (2011b).

Table 2 shows the progression during the LCS 2009 data collection of BI1, BI2 and the

logistic R-indicator (5.10), all viewed as functions of the call attempt number. The three

measures are numerically close, but all are subject to the criticism that they fail – here and

in other applications – to effectively use the whole unit interval. Often around 0.8 or

higher, they seldom fall below 0.7. Here, as for most other data, the imbalance D 0S
21
s D

does not come near its upper bound Q 2 1, so (5.3) and the related (5.4) fall predominantly

into the upper end of the unit interval. Because BI1, BI2 and the logistic R-indicator (5.10)

tell essentially the same story, we focus in the following on BI1. Table 2 also shows the

progression of the distance distrjnr between respondents and nonrespondents.

The desired pattern of reduced distance and increased balance does not happen for the

LCS 2009 data collection. Instead Table 2 shows that the balance indicators and the

distance distrjnr go the wrong way: The balance decreases; the distance distrjnr gets larger.

Thus Table 2 reinforces the message already conveyed in Table 1 of a weakness in the

LCS data collection. It raises the question of whether the ordinary field work should

proceed as long as it currently does, instead of ending after say ten attempts. The follow-up

does not bring improvement; the indicators continue in the wrong direction.

Also shown in Table 2 is ðD 0S
21
s DÞ1=2 ¼ cvts defined in (5.11). Here the imbalance

D0S
21
s D goes from an initial value 0.14 to a final value 0.04, a decrease explained in large

part by the increasing proportion P, which makes �xr move closer to �xs and D closer to the

zero vector.

6. Experimental Data Collection Strategies

6.1. Auxiliary Vector for the Experiments

There is strong evidence that realizing a predefined “respectable” overall response rate

should no longer be accorded the same dominant importance in future renditions of the

LCS. It is hard to justify a costly effort for a possible five per cent greater ultimate response

rate unless accompanied by concrete measures of quality in the response set, such as

progressively better balance and closeness of respondents to nonrespondents. As Tables 1

and 2 have shown, those features are lacking in the LCS 2009 data collection.

This section presents the results of three “experiments in retrospect” carried out with the

existing LCS 2009 data file. We cannot add more data, but we can delete data from that file

to show the effects of different interventions in the data collection, in particular the trend

in the balance indicators BI1 and BI2, and in the distance distrjnr. Increasing balance and

decreasing distance are features we hope to find. Our experiments consist in treating data

collection as terminated, at suitably chosen points in the data inflow, for sample groups

with relatively high response. For example, it might stop in some groups after a suitable

number of call attempts because realistic expectations for the response have already

been met, whereas for the other groups, data collection would continue for some time

yet before stopping, and for remaining low-responding groups it would continue until the

very end of the data collection period. We refer to the points where stopping occurs as

intervention points.
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In this manner we delete data in the existing LCS 2009 data file pretending that data

collection has been terminated at given points for relatively high-responding sample

subgroups. In other words, for those groups, we sacrifice some data yk that were in reality

available beyond the intervention points. The imbalance measured by D 0S
21
s D plays a key

role in the analysis. It determines the balance measures BI1 and BI2 given respectively

by (5.3) and (5.4) and the distance distrjnr given by (5.6). An aim for the data

collection should be to reduce the differences Dj that make up the vector

D ¼ �xr 2 �xs ¼ ðD1; : : : ;Dj; : : : ;DJÞ
0.

The imbalance D 0S
21
s D has a particularly transparent expression when the vector xk is

defined by J mutually exclusive and exhaustive traits or characteristics, for example when

“Age” is defined by, say, J ¼ 3 traits, Young, Middle-aged and Elderly. But usually in

practice, several categorical variables are crossed to define a set of mutually exclusive and

exhaustive groups. The trait of unit k is then uniquely coded by the J-vector xk ¼

ðg1k; : : : ; gjk; : : : ; gJkÞ
0 ¼ ð0; : : : ; 1; : : : ; 0Þ0 (with a single entry “1”), or equivalently

by the J-vector xk ¼ ð1; g1k; : : : ;gJ21;kÞ
0, where gjk ¼ 1 if k has the trait j and gjk ¼ 0

otherwise. Denote by sj the (non-empty) subset of the sample s consisting of the units k

with the trait j, and let rj be the corresponding responding subset of the whole response

set r; rj # sj. For trait j, denote by Wjs ¼
P

sj
dk=

P
s dk that trait’s share of the whole

sample s. Then the imbalance is a sum of non-negative terms expressed as

D 0S
21
s D ¼

XJ

j¼1

Cj ð6:1Þ

with

Cj ¼ Wjs £
Pj

P
2 1

� 	2

ð6:2Þ

where Pj ¼
P

rj
dk=

P
sj

dk is the response rate for the jth group and P is the overall

response rate given by (4.2). We call (Pj 2 P)/P the response rate differential for the jth

group. Together, the J differentials (Pj 2 P)/P describe the state of the response for the set

of groups at any given point in the data collection. The differentials are positive, negative

or zero. If all are zero, the imbalance is zero, and the balance is perfect for the chosen

x-vector: BI1 ¼ BI2 ¼ 1. The differentials change continuously during data collection and

can be substantially different, although experience shows that they are seldom greater in

absolute value than 0.3. At any given point in the data collection, their weighted average is

zero:
PJ

j¼1 Wjs £ ððPj=PÞ2 1Þ ¼ 0. The imbalance (6.1) is therefore the variance over the

J groups of the differentials (Pj 2 P)/P. If the maximum jPj 2 Pj/P over the J groups

equals, say, 0.5, it follows that D0S
21
s D # 0:25 and that ðD 0S

21
s DÞ1=2 ¼ cvts # 0:5. If all

J response rates Pj are equal then D 0S
21
s D ¼ 0.

The analysis in Sections 4 and 5 was based on the standard x-vector, close to the

auxiliary vector used to produce the calibration estimates for LCS 2009. Here we choose a

more appropriate vector that identifies a set of particularly important sample subgroups.

Using this experimental x-vector we carry out three “experiments in retrospect” on the

LCS 2009 data, each based on an experimental data collection strategy defined by one or

more intervention points and a stopping rule for each intervention point. This vector points
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out membership in one of J ¼ 8 mutually exclusive and exhaustive sample groups. Every

intervention point marks a change in the data collection. The stopping rule is formulated in

terms of a predefined target response rate for each group, so that data collection will be

deemed terminated at a given intervention point for groups having at that point reached the

specified response rate. This is a simple form of responsive design, made possible by the

categorical nature of the experimental vector.

The experimental x-vector is defined by the crossing of three dichotomous auxiliary

variables: Education level (high, not high), Property ownership (owner, non-owner),

Country of origin (Sweden, other). There are J ¼ 23 ¼ 8 mutually exclusive and

exhaustive groups coded by the experimental x-vector xk ¼ ðg1k; : : : ; g8kÞ
0, where

gjk ¼ 1 if k belongs to group j and gjk ¼ 0 otherwise. Group membership, and hence the

value xk, is known auxiliary information for all k [ s. Those eight groups are important to

monitor because experience has shown their response rates to be considerably different

and indeed strikingly low for some, as Table 5 confirms.

6.2. The Actual LCS 2009 Data Collection Analyzed with the Experimental x-vector

By the actual LCS data collection we mean the data collection as actually carried out, with

all the contact attempts and realized responses, resulting in the actual LCS 2009 response

set. We compare it in Subsection 6.3 and 6.4 with three experimental data collections

where the LCS 2009 data set is censored by stopping rules for data collection in certain

sample subgroups.

To put the experiments in their proper light, we analyze first the actual LCS 2009 data

collection in the light of the experimental x-vector defined in Subsection 6.1. Summary

results are shown in Tables 3 and 4.

As Table 1 showed for the standard x-vector, Table 3 shows that RDFCAL (with weights

now calibrated on the experimental x-vector) does not terminate at desirable near-zero

levels. The balance, measured by BI1 and BI2, decreases as the data collection proceeds,

and the distance distrjnr increases. This again indicates an inefficiency in the 2009 data

collection, with its predefined unchangeable format.

Table 4 shows the progression over the LCS 2009 data collection of the eight terms Cj

defined by (6.2), whose total D 0S
21
s D is given in the bottom line. Both are multiplied

by 100. A low variability in the Cj is a goal, because if all Cj are equal in the end, the

imbalance is zero. The groups in lines 1 and 8 stand out, but for different reasons. In both

cases, Cj remains high from attempt 5 (where the data collection has gained a certain

stability) until the very end. High values of Cj also prevail throughout for lines 4, 5 and 6.

The very low-responding line 1 group, education not high, non-owner, foreign origin, has

a large negative response differential (Pj 2 P)/P, and although 100 £ Cj decreases

somewhat from 1.44 at attempt 5 to a final value of 1.18, the decrease is much weaker than

desired. A negative response differential and a large Cj also characterizes the line 5 group.

By contrast, distinctly positive response differentials (Pj 2 P)/P characterize lines 4, 6

and 8. Most prominent of these is the line 8 group, high education, property owner,

Swedish origin, for which 100 £ Cj decreases somewhat, from 0.58 at attempt 5 to a final

value of 0.44, but less than one would like to see.
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In Subsections 6.3 and 6.4 we contrast these results on the group factors Cj with results

from three experimental strategies obtained through interventions in the LCS 2009 data

base. All three use the experimental x-vector of dimension J ¼ 23 ¼ 8 as defined in

Subsection 6.1, but they differ in the points of intervention and in the stopping rules.

Table 3. The actual LCS 2009 data collection: Progression of RFDCAL (for three study variables), BI1 and

distrjnr. Computations based on the experimental x-vector of dimension eight defined in Subsection 6.1

RDFCAL

Attempt number 100 £ P Benefits Income Employed BI1 distrjnr

1 12.8 28.4 22.7 210.2 0.922 0.233
2 24.6 213.2 23.2 29.7 0.887 0.263
3 32.8 211.5 22.3 26.3 0.867 0.283
4 39.6 28.5 21.5 24.4 0.850 0.306
5 44.3 25.8 20.5 23.0 0.846 0.310
..
.

8 53.0 25.7 1.7 0.2 0.812 0.377
..
.

12 57.7 26.1 2.5 1.2 0.805 0.394
..
.

20 60.1 26.0 3.1 2.2 0.795 0.418
..
.

End ordinary
field work

60.4 26.2 3.1 2.3 0.796 0.417

Follow-up

1 61.4 26.2 3.0 2.3 0.796 0.418
..
.

4 64.6 27.9 2.8 2.6 0.792 0.435
..
.

Final 67.4 27.9 2.9 3.1 0.779 0.471

Table 4. The actual LCS 2009 data collection: values of the eight terms Cj of D0S21
s D (both multiplied by 100).

Computations based on the experimental x-vector defined in Subsection 6.1

Group characteristic
100 £ Cj

Property
ownership

Ord. field work attempt Follow-up attempt

Education Origin 1 5 12 End 1 4 Final

Not high Non-owner Abroad 1.49 1.44 1.26 1.23 1.25 1.16 1.18
Not high Non-owner Sweden 0.00 0.06 0.11 0.11 0.08 0.07 0.07
Not high Owner Abroad 0.06 0.01 0.00 0.00 0.00 0.00 0.00
Not high Owner Sweden 0.72 0.24 0.21 0.19 0.17 0.17 0.18
High Non-owner Abroad 1.28 0.39 0.29 0.26 0.25 0.23 0.22
High Non-owner Sweden 0.11 0.26 0.25 0.24 0.21 0.20 0.23
High Owner Abroad 0.18 0.01 0.03 0.03 0.03 0.02 0.04
High Owner Sweden 0.29 0.58 0.64 0.66 0.62 0.53 0.44

100 £ D 0S
21
s D 4.13 2.99 2.78 2.72 2.61 2.37 2.36
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6.3. Experimental Strategy 1 and Its Results

We define Experimental Strategy 1 to have two intervention points, Attempt 12 of the

ordinary data collection (point 1), and Attempt 2 of the follow-up (point 2); the stopping

rule is to declare data collection terminated (so that no further y-values are taken into

account) in a group that has realized at least 65% response. Table 5 shows the response

rates for the actual LCS 2009 data at the two intermediate points and at the very end

Table 5. Response rate P (in per cent) at three points in the actual LCS 2009 data collection for the eight groups

formed by the experimental x-vector

Group characteristic Response rate P (per cent)

Education
Property
ownership Origin

Attempt 12
ordinary

Attempt 2
follow-up Final

Individuals
in sample

Not high Non-owner Abroad 37.5 41.8 44.6 847
Not high Non-owner Sweden 54.6 59.8 64.6 3210
Not high Owner Abroad 58.5 62.3 66.8 171
Not high Owner Sweden 63.0 67.6 73.2 2036
High Non-owner Abroad 39.4 44.9 48.7 236
High Non-owner Sweden 66.8 71.6 77.6 816
High Owner Abroad 68.1 73.6 81.9 72
High Owner Sweden 72.2 77.4 81.5 832

Total 57.7 62.6 67.4 8220

Table 6. Experimental strategy 1: the eight terms Cj of D0S21
s D (multiplied by 100), the response rate P (in per

cent), the balance BI1, and the distance distrjnr, computed on the experimental x-vector at three points in the data

collection

Group characteristic Value of 100 £ Cj at

Education
Property
ownership Origin

Attempt 12
ordinary

Attempt 2
follow-up Final

Not high Non-owner Abroad 1.26 1.06 0.94
Not high Non-owner Sweden 0.11 0.03 0.00
Not high Owner Abroad 0.00 0.00 0.00
Not high Owner Sweden 0.21 0.24 0.08
High Non-owner Abroad 0.29 0.21 0.16
High Non-owner Sweden 0.25 0.07 0.02
High Owner Abroad 0.03 0.01 0.00
High Owner Sweden 0.64 0.31 0.17

100 £ D0S
21
s D 2.78 1.93 1.39

100 £ P 57.7 61.5 63.9
BI1 0.805 0.824 0.843
distrjnr 0.394 0.361 0.326
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(Final). It follows that the Strategy 1 data collection is deemed terminated at point 1 for the

groups in lines 6, 7 and 8, and at point 2 for the group in line 4, while remaining groups

continue until the very end. For the low-responding line 1 and 5 groups, the final response

rate is still far from 65%.

For the data collection of Strategy 1, Table 6 shows the progression of the terms Cj and

their total D 0S
21
s D (both multiplied by 100). Data collection has ended at point 1 for the

relatively high-responding groups in lines 6, 7 and 8. The ensuing marked decrease in Cj

for lines 6 and 8 occurs because the response differential (Pj 2 P)/P drops when the

increasing P draws nearer the unchanging Pj. The low-responding group 1 accounts for the

largest 100 £ Cj. It drops from 1.26 at point 1 but still ends at a fairly high 0.94. Both P1

and P increase; they are getting closer, and jP1 2 Pj/P is reduced, but not enough.

Although only two interventions are used in Strategy 1, the imbalance 100 £ D 0S
21
s D is

greatly reduced, from 2.78 at first intervention to 1.39 at the end. As Table 6 also shows,

both balance and distance now go in the desired directions: The balance BI1 increases from

0.805 to 0.843 and the distance distrjnr decreases from 0.394 to 0.326. The ultimate

response rate for Strategy 1 is 63.9%, as compared with 67.4% in the actual LCS 2009

data collection.

6.4. Experimental Strategies 2 and 3

Experimental strategies 2 and 3 use sharpened stopping rules for the data collection in the

eight groups defined by the experimental x-vector defined in Subsection 6.1. The objective

is to attempt to confirm the expectation that still better balance can be achieved.

Strategy 2 is defined to declare data collection terminated (in the ordinary data

collection or in the follow-up) for a group as soon as its response has reached 60%. The

resulting five intervention points are shown in Table 7: Five groups terminate at four

different points in the ordinary data collection, and one group terminates at follow-up

attempt 3. The low-responding line 1 and line 5 groups continue to the end, but still do not

come near 60% response.

Table 8 shows the terms 100 £ Cj, which sum to the total imbalance 100 £ D 0S
21
s D.

Compared with Strategy 1 in Table 6, we see that Strategy 2 brings improvement in that

for all but the line 1 group, Cj is reduced to near-zero levels at the end (the column Final).

The column total 100 £ D 0S
21
s D is reduced markedly from 3.07 at first intervention to a

final value of 0.82, considerably lower than the final value 1.39 for Strategy 1. As a result,

the balance improves markedly, and the distance distrjnr is reduced in the end to 0.220, as

compared with 0.326 for Strategy 1.

The stopping rule for experimental strategy 3 is to declare data collection terminated

for a group whose response rate has reached 50%. For this more stringent rule, data

collection terminates with still fewer attempts than in Strategy 2. The improvement in

the indicators becomes further pronounced, giving better balance and decreased distance

compared with Strategies 1 and 2. The distance distrjnr now ends at 0.089, as compared

with final values of 0.220 in Strategy 2 and 0.326 in Strategy 1. Strategy 3 in the end

leaves very little variation in the response differentials, which explains the low value

0.20 of 100 £ D 0S
21
s D.
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6.5. A Comparison of the Data Collection Strategies

All three experimental strategies use interventions in the LCS 2009 data, with successively

more stringent stopping rules, as described in Subsections 6.3 and 6.4. Table 10 sum-

marizes the experiments and compares them with the actual LCS 2009 data collection

(with no interventions). For comparability, at the end of the respective data collections the

entries in Table 10 are computed on the standard auxiliary vector defined in Section 4,

which resembles the one used to produce the LCS estimates in 2009. The entries for the

actual LCS 2009 data collection (the first line) are taken from the bottom line, “Final”, in

Tables 1 and 2.

Table 8. Experimental strategy 2: the eight terms Cj of D0S21
s D (multiplied by 100), the balance BI1, and the

distance distrjn, computed on the experimental x-vector at six points in the data collection. Column “7 ord.” refers

to “Attempt 7 in the ordinary data collection”; analogous for other columns

Group
Property
ownership

Value of 100 £ Cj at data collection point

Education Origin 7 ord. 8 ord. 9 ord. 15 ord. 3 fol.-up Final

Not high Non-owner Abroad 1.39 1.40 1.29 0.99 0.78 0.60
Not high Non-owner Sweden 0.12 0.09 0.05 0.00 0.07 0.05
Not high Owner Abroad 0.00 0.00 0.00 0.01 0.00 0.00
Not high Owner Sweden 0.25 0.33 0.33 0.13 0.02 0.01
High Non-owner Abroad 0.35 0.31 0.31 0.22 0.15 0.09
High Non-owner Sweden 0.33 0.21 0.14 0.05 0.01 0.00
High Owner Abroad 0.02 0.03 0.02 0.01 0.00 0.00
High Owner Sweden 0.61 0.44 0.33 0.18 0.07 0.06

100 £ D0S
21
s D 3.07 2.81 2.49 1.59 1.09 0.82

100 £ P 50.9 52.5 53.8 56.0 58.6 58.9
BI1 0.822 0.824 0.830 0.858 0.876 0.892
distrjnr 0.357 0.353 0.341 0.287 0.252 0.220

Table 9. Experimental strategy 3: the eight terms Cj of D0S21
s D (multiplied by 100), the balance BI1, and the

distance distrjnr, computed on the experimental x-vector at six points in the data collection. Column headed

“4 ord.” refers to “Attempt 4 in the ordinary data collection”; analogous for other columns

Group
Property
ownership

Value of 100 £ Cj at data collection point

Education Origin 4 ord. 5 ord. 6 ord. 7 ord. 8 ord. Final

Not high Non-owner Abroad 1.51 1.39 1.23 1.10 1.05 0.13
Not high Non-owner Sweden 0.05 0.03 0.02 0.00 0.03 0.00
Not high Owner Abroad 0.01 0.00 0.00 0.01 0.01 0.00
Not high Owner Sweden 0.26 0.30 0.46 0.25 0.16 0.05
High Non-owner Abroad 0.59 0.38 0.35 0.27 0.22 0.00
High Non-owner Sweden 0.27 0.30 0.12 0.06 0.03 0.01
High Owner Abroad 0.00 0.01 0.02 0.01 0.01 0.00
High Owner Sweden 0.72 0.21 0.07 0.02 0.01 0.00

100 £ D 0S21
s D 3.42 2.62 2.26 1.73 1.51 0.20

100 £ P 39.6 43.8 46.4 47.8 48.7 50.3
BI1 0.850 0.857 0.860 0.874 0.880 0.955
distrjnr 0.306 0.288 0.281 0.252 0.240 0.089
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Table 10 shows that each experimental strategy improves on the preceding one. The

relative deviation RDFCAL is reduced in each step for all three register variables used as

study variables (if we disregard a slightly higher value for the variable Employment in

Strategy 2). For Income and Employment, the major reduction in RDFCAL occurs in the

step from Strategy 2 to Strategy 3.

Both the balance and the response-to-nonresponse distance improve in each step. The

distance distrjnr drops from 0.603 to 0.383. The balance BI1 increases from 0.717 to 0.808,

the greatest step occurring from the actual LCS 2009 to Experimental Strategy 1. The

balance shown in Table 10 is lower than the balance for the corresponding experimental

strategy in Tables 6, 8 and 9. This is because the x-vectors are different; it is harder to

achieve high balance for a more extensive vector.

A striking benefit from the experimental strategies is an implicit reduction of data

collection cost through significantly fewer call attempts. To reach the 67.4% response in

the complete 2009 LCS data collection, 53,258 attempts were used, but to reach the 63.9%

response in experimental Strategy 1, only 48,883 attempts are used, a reduction of 8.2%.

The reduction in call attempts is even more striking for the other two experimental

strategies: 20.2% for Strategy 2 and 36.4% for Strategy 3. In practice, such cost savings

should be used to improve other aspects of the survey design; one could for example afford

a larger size sample s to begin with.

7. Discussion and Implications for the Future

The concepts proposed in this article, more specifically those presented in Sections 4 and 5,

are general in scope and can be applied to a variety of sample surveys. We have chosen the

2009 Swedish Living Conditions Survey as an instrument to illustrate the use of these

concepts, which are also being tested and evaluated in other surveys at Statistics Sweden.

In Section 5 we introduced the concept of imbalance, defined mathematically by the

quadratic form D0S
21
s D, Formula (5.2). The imbalance, a function of the chosen auxiliary

vector xk, determines important tools presented in Section 5: The balance of the set of

respondents and the distance between respondents and nonrespondents. Signs of a good

data collection are increasing balance and decreasing distance during the course of the data

collection.

In this article we have used these tools and paradata from the Swedish CATI-system to

examine the data collection in the 2009 Swedish Living Conditions Survey. Earlier studies

at Statistics Sweden had cast doubt on the merits of conducting a follow-up in the LCS; our

Table 10. The three experimental strategies compared with the actual LCS 2009 data collection; response rate

P (in per cent), RDFCAL, BI1, distrjnr and reduction (in per cent) of the number of call attempts. Computations

based on the standard x-vector explained in Section 4

End data
collection

RDFCAL
Reduction
in %100 £ P Benefits Income Employment BI1 distrjnr

Actual
LCS 2009

67.4 23.6 2.9 3.1 0.717 0.603 0.0

Strategy 1 63.9 21.6 2.7 3.0 0.765 0.489 8.2
Strategy 2 58.9 21.2 2.6 3.2 0.787 0.433 20.2
Strategy 3 50.3 1.0 1.0 2.3 0.808 0.383 36.4
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results in Sections 4 and 5 confirm those earlier findings. In Table 1 we studied the changes

in the estimates for three register variables as the data collection progresses. The follow-up

does not produce the improvement one would hope for.

Table 2 shows that the balance indicators BI1 and BI2 have a decreasing trend over the

course of the LCS 2009 data collection. Contrary to reasonable expectations, the set of

respondents is thus less balanced after the follow-up than at the end of the ordinary

fieldwork. Furthermore, in Table 2 the distance distrjnr shows an increasing rather than a

decreasing trend as the data collection unfolds. This adds to earlier doubts about the

efficiency of the current LCS data collection.

When the auxiliary vector xk codifies membership in one of J mutually exclusive and

exhaustive sample subgroups, the imbalance D 0S
21
s D is particularly transparent: It is a

sum of non-negative terms, D0S
21
s D ¼

PJ
j¼1 Cj, where Cj is the contribution to imbalance

of the j:th group. This representation allows us to focus on each specific group in the data

collection. Problematic groups are those for which Cj remains high throughout the data

collection. This happens in the LCS 2009 data collection, as illustrated in Table 4. To

reduce imbalance, one should direct the data collection so that all group contributions Cj

are small in the end.

Section 6 described three experiments carried out by interventions in the LCS 2009 data

file. A set of eight important sample subgroups was defined, and data collection was

deemed terminated when subgroup response meets specified levels. These experiments,

summarized in Table 10, showed that appropriate interventions in the data collection can

bring considerable improvement – increased balance, reduced distance – compared with

the actual LCS data collection. The cost savings realized by fewer call attempts might

instead be used to improve other aspects of survey quality.

To use the conclusions from these experiments in practice, we must anticipate a

“reasonable expectations” response rate to be used as a stopping rule for data collection in a

group. In a regularly repeated survey such prior information is usually available, but this may

not be the case in a survey carried out for the first time. But an assessment would be necessary.

In practice, whether or not responsive design has been used, nonresponse weighting

adjustment for nonresponse will necessarily take place at the estimation stage. Balancing

does not guarantee that the nonresponse bias is eliminated. The question then arises

whether one could just as well delay the use of some of the auxiliary variables – those

chosen to inform the responsive design – until the estimation stage, where they, usually

together with other auxiliary variables, will determine the calibrated adjustment weights.

In our opinion, although the responsive data collection can be an advantage, it does not

eliminate the need for efficient calibrated weighting at the estimation stage. The question

needs to be addressed in future research.

An issue in the LCS survey is the frame over-coverage; certain sample subgroups

contain highly mobile people, some of whom may no longer reside in the country.

It is clear that groups with chronically low response rate deserve particular attention in

the data collection. In particular, improvements are needed to reach immigrants and

younger persons whose style of living and interest in the survey may differ

substantially compared with a majority of the population. Future savings could be

realized by transferring interviewer effort from “easy-to-reach” respondents to the more

problematic groups.
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A central question is the choice of auxiliary variables to enter into the vector xk that

determines the imbalance D0S
21
s D used to direct the data collection. This question needs

to be addressed further in the future. Auxiliary variables are used first during the data

collection and then with a somewhat different perspective at the estimation stage. In the

data collection, the selected auxiliary variables serve to monitor the balance of the

response set and the distance distrjnr between respondents and nonrespondents. At the data

collection stage, the auxiliary vector should thus be one that lends itself well to contrasting

respondents with nonrespondents. At the estimation stage, on the other hand, the auxiliary

vector serves to yield the most accurate estimates, particularly for the most important

survey variables, and this vector is likely to contain more variables than the one used in

monitoring the data collection.
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