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The aim of selective editing is to identify observations affected by influential errors. A score
function based on the impact of the potential error on target estimates is useful to prioritize
observations for accurate reviewing. We assume a Gaussian model for true data and an
“intermittent” error mechanism such that a proportion of data is contaminated by an additive
Gaussian error. In this setting, scores can be related to the expected value of errors affecting
data. Consequently, a set of units can be selected such that the expected residual error in data
is below a prefixed threshold. In the context of economic surveys when positive variables are
analyzed, the method is more realistically applied to logarithms of data instead of data in their
original scale. The method is illustrated through an experimental study on real business survey
data where contamination is simulated according to error mechanisms frequently encountered
in the practical context of economic surveys.
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1. Introduction

Selective editing is based on the idea of looking for observations containing important

errors in order to focus the treatment only on them thus reducing the cost of the editing and

imputation phase (E&I), while maintaining a desired level of quality of estimates

(Granquist 1997; Lawrence and McKenzie 2000; Lawrence and McDavitt 1994). The

underlying assumption is that the true values for the selected units can be obtained through

follow-up or interactive treatment. In practice, observations are prioritized according to

the importance of errors expressed by the values of a score function (Latouche and

Berthelot 1992; Hedlin 2003), and units having a value of the score function above a given

threshold, are selected for a careful treatment.

The most commonly used methods to determine the scores are based on the difference

between observed and predicted values. This difference is composed of the possible

measurement error and the prediction error. When only raw data are available, traditional

methods do not allow the estimation of these two elements separately, hence scores are not

directly related to the expected errors. The consequence is that the value of the selective

editing threshold will not be directly interpretable as a level of accuracy of estimates of

interest and it will be difficult to find a stopping rule related to the expected level of quality

of estimates.

The introduction of a contamination model naturally leads to building a score function

as defined in Jäder and Norberg (2005). It is defined in terms of a risk component
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(the probability of being in error) and an influence component (the magnitude of error),

and allows the estimation of the expected error associated with each unit. In particular, the

contamination normal model is characterized by peculiarities that make it useful for the

problems generally treated by selective editing. In fact, it is usually applied to deal with

gross errors (see Ghosh-Dastidar and Schafer 2006) and is based on a latent variable

addressing the status of error for each observation. The latent variable describes the

intermittent nature of the errors generally affecting surveys carried out by National Statical

Institutes (NSIs) where in fact only a part of the observations are affected by errors. In

order to make the model useful in practice, it is extended to deal with lognormal variables,

to manage the presence of auxiliary variables not affected by errors (for instance in the

case of administrative variables), and to cope with missing values. As far as incomplete

observations are concerned, usual methods may lack of possibility of computing a set of

consistent and comparable scores. In our setting, the score is coherently computed by

taking into account the relevant marginal distribution obtained from the estimated

multivariate distribution. In the proposed approach, the scores can be interpreted as

expected errors, and a threshold can be determined such that the expected error of the

target estimates due to residual errors left in data is below a predefined value. An algorithm

to select the units to be edited is also proposed. Although the contamination model, the

score function and the selection algorithm are presented as parts of a unique procedure,

they can be used separately in different selective editing strategies.

Some experiments showed that the procedure can be usefully applied even when there

are some departures from the model assumptions (Buglielli et al. 2011). It is currently used

in some Istat surveys such as the Building permits survey, the Structure of earning surveys,

and the Information and communication technology survey.

The selective editing procedure is modularly implemented in an R package named

SeleMix (Buglielli and Guarnera 2011) that is available on the R website (http://cran.

r-project.org/).

The article is structured as follows. The contamination model is described in Section 2

where, in particular, it is explained how to obtain predictions for each single observation

(Subsection 2.1). The algorithm to estimate the model parameters is illustrated in

Section 3. The use of the model in presence of missing data is presented in Section 4.

Section 5 describes the application of the contamination model in the selective editing

setting, and in particular a proposal for a score function and for a selection criterion is

given. In Section 6 we present an experimental application to illustrate the approach and to

empirically evaluate its properties. Concluding remarks are given in Section 7.

2. True Data Model and Error Mechanism

An important feature of the proposed model is that it explicitly takes into account the fact

that only a proportion of survey data are affected by errors, that is, the error mechanism has

an intermittent nature. Data may be partitioned in two groups: error-free data and

contaminated data, the membership of each unit being unknown. This naturally leads to

modelling the observed data through a latent class model, where the latent variable is a

binary variable to be interpreted as an error indicator variable. When the interest is focused

on the identification of gross errors, one possible approach consists in specifying
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a distribution for the observed data as a mixture of two probability distributions

corresponding to error-free and contaminated data respectively. This is the approach

followed, for instance, by Ghosh-Dastidar and Schafer (2006), that uses the membership

posterior probabilities to asses the degree of outlyingness of each observation. In the

context of selective editing however, one is mostly interested in identifying errors having

high impact on some estimate of interest, rather than in identifying implausible

observations. Thus there is the need to estimate the error magnitude. This can be done if

the distribution of the “true” unobserved data and the error mechanism are specified

separately. In particular, the error mechanism is specified via the conditional distribution

of observed data given true data. In the following, the true data model and the error

mechanism are described in detail.

We suppose that true unobserved data are independent realizations of p-variate random

vectors Y*
i ¼ ðY

*
i1; : : :Y

*
ipÞ
0; i ¼ 1; : : : ; n, whose distributions are Gaussian with mean

vectors mi and common covariance matrix S. Furthermore, it is assumed that on each

sampled unit i a (possibly empty) set of q covariates xi ¼ ðxi1; : : : ; xiqÞ
0 is also available

and that mi ¼ B 0xi, where B is a q £ p matrix of unknown coefficients. The previous

hypotheses can be expressed in matrix form as

Y * ¼ XBþ U ð1Þ

where Y * is the n £ p true data matrix, X is the n £ q covariate matrix, and U is the n £ p

matrix of normal residuals whose rows are independent realizations of Gaussian random

vectors with zero mean and covariance matrix S.

Hereafter, the notation f (v) will denote the generic marginal probability distribution (or

density) for the random variable V. Analogously, f (v, w) and f (vjw) will denote joint and

conditional distributions involving variables V and W. Thus, for instance, for the ith unit,

f ðy*
i Þ and f (ui) are the marginal distributions of the true value and of the residual

respectively. From the previous assumptions:

f ðy*
i Þ ¼ Nðy*

i ;mi;SÞ; f ðuiÞ ¼ Nðui; 0;SÞ; i ¼ 1; : : : ; n; ð2Þ

where, as usual, Nð y;m;SÞ denotes the Gaussian density with mean vector m and

covariance matrix S.

We assume that presence of errors in data is governed by n independent Bernoulli

random variables Ii; ði ¼ 1; : : : ; nÞ with parameter p, that is, Ii ¼ 1 if an error occurs on

unit i and Ii ¼ 0 otherwise. Furthermore, given that an error is present on the ith unit (i.e.,

given the event {Ii ¼ 1}), its action is described through an additive random noise

represented by a p-variate random Gaussian variable ei with zero mean and covariance

matrix Se proportional to S. If Y denotes the data matrix associated with the observed

(possibly contaminated) data and e the error matrix whose ith row is e0i, we can formally

express the error mechanism as:

Y ¼ Y* þ Ie; f ðeiÞ ¼ Nðei; 0;Se Þ; Se ¼ ða 2 1ÞS; ð3Þ

where a is a numeric constant greater than 1, and I is a diagonal n £ n matrix whose

diagonal elements are the Bernoullian variables I1; : : : ; In. Equivalently, we can specify

the error model through the conditional distribution:
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f ð yjy*Þ ¼ ð1 2 pÞdð y 2 y*Þ þ pNð y; y*;Se Þ: ð4Þ

where p (mixing weight) represents the “a priori” probability of contamination and

d(t0 2 t) is the delta-function with mass at t.

In the previous model, the crucial aspect is the intermittent nature of the error implied by

the introduction of the Bernoullian variables Ii. Due to this assumption, it is conceptually

possible to think of data as partitioned into the two groups of error-free and contaminated

data, and to estimate, for each observation, the posterior probability of group membership,

i.e., the probability of being error-free or contaminated. This is the key aspect of the

proposed approach to selective editing. In fact, as we will see, differently from most

selective editing methods, the “suspiciousness” of each observation is naturally

incorporated in the model through the posterior probabilities.

Once the true data distribution and the error mechanism have been specified, the

distribution of the observed data can also be easily derived through multiplying the true

data density by the error density (4), and integrating over y*. The resulting distribution is:

f ð yiÞ ¼ ð1 2 pÞNð yi;mi;SÞ þ pNð yi;mi;aSÞ: ð5Þ

Expression (5) represents a mixture of two regression models having the same coefficient

matrix B and proportional residual variance-covariance matrices. This distribution can be

estimated by maximizing the likelihood based on n sample units via an ECM algorithm

(see Meng and Rubin 1993). Details are provided in Section 3.

2.1. Predictions

The contamination model can be used to obtain predictions or “anticipated values” for true

unobserved data. The separate specification of true data model and error model allows,

contrarily to the direct specification of the observed data distribution, to derive, for

i ¼ 1; : : : ; n, the distribution f ðy*
i jyiÞ of the true data conditional on the observed data,

where we have suppressed the reference to the X variates in the notation. A straightforward

application of the Bayes formula provides:

f ðy*
i jyiÞ ¼ t1ð yiÞdðy

*
i 2 yiÞ þ t2ð yiÞNðy

*
i ; ~mi; ~SÞ ð6Þ

where

~mi ¼
ð yi þ ða 2 1ÞmiÞ

a
; ~S ¼ 1 2

1

a

� �
S;

dðy*
i 2 yiÞ is the delta function with mass at yi, and t1( yi), t2( yi) are the posterior

probabilities that a unit with observed values yi belongs to the correct or erroneous data

group respectively:

t1ð yiÞ ¼ Prð yi ¼ y*
i jyiÞ ¼

ð1 2 pÞNð yi;mi;SÞ

ð1 2 pÞNð yi;mi;SÞ þ pNð yi;mi;aSÞ
;

t2ð yiÞ ¼ Prð yi – y*
i jyiÞ ¼ 1 2 t1ð yiÞ;

i ¼ 1; : : : ; n:
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In order to make the meaning of Formula (6) clear, let us consider the univariate case

in absence of covariates (EðY *Þ ¼ m). Let s 2, s2
e denote the variances of true data

and errors respectively, and define a ¼ s2 þ s2
e

� �
=s2. Then it is easily seen that the

mean ~my of the second component of the mixture (6) is given by

s22
e yþ s22m

� �
= s22 þ s22

e

� �
. In other words, given that the observed value y is not

correct, the expectation of the corresponding true value is a weighted mean of the observed

value y and the unconditioned mean m with weights proportional to the inverse of the

variances s 2 and s2
e respectively. Moreover, the variance ~s2 ¼ s22 þ s22

e

� �21
is lower

than both s 2 and s2
e , that is, the knowledge of the error mechanism reduces the uncertainty

about y* and the knowledge of the true data model reduces the uncertainty about the

evaluation of the error y 2 y* that actually occurred.

It is natural to define predictions in terms of the conditional expected value

~yi ¼ Eðy*
i jyiÞ. From (6) it follows:

~yi ¼ t1ð yiÞyi þ t2ð yiÞ ~mi; i ¼ 1; : : : ; n: ð7Þ

Correspondingly, we can define the expected error as

yi 2 ~yi ¼ t2ð yiÞð yi 2 ~miÞ:

The last expression makes it natural to interpret t2 and yi 2 ~mi as “risk component”

and “influence component” respectively to be considered in the score function

definition. In practice, parameters involved in expected errors are unknown, and have to

be estimated. The algorithm to obtain maximum likelihood estimates (MLE) of the

parameters is described in Section 3, and their use in a score function is illustrated in

Section 5.

We remark that in the context of economic surveys, when positive variables are

analyzed, logarithms of data instead of data in their original scale are often modeled

through a Gaussian distribution. The above methodology can be easily adapted to the

lognormal case. In this case the error model assumed for data in original scale is

multiplicative; more precisely, contaminated data are related to true data by means of the

relation

Z ¼ Z*ee

where e , Nð0;Se Þ.

For i ¼ 1; : : : ; n, let Y*
i ¼ ln Z*

i , Y i ¼ ln Zi, where Z*
i and Zi represent the variables

associated with true and contaminated data respectively, and Y*
i ;Y i are modeled as

previously illustrated (Formulas 2–6). The distribution of Z*
i given zi is:

f ðz*
i jziÞ ¼ t1ð ln ðziÞÞdðz*

i 2 ziÞ þ t2ð ln ðziÞÞLNðz*
i ; ~mi; ~SÞ; ð8Þ

where LNð�;m;SÞ denotes the lognormal density with parameters m and S.
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3. Estimation

In this section, the algorithm to obtain MLEs of the model parameters is described.

The log-likelihood to be maximized is:

Xn

i¼1

log f ið yiÞ;

where

f ið yiÞ ¼ ð1 2 pÞNð yi;mi;SÞ þ pNð yi;mi;aSÞ;

and mi ¼ B 0xi. An ECM algorithm is used and it consists in repeatedly applying, until

convergence, the following steps:

E-step

t1ð yiÞ ¼
ð1 2 pÞNð yi;mi;SÞ

ð1 2 pÞNð yi;mi;SÞ þ pNð yi;mi;aSÞ

t2ð yiÞ ¼ 1 2 t1ð yiÞ

i ¼ 1; : : : ; n:

CM-step

(M1) update the mixing weight (p)

p ¼
1

n

Xn

i¼1

t2ð yiÞ

(M2) update regression parameters (B)

B ¼ ðX 0VXÞ21X 0VY

(M3) update covariance matrix (S)

S ¼
ðY 2 XBÞ0VðY 2 XBÞ

n

(M4) update variance inflation parameter (a)

a ¼
trace ðY 2 XBÞ0t D

2 ðY 2 XBÞS21
� �

qp

where:

V
:
¼ tD

1 þ
tD

2

a
;

and tD
j denotes the diagonal matrix of which the ith diagonal element is tjð yiÞ; j ¼ 1; 2.

Note that, in (M1)–(M4), maximization with respect to model parameters is not

simultaneous but conditional on the other parameters remaining fixed. This make the

convergence of the algorithm, convergence slower than it would be in a genuine EM

algorithm. In order to initialize the algorithm we use as starting points for B and S the
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estimates of the corresponding parameters obtained through ordinary linear squares (OLS)

based on all data. A random value for p in the interval [0.6, 1] is chosen, and a is

initialized with some reasonable value, for instance a [ [5, 10].

In case of log-normal data, the ECM algorithm has to be applied to logarithms of data.

In the following, the MLEs will be denoted by p̂; B̂; Ŝ; â. Analogously, t̂1ð yiÞ, t̂2ð yiÞ

and m~̂ i
will denote the estimates of t1ð yiÞ, t2ð yiÞ and ~mi.

4. Incomplete Data

The previous methodology can be easily extended to situations where observed data are

incomplete and the nonresponse mechanism is assumed to be MAR. According to the

usual notation for incomplete data, the equality Y i ¼ ðY i;o;Y i;mÞ means that the random

vector Yi can be partitioned in two subvectors Y i;o, Y i;m corresponding to the observed and

missing items respectively for the ith unit. The partition induces a similar decomposition

for the starred variables: Y*
i ¼ ðY

*
i;o;Y

*
i;mÞ. Note that by definition, the Y* variables are

never observed, so that partitioning is determined only by the missing pattern of the

contaminated variables. According to the partition of Y and Y* vectors, we obtain the

partition of all relevant vectors and matrices. The matrix S can be partitioned as:

S ¼
Soo Som

Smo Smm

 !

so that, analogously to the complete data case, we can define matrices ~Soo and ~Smm as

ð1 2 1=aÞSoo and ð1 2 1=aÞSmm respectively.

In the same manner, for each missing pattern, we can partition the matrix B as

B ¼ ½Bo;Bm�, where the columns of matrices Bo and Bm correspond to observed and

missing variables respectively. Furthermore, for i ¼ 1; : : : ; n, let:

mi;o ¼ B 0oxi; mi;m ¼ B 0mxi; ~mi;o ¼
ð yi;o þ ða 2 1Þmi;oÞ

a
; ~mi;m ¼

ð yi;m þ ða 2 1Þmi;mÞ

a
:

Our goal is to estimate, for i ¼ 1; : : : ; n, the conditional distribution of Y*
i given Y i;o.

We have:

f ðy*
i jyi;oÞ ¼ f ðy*

i;o; y
*
i;mjyi;oÞ ¼

f ð yi;ojy
*
i;o; y

*
i;mÞf ðy

*
i;mjy

*
i;oÞf ðy

*
i;oÞ

f ð yi;oÞ
: ð9Þ

From the assumed error model in Formula (3), each observed variable, conditionally on

the corresponding true variable, is independent of all other true variables, thus we can

rewrite (9) as

f ðy*
i jyi;oÞ ¼

f ð yi;ojy
*
i;oÞf ðy

*
i;oÞ

f ð yi;oÞ
f ð y*

i;mjy
*
i;oÞ: ð10Þ
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The fraction in (10) is the conditional density of Y*
i;o given yi,o and can be obtained from

Formula (6) of Subsection 2.1:

f ð yi;ojy
*
i;oÞf ðy

*
i;oÞ

f ð yi;oÞ
¼ f ðy*

i;ojyi;oÞ ¼ t1ð yi;oÞd ð y
*
i;o 2 yi;oÞ þ t2ð yi;oÞNð y

*
i;o; ~mi;o; ~SooÞ:

Thus, we can write:

f ð y*
i jyi;oÞ ¼ t1ð yi;oÞf 1ð y*

i jyi;oÞ þ t2ð yi;oÞf 2ðy*
i jyi;oÞ;

where

f 1ð y*
i jyi;oÞ ¼ dð y*

i;o 2 yi;oÞf ð y*
i;mjy

*
i;oÞ ¼ dðy*

i;o 2 yi;oÞf ð y*
i;mjyi;oÞ ð11Þ

f 2ð y*
i jyi;oÞ ¼ Nð y*

i;o; ~mi;o; ~SooÞf ð y*
i;mjy

*
i;oÞ: ð12Þ

Both conditional densities in (11) and (12) can be obtained from that of a bipartitioned

multivariate normal distribution. The density (11) can be directly derived from the true-

data distribution (2). The density f 2ðy
*
i jyi;oÞ is normal, but the derivation is somewhat more

involved. It is thus possible to obtain closed expressions of the expected true values given

the observed ones. The adaption of these results to the log-normal distribution is

straightforward. All the details are given in the Appendix.

As far as parameter estimation is concerned, we have used the ECM algorithm

described in Section 3 on completely observed data. This approach is a suboptimal and

could be properly modified in order to take into account also incomplete observations. The

adaption of the ECM algorithm is a topic for a future study.

5. Selective Editing and Score Function

The score function is the main tool to prioritize observations according to the impact of

errors on target estimates. It is natural to think of the score function as an estimate of the

error affecting data. The estimate is generally based on comparing observed with predicted

values, taking into account the probability of being in error (suspiciousness). The latter

element arises from the implicit assumption that only a certain proportion of data is

affected by error, or, from a probabilistic perspective, that each measured value has a

certain probability of being erroneous. When the degree of suspiciousness is not taken into

account a large proportion of false alarms is expected, as noted in several case studies by

Norberg et al. (2010).

Prediction and suspiciousness are usually combined to form a score for a single variable,

named local score. An example of local score for the unit i with respect to the variable Yj

when the target quantity to be estimated is the total t*
j ¼

PN
i¼1y*

ij in a population P of size

N is:

Sij ¼
piwijyij 2 ŷijj

t
ref
j

where pi is a degree of suspiciousness, yij is the observed value of the variable Yj on the ith

unit, ŷij is the corresponding prediction, wi is the sampling weight, and t
ref
j is a reference

estimate of the target parameter t*
j . A review can be found in De Waal et al. (2011).
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When the interest is on more than one variable, the local scores can be combined to form a

global score GSi, examples of global scores are GSi ¼
P

j Sij, or GSi ¼ maxj Sij, see

Hedlin (2008).

The global score is used to evaluate the impact on the target estimates of the errors

remaining in the unedited observations. To this aim, observations are ordered by their

global score and all the units with a score above a threshold value are selected. The

threshold should be chosen so that the impact on the target estimates of the errors

remaining in the unedited observations is negligible.

The evaluation of the impact of errors remaining in data and so of the threshold is

generally done through a simulation study based on raw and edited data from a previous

occasion of the same survey (De Waal et al. 2011). This approach is based on the

assumption that the edited data can be considered as true data and that the error mechanism

and the data distribution are the same in the two survey occasions. Moreover it cannot be

applied when raw and edited data from previous occasions of the survey are not available.

In our setting, the introduction of a model allows to define a score function that can be

interpreted as an estimate of the expected error of the observation, and consequently the

threshold value h can be directly linked to the level of accuracy of the estimates of interest.

The proposed score function for the total t*
j is based on the relative individual error for

the ith unit with respect to the variable Yj. The latter is defined as the ratio between the

(weighted) expected error and the reference estimate t
ref
j of the target parameter t*

j , that is

rij ¼
wiðyij 2 ŷijÞ

t
ref
j

; ð13Þ

where the prediction ŷij for the variable Yj on the ith unit is obtained plugging in the MLE

of the parameters in the conditional expectation as expressed in Formula (7). The local

score function is defined as

Sij ¼ jrijj: ð14Þ

Note that, the estimated expected error is yi 2 ŷi ¼ t̂2ð yiÞð yi 2 m~̂ i
), that is the product

of the probability of being in error, t̂2, and the difference ð yi 2 m~̂ i
) between the observed

value and the expectation of the true value conditional on the event that yi is contaminated.

Hence, Sij can be seen as composed of a “risk component” t̂2ð yiÞ and an “influence

component” wið yi 2 m~̂ i
).

In the next paragraph, an algorithm for the selection of units to be accurately edited is

described. For i ¼ 0; 1; : : : ; n, let us define Rij as the absolute value of the expected

residual relative error for the variable Yj remaining in data after removing errors in the first

i ordered units (when i ¼ 0 no observations are selected), that is Rij ¼
Pn

k.i rkj

�� ��. Once an

accuracy level (threshold) h is chosen, the selective editing procedure consists of:

1. sorting the observations in descending order according to the value of Sij;

2. finding ne ; neðhÞ such that ne ¼ min{k * [ ð0; 1; : : : ; nÞjRkj , h; ;k $ k *}, that

is, selecting the first ne units such that all the residual errors Rkj (for a given j )

computed from the ðne þ 1Þth to the last observation are belowh.
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This procedure implies that the absolute value of the expected difference between the

estimator t̂
e
j computed on edited data and the estimator t̂*j computed on true data is below

the accuracy level h t
ref
j . Furthermore, Skj , 2h; ;k . ne for each unit not revised,

implying that also the error at micro level is bounded.

The algorithm described so far is easily extended to the multivariate case by defining a

global score function GSi ¼ max jSij. The two-step algorithm is:

1. order the observations with respect to GSi (decreasing order);

2. find ne such that ne ¼ min{k * [ ð0; 1; : : : ; nÞjmaxjRkj , h; ;k $ k *}, that is,

select the first ne units such that all the residual errors Rkj computed from the

(ne þ 1)th to the last observation are below h.

The above accuracy properties are still valid for all the variables. In fact,

E t̂
e
j 2 t̂*j

� 	��� ��� , ht
ref
j ; j ¼; 1; : : : ; J

and Skj , 2h; ;k . ne; j ¼ 1; : : : ; J.

We remark that different values of the parameter h can be set for the analyzed variables

in order to take into account their possible different importance.

The reference estimate t
ref
j in Formula (13) can be computed by using the predictions ŷij

obtained by the contamination model,

t̂
ref
j ¼

Xn

i¼1

wiŷij:

As an alternative, reference estimates can be obtained by using data from a previous

survey occasion.

6. Application to Real Data

In this section we describe an experimental evaluation based on data from the 2008 Istat

Survey on small and medium enterprises. The application refers to the subset of enterprises

in the Nace Rev2 sections B, C, D and E corresponding to aggregation of economic

activities in Manufacturing, mining and quarrying and other industry. This group of units

(N ¼ 5,399) has been used as the reference population (U) and for this population the

variables turnover (X) and labor cost (Y) have been used, assuming that the available data

are error-free. Errors are artificially introduced into the Y variable according to some error

mechanisms frequently met in the context of NSI surveys; they are explicitly described in

the next paragraphs. We suppose that the population parameter to be estimated is the total

of the variable Y. The variable X is used as a covariate in the contamination model to

obtain predictions for Y. The Gaussian contamination model is assumed for log-

transformed data, according to Formula (8).

A Monte Carlo study based on 1,000 iterations has been carried out to study the

performance of the proposed selective editing strategy. Each iteration of the Monte Carlo

experiment consists of the following steps:
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1. Sampling

Draw a simple random sample without replacement (srswor) sa of na ¼ 1,000

observations from the target population U.

2. Data contamination

† Multiply Y values by 1,000 in 1% of data.

† Swap the first two digits of Y values in 2% of data.

† Swap the last two digits of Y values in 2% of data.

† Replace the Y value with the value “1” in 2% of data.

3. Model estimation and score computation

Compute on the logarithm of data the MLEs of the model parameters and use them to

calculate the score function (14) for each unit. Order observations accordingly. In order

to assess the impact of the risk component t2, a score function based only on the

influence component yi 2 m~̂i
is also computed.

4. Selective editing

Given the threshold h, the most influential observations ne are selected according to the

procedure described in Section 5. In an alternative experiment, we have selected n~e

observations according to an analogous procedure where the score function is based

only on the influence component, as described in the previous step. The selected units

are replaced with the corresponding true values.

5. Target estimates

Compute the Horvitz-Thompson estimates of the variable Y on the true data (t̂*
y), on the

corrupted data (t̂y), and on the two sets of edited data, that is, t̂
e
y and t̂

~e
y.

The results are summarized through the empirical relative root mean squared error

(RRMSE) and the empirical relative bias (RB) based on the 1,000 Monte Carlo

realizations t̂
*ði Þ
y , t̂

ði Þ
y , t̂

eði Þ
y and t̂

~eði Þ
y (i ¼ 1, : : : ,1,000) of the three estimators in Step 5. The

error is to be intended as deviation from the estimate based on true data t̂
*ði Þ
y

� 	
, because we

are interested in evaluating the effectiveness of the methods regardless of the sampling

error. Thus, for instance, for the estimator t̂
ði Þ
y RRMSE and RB are defined respectively as:

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1;000

X1;000

i¼1

t̂
ði Þ
y 2 t̂

*ði Þ
y

t̂
*ði Þ
y

 !2
vuut

and

RB ¼
1

1;000

X1;000

i¼1

t̂
ði Þ
y 2 t̂

*ði Þ
y

t̂
*ði Þ
y

:

Empirical RRMSE and empirical RB are reported in the 3rd and 4th column of Table (1)

according to different threshold levels h. The efficiency of the procedure is measured by

comparing the percentage of selected units ne% with nẽ%, and with the percentage of

observations ne*% we would obtain by using true values as predictions, that is, by

replacing the expression in Formula (13) with ðyi 2 y*
i Þ=t̂*y . The average percentage of

selected units (ne%) is also reported in the last column of the table.
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The impact of errors on the estimates is particularly harmful; in fact the RRMSE

computed on observed data ranges from 10.54 to 10.91. After the selective editing

procedure, the RRMSE dramatically decreases, and its value is (on average) below the

accuracy level required and expressed by h. As far as the efficiency is concerned, the

results show that ne is close to the number of selected observations ne* that would be

selected in the ideal situation in which true data were known. Based on the comparison of

ne with nẽ, we can note that not taking into account the risk component leads to the

selection of a much higher number of observations.

These results are important because they show that the editing procedure performs

satisfactorily even though data clearly do not satisfy the assumptions of the model; in

particular the error mechanism is clearly far from the normality assumption.

In order to obtain a picture of some important parameters of the procedure, a single

Monte Carlo realization is described in Figure 1 and Figure 2.

In Figure 1(a) outliers and selected observations according to h ¼ 0:01 are reported

on the scatter plot of contaminated log data. An observation is considered an outlier if

Table 1. Empirical RRMSE, empirical RB of the estimates computed on contaminated and edited data, and

average percentage of edited units according to the threshold h

h t̂y t̂
e
y t̂

~e
y ne*% ne% n~e%

0.05 RRMSE 10.882 0.016 0.011 1.0 1.0 12.1
RB 9.893 20.006 0.005 – – –

0.01 RRMSE 10.542 0.006 0.001 1.7 2.4 61.0
RB 9.641 0.002 0.000 – – –

0.005 RRMSE 10.910 0.005 0.000 2.4 3.1 71.0
RB 9.984 0.002 0.000 – – –
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Fig. 1. Outliers, contaminated and selected observations in logdata
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the estimated conditional probability of being in error t̂2ð yiÞ is greater than 0.5.

Observations classified as outliers and not selected are denoted by O�S, selected and not

outliers by �OS, as both outliers and selected by OS. The remaining units that are not

selected and not outliers are denoted by OS.

Figure 1(b) shows contaminated units and selected observations. Observations that are

contaminated but not selected are denoted by C �S, not contaminated units that are selected

by �CS, contaminated and selected observations by CS. The remaining units that are not

selected and not contaminated are denoted by CS.

The estimated and true residual errors are reported in Figure 2(a) for the first 35

observations, while in Figure 2(b) the same residual errors are reported from the 15th

observations onward in order to zoom in and avoid masking scale effects. The horizontal

dashed line is the threshold and the vertical dashed line corresponds to the number of

selected units in this experiment (ne ¼ 32).

Figure 2(a) and Figure 2(b) show that the estimated residual errors are close to the true

residual errors. It is worth noting that the accuracy of the estimate is below the threshold

even though many errors are left in the data (see Figure 2), as it is required from a selective

editing procedure. As far as the outliers are concerned, it is interesting to note that not all

the outliers are considered influential by the procedure, and on the other hand some

selected units are not outliers. The distinction is due to the impact of the estimated error on

the estimates.

7. Conclusions

In this article a model-based approach to selective editing is proposed. The considered

model is referred to in the literature as a contamination model and it is typically used to
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detect gross errors. The introduction of a model for both true data and error mechanism

makes it possible to define a score function that can be interpreted as an estimate of the

error affecting data. This allows the relation between the choice of a threshold for selection

of the units to be reviewed and the level of accuracy required for the estimates to be made

explicit. According to this peculiarity, an algorithm to select influential errors is proposed.

Since the remaining uncertainty due to the unedited data can be properly estimated

under the model-based approach based on latent classes, it is possible to determine a

threshold for the score function conditional on the actual sample observations of the

current survey. By contrast, traditional methods do not assume an explicit measurement-

error model and the threshold value for the score function is usually set based on edited

data from previous surveys. Since the error mechanism and the data distribution do not

remain exactly the same over time, the remaining uncertainty of the current unedited data

can only be heuristically controlled.

The main advantages of the proposed approach are due to the introduction of an explicit

model for true data and error mechanism, and of course the limits lie in the validity of the

hypothesis on which the model is based. Nevertheless, the experimental studies carried out

in this paper suggest that the use of a Gaussian contamination model can be usefully

applied also when data and error mechanism deviate from the model assumptions,

especially when data are contaminated by gross errors.

An implication of the error model described is that errors on different items are not

independent of each other; this means that the intermittence nature of the error is at record

level and not at variable level. Further studies should be devoted to study more general

models able to encompass this assumption.

The use of edits in such a procedure is an open issue. However, some remarks are

needed in this respect. Soft edits such as ratio edits are implicitly taken into account by the

procedure, since the analysis of anomalous relationships between variables is the core of

the proposed approach. By contrast, it is not easy to treat hard edits consistently in the

model, and further analysis should be devoted to this aspect.

The editing described in the article can be classified as “output editing”, meaning that a

certain amount of data from the current survey is needed to estimate the model. However,

it can also be used from an “input editing” perspective, in situations where the model is

applied to a previous survey occasion, and the estimated parameters are used to select

influential units in the current survey.

Finally, even though the article describes a strategy composed of a latent class model

for predicting data and an algorithm to select influential units, they can be used

independently of each other. In fact, parameter estimation, computation of predicted

values and selection of influential errors are separately implemented in the R package

SeleMix.

Appendix

The density in (11),

f 1ð y
*
i jyi;oÞ ¼ dð y*

i;o 2 yi;oÞf ð y
*
i;mjy

*
i;oÞ ¼ dð y*

i;o 2 yi;oÞf ð y
*
i;mjyi;oÞ;

Journal of Official Statistics552



is:

f 1ð y*
i jyi;oÞ ¼ dð y*

i;o 2 yi;oÞNð y*
i;m;am;ijo þ bmjo yi;o;SmjoÞ:

In the density (12),

f 2ðy*
i jyi;oÞ ¼ Nðy*

i;o; ~mi;o; ~SooÞf ðy*
i;mjy

*
i;oÞ;

the factor f ð y*
i;mjy

*
i;oÞ is the true-data conditional distribution corresponding to the missing

pattern being considered, and can be derived from the true-data multivariate Gaussian

distribution in Formula (2):

f ðy*
i;mjy

*
i;oÞ ¼ Nðy*

i;m;am;ijo þ bmjoy*
i;o;SmjoÞ;

where

am;ijo ¼ mi;m 2 bmjomi;o; bmjo ¼ SmoS
21
oo Smjo ¼ Smm 2 SmoS

21
oo Som:

In order to obtain an explicit expression for the second density f 2ðy
*
i jyi;oÞ, it suffices

to observe that Nð y*
i;o; ~mi;o; ~SooÞNðy

*
i;m;am;ijo þ bmjoy*

i;o;SmjoÞ is the factorisation of a

multivariate Gaussian density Nð y*
i;o; y

*
i;m; �mi; �SÞ of which the parameters are:

�mi ¼ ½ ~m
0
i;o; ðam;ijo þ bmjo ~mi;oÞ

0�
0

; �S ¼

�Soo
�Som

�Smo
�Smm

 !
;

where:

�Soo ¼
~Soo ¼

a 2 1

a
Soo

�Smo ¼ �S 0om ¼ bmjo
�Soo ¼ SmoS

21
oo

~Soo ¼
a 2 1

a
Smo

�Smm ¼ Smjo þ
�Smo

~S
21

oo
�Som ¼

¼ Smm 2 SmoS
21
oo Som þ

a 2 1

a
SmoS

21
oo Som ¼

¼ Smm 2
1

a
SmoS

21
oo Som:

From the previous formulas it follows that the expected value of Y*
i conditional on the

observed value yi,o is:

EðY*
i jyi;oÞ ¼ t1ð yi;oÞE1i þ t2ð yi;oÞE2i;

where

E1i ¼ ½y
0
i;o; ðam;ijo þ bmjoyi;oÞ

0�
0

¼ ½y 0i;o; ðmi;m þ bmjoð yi;o 2 mi;oÞÞ
0�
0

;

E2i ¼ ½ ~m
0
i;o; ðam;ijo þ bmjo ~mi;oÞ

0� ¼ ½ ~m 0i;o; ðmi;m þ bmjoð ~mi;o 2 mi;oÞÞ
0�
0

:
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The case of incomplete log-normal data can also be easily treated, in fact with a slight

shift of the notation and letting yi;0 ¼ lnðzi;oÞ we have:

EðZ*
i jzi;oÞ ¼ t1ðlnðzi;oÞÞE

L
1i þ t2ðlnðzi;oÞÞE

L
2i;

where:

EL
1i ¼ exp yi;o þ

1

2
S

d
00

� � 0
; exp am;ijo þ bmjoyi;o þ

1

2
S

d
mj0

� � 0" #

EL
2i ¼ exp ~mi;o þ

1

2
�S

d

00

� � 0
; exp am;ijo þ bmjo ~mi;o þ

1

2
�S

d

mj0

� � 0" #
;

and Sd denotes the vector of the diagonal elements of the matrix S.
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