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Data editing is arguably one of the most resource-intensive processes at NSIs. Forced by ever-
increasing budget pressure, NSIs keep searching for more efficient forms of data editing.
Efficiency gains can be obtained by selective editing, that is, limiting the manual editing to
influential errors, and by automating the editing process as much as possible. In our view, an
optimal mix of these two strategies should be aimed for. In this article we present a
decomposition of the overall editing process into a number of different tasks and give an up-
to-date overview of all the possibilities of automatic editing in terms of these tasks. During the
design of an editing process, this decomposition may be helpful in deciding which tasks can
be done automatically and for which tasks (additional) manual editing is required. Such
decisions can be made a priori, based on the specific nature of the task, or by empirical
evaluation, which is illustrated by examples. The decomposition in tasks, or statistical
functions, also naturally leads to reuseable components, resulting in efficiency gains in
process design.
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1. Introduction

The quality of raw data available to National Statistical Institutes (NSIs) is rarely sufficient

to allow the immediate production of reliable statistics. As a consequence, NSIs often

spend considerable effort to improve the quality of microdata before further processing

can take place.

Statistical data editing encompasses all activities related to the detection and correction

of inconsistencies in microdata, including the imputation of missing values. Data editing,

or at least the correction part of data editing, has traditionally been performed manually by

data-editing staff with subject-specific expert knowledge. The manual follow-up of a large

number of detected inconsistencies is, however, very time consuming and therefore

expensive and decreases the timeliness of publications. Therefore, several approaches

have been developed to limit this resource-consuming manual editing.
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One approach is selective editing (Latouche and Berthelot 1992). This is an editing

strategy in which manual editing is limited or prioritised to those errors where this editing

has a substantial effect on estimates of the principal parameters of interest. Provided that

there is an effective way of determining the influential errors, this strategy can be

successful. It has been well established (see the review by Granquist and Kovar 1997) that

for many economic surveys only a minority of the records contains influential errors that

need to be edited; the remaining errors can be left in without substantial effect on the

principal outputs.

An alternative route to reducing manual editing is to perform the editing

automatically. Automatic editing is not a single method but consists of a collection of

formalised actions that each perform a specific task in the overall editing process. Some

well-known tasks performed in automatic editing are the evaluation of edit rules to detect

inconsistencies in the data, the localisation of fields that cause these inconsistencies, the

detection and correction of systematic errors such as the well-known thousand error, and

the imputation of missing or incorrect values. Once implemented, automatic editing is

fast, uses hardly any manual intervention and is reproducible. For reasons of efficiency,

it should therefore be preferred to manual editing even if the latter is confined to

selected records. However, not all data-editing functions can be performed automatically

while achieving a result of sufficient quality. Selective manual editing is then a necessary

addition.

The relationship between manual and automatic editing as it emerges from the classical

literature on selective editing is that all important amendments should be done manually

and that the role of automatic editing is confined to the less influential errors: its purpose is

mainly to ensure the internal consistency of the records so as to avoid inconsistencies at all

levels of aggregation. In this view, the quality of automatic editing has no bearing on the

decision to edit a record manually or automatically. Efficiency gains are realised by the

selection process only. The point of view taken in this article is that for reasons of

efficiency, manual editing should be confined to the data that are influential and cannot be

treated automatically with sufficient quality. In this view, the quality of automatic editing

is important in making the decision to edit manually or not and improvements in automatic

editing will lead to efficiency gains.

This article gives an overview of the current state of the art in efficient editing of

establishment data. Using numerical results from two example statistics, it is shown how

with the current methods, selective editing can be minimised while data quality is retained.

We identify methodological research directions that in our view have potential for yielding

further efficiency gains.

Besides making the data-editing process more efficient, there is a need to increase the

cost effectiveness of designing and implementing data-editing systems. In this article we

propose a hierarchical decomposition of the data-editing process into six different task

types, called statistical functions. This view of the overall process builds on the previous

work of Camstra and Renssen (2011) and Pannekoek and Zhang (2012) by adding a

taxonomy of editing functions and defining the minimal input and output requirements of

each of these functions. Identifying the in- and output parameters of these abstract

functions allows us to move towards a modern approach to process design, based on

reusable components that connect in a plug-and-play manner.
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The remainder of this article is structured as follows. Section 2 discusses some basic

aspects of error detection in manual and automatic editing. First we consider the different

kinds of errors that can arise and differentiate between errors for which automatic

treatment is a possibility and those for which manual treatment is required. Then we

discuss the edit rules that are extensively used in data editing, in particular with respect to

business surveys. In Section 3 an overview is given of both well-known and more recently

developed automatic error detection and correction methods. Section 4 is concerned with a

decomposition of the overall data-editing process into data-editing functions based on the

action and purpose of these functions. In Section 5 the application of a sequence of

different editing functions is illustrated using two real data examples. This section also

gives references to the freely available R packages that are used for these illustrations.

Finally, in Section 6 we summarise some conclusions.

2. Error Detection in Manual and Automated Editing

2.1. Sources of Errors in Survey Data

In analyses of survey errors it is customary to decompose the total error into more or less

independent components that may be treated separately. Well-known decompositions

include those by Groves (1989) and Bethlehem (2009). Here, we use Bethlehem’s

taxonomy of survey errors since it allows us to identify sources of error with common

data-editing strategies.

Bethlehem (2009) uses the scheme shown in Figure 1 to distinguish between sources of

error in a statistical statement based on surveys. The total error is decomposed into

sampling and nonsampling error. The sampling error is further decomposed into selection

and estimation error. Selection error consists of differences between the theoretical and

realised inclusion probabilities of sampling units, while estimation error consists of the

usual variance and bias introduced by the estimation method. Nonsampling errors can be

split into observational and nonobservational errors. Observational errors are composed of

overrepresentation of elements in the population register (overcoverage), measurement

errors (item nonresponse, completion errors, etc.) and processing errors at the NSI (e.g.,

data entry errors). Nonobservational errors are caused by omission of elements from the

population register (undercoverage) and unit nonresponse.

Total Sampling Selection

Estimation

Nonsampling Observation Overcoverage

Measurement

Processing

Nonobservation Undercoverage

Nonresponse

Fig. 1. Bethlehem’s (2009) taxonomy of survey errors. Errors in grey boxes are commonly solved by manual

data editing while automated techniques are usually more suited for error causes indicated in dotted boxes
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Traditionally, automated data-editing methods have more or less focused on errors

occuring at the measurement or processing stage. That is, many automated data-editing

methods focus on the observed variables rather than the identifying or classifying

variables already available in the population register. For example, in a stratified hot-deck

imputation scheme, the values of stratifying variables are assumed correct to begin with.

In contrast, data-editing staff often do not make such assumptions and may frequently

reclassify units.

Since many automated data-editing methods are based on mathematical modelling,

they usually assume that some kind of structured auxiliary information is available.

In many cases historic records, auxiliary register variables or totals from related statistics

can be used to estimate values for erroneous or missing fields in a survey data set. By

contrast, data-editing staff may use unstructured auxiliary information to edit records.

Such information may, for example, include written financial reports or information from

websites, as well as recontacts. These two differences between manual and automated

data editing enable data-editing staff to correct for errors not caused at the moment

of measurement.

In 2010, thirteen of Statistics Netherlands’ data-editing employees working on the

short-term business survey were informally interviewed on commonly found errors and

data-editing practices. Besides a number of commonly found measurement errors

(reporting of net instead of gross turnover, reporting of value of goods instead of invoices,

etc.) many causes of error that were mentioned are nonobservational or sampling errors in

Bethlehem’s taxonomy. Examples include misclassifications such as retailers being

registered as wholesalers, population effects such as bankruptcies, splits and mergers, and

differences between legal units (chamber of commerce), tax units (of the tax office) and

economic units (of Statistics Netherlands). Such errors are detected and/or solved by

looking at auxiliary information such as figures and articles from sector organisations and

(financial) newspapers, a website dedicated to registering bankruptcies, publicly available

information on wages and retirement funds in a sector and so on. Subject-matter experts

also use (often unstructured) domain knowledge on branch-specific transient or seasonal

effects to detect errors. Examples of such effects include weather conditions (energy and

construction), holidays (food industry, printers, etc.) and special events (tourist sector).

For the various measurement errors mentioned by the interviewees, conventional

automatic data-editing methods can in principle be applied. For nonobservational errors

like population errors and misclassifications, the error detection and correction process is

based on fuzzier types of information and therefore harder to automate. At the moment,

we are not aware of methods that can exploit such information for data-editing purposes

automatically.

2.2. Edit Rules for Automatic Verification

Prior knowledge on the values of single variables and combinations of variables can

be formulated as a set of edit rules (or edits for short), which specify or constrain the

admissible values. For single variables such edits are range checks; for most variables

in business surveys these amount to a simple non-negativity or positivity requirement

such as:
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e1: Number of employees $ 0

e2: Turnover . 0

Edits involving multiple variables describe the admissible combinations of values of these

variables in addition to their separate range restrictions. For numerical business data, many

of these edits take the form of linear equalities (balance edits) and inequalities. Some

simplified examples of such edit rules are:

e3: Result ¼ Total revenues – Total costs

e4: Total costs ¼ Purchasing costs þ Personnel costs þ Other costs

e5: Turnover ¼ Turnover main activity þ Turnover other activities

e6: Employee costs , 100 £ Number of employees

The inequality and equality edits e1–e5 are examples of fatal or hard edits: they must hold

true for a correct record. This class of edits is opposed to the so called soft or query edits,

the violation of which points to highly unlikely or anomalous (combinations of) values that

are suspected to be in error although this is not a logical necessity. The edit e6 could be

interpreted as a soft edit.

More generally, an inequality edit k can be expressed as
PJ

j¼1akjxj # bk, with the xj

denoting the variables, the akj coefficients, and bk a constant. In e1 and e2, bk ¼ 0 and the

akj are zero for all variables except one, for which akj is 21. Linear equalities such as e3, e4

and e5 can similarly be expressed as
PJ

j¼1akjxj ¼ bk.

Note that these edits are connected by certain common variables, which is true for many

of the edits used in business statistics and has consequences for error localisation and

adjustment for consistency. In such situations it is convenient to re-express the edits as a

system of K linear equations and inequalities, in matrix notation:

Ex ( b; ð1Þ

with E the K £ J edit matrix with elements akj, x a J-vector containing the variables and

b a K-vector with elements bk. The symbol ( should here be interpreted as a vector of

operators (with values , , ¼ or # ) appropriate for the corresponding (in)equalities.

Each of the edit rules can be verified for each record. If we have N records and K edits,

all the failure statuses can be summarised in a binary N £ K failed-edits matrix F,

corresponding to all the record-by-edit combinations. The failure statuses can be the input

to an error localisation function that selects variables from those involved in failed edits

with values that are to be considered erroneous and need to be changed in order to resolve

the edit failures (see Subsection 3.3).

The number of edit rules varies greatly between statistical domains. The structural

business statistics (SBS) are an example with a large number of edit rules. An SBS

questionnaire can be divided into sections. It contains, for instance, sections on employees,

revenues, costs and results. In each of these sections a total is broken down into a number

of components. Components of the total number of employees can be part-time and full-

time employees and components of total revenues may be subdivided into turnover and

other operating revenues. The total costs can have as components: purchasing costs,

depreciations, personnel costs and other costs. The personnel costs can be seen as a

subtotal, since they can again be broken down in subcomponents: wages, training and
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other personnel costs. Each of these breakdowns of a (sub)total corresponds to a (nested)

balance edit. SBS questionnaires also contain a profit and loss section where the revenues

are balanced against the costs to obtain the results (profit or loss), which leads to the edit e3.

This last edit connects the edits from the costs section with the edits from the revenues

section. Soft edits for the SBS form are often specified as bounds on ratios. For instance,

ratios between a component and the associated total, between the number of employees

and the personnel costs, between purchasing costs and turnover, etc.

3. Methods for Automatic Detection and Amendment of Missing or

Erroneous Values

The overall editing process can be seen as a sequence of statistical functions applied to a

data set. Such functions, for example selecting records for manual editing, may be

implemented as an automated or a manual subprocess. In this section we summarise a

number of data-editing methods that can be performed automatically.

Since these methods often detect or correct different types of errors, they will usually be

applied one after another so as to catch as many errors as possible. A detailed exposition of

the statistical methodology for each of these functions is beyond our scope, but below we

summarise the types of methods that could be used and/or give some simple examples.

More detailed descriptions can be found in De Waal et al. (2011) and the references

cited there.

3.1. Correction of Generic Systematic Errors

From a pragmatic point of view, a systematic error is an error for which a plausible cause

can be detected and knowledge of the underlying error mechanism enables a satisfactory

treatment in an unambiguous deterministic way. De Waal et al. (2012) distinguish between

generic systematic errors and subject-related systematic errors. A generic systematic error

is an error that occurs with essentially the same cause for a variety of variables in a variety

of surveys or registers. Subject-related systematic errors on the other hand occur for

specific variables, often in specific surveys or registers.

3.1.1. Unit of Measurement Error

A well-known generic systematic error is the so-called unit of measurement error which is

the error of, for example, reporting financial amounts in Euros instead of the requested

thousands of Euros. Unit of measurement errors are often detected by a simple ratio

criterion that compares the raw value xraw with a reference value xref. Such a rule can be

expressed as

xraw

xref

. t; ð2Þ

with t some threshold value. The reference value can be an approximation to the variable x

that is unaffected by a unit of measurement error, such as an edited value for the same unit

from a previous round of the same survey or a current or previous stratum median of x. The

detection of unit of measurement errors may be improved by dividing the financial

variables by the number of employees (e.g., costs or revenues per employee) to eliminate
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the variation in these variables due to the size of the unit. If a thousand error is detected,

the affected values are divided by one thousand. See, e.g., Di Zio et al. (2005) and

Al Hamad et al. (2008) for further discussion and more advanced methods for detecting

unit of measurement errors.

Thousand errors are often made in a number of financial variables simultaneously,

yielding what is known as a uniform thousand error in these variables. Thousand errors

will not violate balance edits if they are uniform in all variables involved; therefore, they

cannot be detected by such edits. Incidental thousand errors may be detected by balance

edits when the error is made in one or more of the components or their total but not in all

these variables.

3.1.2. Simple Typing Errors, Sign Errors and Rounding Errors

Some inconsistencies are caused by simple typing errors. Recently, methods have been

developed to reliably detect and correct these types of errors (Scholtus 2009; Van der Loo

et al. 2011). The algorithm correcting for typing errors uses the edit rules to generate

candidate solutions and accepts them if the difference with the original value is not larger

than a prespecified value. The difference is measured with the restricted Damerau-

Levenshtein distance (Damerau 1964; Levenshtein 1966). This distance measure counts

the (possibly weighted) number of deletions, insertions, alterations and transpositions

necessary to turn one character string into another (the restriction entails that substrings,

once edited, cannot be edited again).

The typo-correction can also correct simple sign errors. More complex sign errors, such

as those caused by swapping Cost and Turnover in a questionnaire where the rule

Profit ¼ Turnover – Cost must hold, can be solved by a binary tree algorithm that tests

whether (combinations of ) swapping options decrease the number of violated edits

(Scholtus 2011).

Rounding errors cause edit violations by amounts of a few units of measurement at

most. It is therefore of less importance which variables are adapted to resolve these

inconsistencies. The scapegoat algorithm of Scholtus (2011) uses a randomisation

procedure to adapt one or more variables by a small amount so that the number of equality

violations is decreased.

3.2. Domain-Specific Correction Rules

In contrast to generic systematic errors, subject-related or domain-specific systematic

errors occur for specific variables, often in specific surveys or registers. Such errors are

often caused by a common misunderstanding of certain definitions among respondents.

Restaurants, for instance, often incorrectly classify their main revenues as revenues

from trade (because they sell food) rather than revenues from services as it should be.

As another example, reporting net rather than gross turnover may occur frequently in

some domains.

Direct if-then rules can be used to correct such errors. These rules are of the form

if condition then action;
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where condition is a logical expression that is true if an error is detected and action is an

amendment function that assigns new values to one or more variables.

Apart from being used for correction of subject-specific systematic errors, such rules are

also used for selection and imputation. For selection of records for manual editing, the

action consists of assigning TRUE to an indicator variable for manual treatment. For

instance, if for large units crucial variables such as Employment or Turnover are missing or

inconsistent, the unit may be selected for manual treatment. For the selection of fields to be

changed, the action consists of changing some fields to NA (which stands for Not

Available or missing). For instance, if the costs per employee are outside the admissible

range, the number of employees (in Full Time Equivalents, FTE) may be selected as

erroneous rather than the employee costs because it is known that the financial variables

are reported more accurately. For imputation the condition specifies which missing value

can be imputed by the rule and under what conditions. For instance

if Wages for temp: employees ¼ NA and No: of temp: employees ¼ 0

then Wages for temporary employees ; 0;

We use the symbol ; when we need to distinguish assignment from mathematical or

logical equivalence (¼). Even the evaluation of an edit rule can be seen as a rule in this if-

then form. The condition is in that case the edit rule itself and the action is the assignment

of a TRUE-FALSE status to a column of the matrix F.

These rules are called direct correction/selection/imputation rules because the

implementation of the condition and the action follows trivially from the rule itself.

In contrast, the generic systematic errors discussed above such as typos and rounding

errors are also based on rules, because they use the edit rules, but in those cases the

implementation cannot be formulated in a single simple if-then rule but requires a more

sophisticated algorithm. The same is true for Fellegi-Holt-based error localisation and

model-based imputation with estimated parameters, to be discussed below.

3.3. Error Localisation

Error localisation is the process of pointing out the field(s) containing erroneous values in

a record. Here, we assume that all fields should be filled, so an empty field (NA) is also

assumed erroneous. If there are N records with J variables, the result of an error

localisation process can be represented as a boolean N £ J matrix L, of which the elements

Lij are TRUE where a field is deemed erroneous (or when it is empty) and FALSE

otherwise.

Automated error localisation can be implemented using direct rules, as mentioned in

Subsection 3.2. In such a case a rule of the form

if condition then Lij ; TRUE ð3Þ

can be applied. It should be noted that this method takes no account of edit restrictions, and

does not guarantee that a record can be made to satify all the edits by altering only the

content of fields with Lij ¼ TRUE; Boskovitz (2008) calls this the error correction

guarantee.

Journal of Official Statistics518



Error localisation becomes more involved when one demands that 1) it must be possible

to impute fields consistently with the edit rules and 2) the (weighted) number of fields

to alter or impute must be minimised. These demands are referred to as the principle

of Fellegi and Holt (1976). Identifying 1 and 0 with the boolean values TRUE and

FALSE respectively, the localisation problem for each row l of L can be denoted

mathematically as

l ;
u[{0;1}J

arg min wT u ð4Þ

under the condition that the set of (in)equality restrictions in Equation (1) has a solution for

the xj with lj ¼ 1, given the original values of the xj with lj ¼ 0. The vector l points out

which variables are deemed wrong (1) and which are considered correct (0). In addition, w

is a non-negative weight vector assigning weights to each of the J variables. These weights

are referred to as reliability weights, because they can be used to express the degree of trust

one has in each original value xj. Note that increasing wj makes it less likely that xj will be

chosen as a candidate for amendment, as feasible solutions with lower weights are more

likely to be available.

A special case occurs when only univariate (range) edits are considered – that is, when

every edit contains just one variable. Denote by C the K £ J boolean matrix that indicates

which variables (columns) occur in which edits (rows), and denote by X the N £ J

numerical data matrix. In this special case, the matrix C contains at most 2J nonzero

elements, since each variable can be bounded from above or below or both. The matrix L

can then be computed as

L ; ðFC . 0Þ _ ðX ¼ NAÞ: ð5Þ

Here, F is the N £ K failed-edits matrix defined in Subsection 2.2, and the logical and

comparison operators (, and ¼ ) on the right-hand side should be evaluated elementwise.

The symbol _ indicates the elementwise or operation.

Several algorithms have been developed for error localisation under interconnected

multivariate linear constraints. See De Waal et al. (2011) and the references therein

for a concise overview of available algorithms. Regardless of the algorithm used, the

special case of Equation (5) can be applied to the subset of univariate edits prior to one of

the more complex algorithms to reduce computational complexity. The branch-and-

bound algorithm of De Waal and Quere (2003) and approaches based on a reformulation

of the error localisation problem as a mixed-integer problem (MIP) have recently

been implemented as a package for the R statistical environment by De Jonge and Van der

Loo (2011).

3.4. Imputation of Missing or Discarded Values

Imputation is the estimation or derivation of values that are missing due to nonresponse

or discarded for being erroneous (as indicated by L in the previous section). Below we

discuss deductive and model-based imputation methods.
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3.4.1. Deductive Imputation of Missing or Discarded Values

In some cases the values for the empty fields can be derived uniquely from edit rules by

mathematical or logical derivation. For example, when one value in a balance edit is

missing, the only possible imputed value that will satisfy the balance edit can be computed

from the observed values. For the interrelated systems of linear edits that are typical for the

SBS, it is generally not obvious if some of the missing values are determined uniquely by

the edit rules. By filling in the observed values from a record in the edit rules, a system of

(in)equalities is obtained with the missing values as unknowns. Specifically, if x is

partitioned as x ¼ ðxobs; xmisÞ where xobs denotes the subvector of x containing the

observed values and xmis the subvector with missing values and E is partioned

conformably as E ¼ ðEobs;EmisÞ, then we have from Ex ( b,

Emisxmis ( b 2 Eobsxobs; ð6Þ

where the right-hand side is calculated from the observed values and xmis contains the

unknown missing values. The problem now is to determine which, if any, of these

unknowns can be solved from this system and consequently deductively imputed. There

exist simple algorithms that can find the values of all uniquely determined values for the

unknowns in this system (De Waal et al. 2011).

3.4.2. Model-Based Imputation

Deductive imputation will in general only succeed for part of the missing values. For the

remaining missing items, models are used to predict the values and these predictions are

used as imputations. Here the term “model” is used in a broad sense, covering not only

parametric statistical models but also nonparametric approaches such as nearest-neighbour

imputation.

For business surveys with almost exclusively numerical variables, the predominant

methods are based on linear regression models including, as special cases, (stratified) ratio

and mean imputation (cf. De Waal et al. 2011, Ch. 7). Important for the efficiency of the

application of regression imputation is that models for each of the variables that need

imputation are specified in advance or selected automatically without the need for time-

consuming model selection procedures by analysts at the time of data editing. When

available, a historical value is often a good predictor for the current value.

An alternative, if all variables are continuous, is to use a multivariate regression

approach where all variables that are observed in a record are used as predictors for each of

the missing values. Thus, for each record, the variables are partitioned into two sets; the

variables observed in record i and the variables missing in that record. The subvectors of x

corresponding to these two sets will be denoted by xobs(i ) and xmis(i ) and the value of xobs(i )

in record i by xi.obs. If it is assumed that x is multivariate normally distributed, the

conditional mean of the missing variables, given the values of the observed variables in

record i, mi.mis say, can be expressed as

mi:mis ¼ mmisði Þ þ Bmisði Þ;obsði Þðxi:obs 2 mobsði ÞÞ; ð7Þ

with mmis(i ) and mobs(i ) the unconditional means of xmis(i ) and xobs(i ) and Bmis(i ),obs(i )

an nmis(i ) £ nobs(i ) matrix with rows containing the coefficients for the nmis(i ) regressions
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of each of the missing variables on the observed ones. Estimates of the conditional

means mi.mis are the regression imputations and can be applied for continuous variables

for which the linear model is a good approximation, without necessarily assuming

normality.

An estimator of the coefficient matrix Bmis(i ),obs(i ) can be obtained from an estimator of

the covariance matrix S of x by using

Bmisði Þ;obsði Þ ¼ S
2
obsði Þ:obsði ÞSobsði Þ:misði Þ ð8Þ

with Sobsði Þ:obsði Þ the submatrix of S containing the (co)variances of the variables observed

in record i and Sobsði Þ:misði Þ the submatrix containing the covariances among the variables

observed in record i and the variables missing in this record. Note that once we have

estimated the covariance matrix S and mean vector m for all variables, we can perform all

regressions needed to impute each of the records, with their different missing data patterns,

by extracting the appropriate submatrices and subvectors. In (8) we used a generalised

inverse, denoted by “2”, instead of a regular inverse because the covariance matrix

involved can be singular due to linear dependencies of the variables implied by equality

constraints.

A nice property of this multivariate regression approach with all observed variables as

predictors is that linear dependencies in the data used to estimate S will be transferred to

each imputed record. Therefore, all equality edits will be satisfied by the imputed data

provided that S is estimated on data consistent with these edits (cf. De Waal et al. 2011,

ch. 9). A possible data set to be used for estimation is the set of complete and consistent

records from the current data. If there are not (yet) enough such records, cleaned data from

a previous round of the survey provide an alternative. If the current data are used it is

possible to also include the records with missing values in the estimation of m and S by

applying an EM algorithm (see Little and Rubin 2002).

3.5. Adjustment of Imputed Values for Consistency

Imputed values will often violate the edit rules, since most imputation methods do not take

the edit rules into account. The multivariate regression approach (7) takes equalities into

account but not inequalities. More involved imputation methods have been developed that

can take all edit rules into account (De Waal et al. 2011, Ch. 9), but for many unsupervised

routine applications such models become too complex. The inconsistency problem can

then more easily be solved by the introduction of an adjustment step in which adjustments

are made to the imputed values, so that the record satisfies all the edits and the adjustments

are as small as possible. This can be seen as an optimisation problem: minimise the

adjustments under the constraint that all edits are satisfied. When the weighted least

squares criterion is chosen to measure the discrepancy between the unadjusted and the

adjusted values, this problem can be formalised as

xadj ¼
x[Rn

arg min ðx 2 xunadjÞ
T Wðx 2 xunadjÞ

subject to Exadj ( b; ð9Þ
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where it is understood that only the imputed values may be changed; the other elements of

xadj remain equal to the corresponding elements of xunadj. The matrix W is a positive

diagonal matrix with weights that determine the amount of adjustment for each of the

variables; adjustments to variables with large weights have more impact on the criterion

value and therefore these variables are adjusted less than variables with small weights. For

instance, the choice W ¼ diagðxunadjÞ
21 leads to minimisation of the squared

discrepancies relative to the size of the unadjusted values; see Pannekoek and Zhang

(2011) for more details. For a different approach in the context of sequential imputation,

see Pannekoek et al. (forthcoming).

3.6. Selection of Units for Further Treatment

Automatic treatment cannot be expected to find and repair all important errors and

consequently some form of additional manual treatment will be needed. The selection of units

for manual treatment is the essential part of selective editing. The goal of this approach is to

identify units for which it can be expected that manual treatment has a significant effect on

estimates of totals and other parameters of interest and to limit manual review to those units.

An important tool in this selection process is the score function (Latouche and Berthelot

1992; Lawrence and McDavitt 1994; Lawrence and McKenzie 2000; Hedlin 2003) that assigns

values to records that measure the expected effect of editing. The record score is usually built

up from local scores for a number of important variables. Each local score measures the

significance for the variable of concern. Often it can be decomposed into a risk component that

measures the likelihood of a potential error, and an influence component that measures the

contribution or impact of that error on the estimated target parameter. The local score for

variable j in record i can then be expressed as sij ¼ Iij £ Rij with Iij the influence component and

Rij the risk component for variable j in record i. See, for example, Di Zio and Guarnera in this

issue, for an example of a local score function with risk and influence components. A record- or

unit-level score is a function of local scores, that is Si ¼ f ðsi1; : : : ; siJÞ. The measure of risk is

commonly based on the deviation of a variable from a reference value, often a historical value

or stratum median. Large deviations from the reference value indicate a possible erroneous

value and, if it is indeed an error, a large correction.

Since the local score and the record score reflect the occurrence and size of outlying

values with respect to the reference values, the score can be seen as a quantitative measure

for an aspect of the quality of a record. In this sense it is a verification function (cf.

Section 4). Its purpose, however, is selection, and this can be accomplished by comparing

the scores with a predetermined threshold value and selecting the units with score values

higher than the threshold for manual editing. Alternatively, the units can be ordered with

respect to their score values and manual editing can proceed according to this ordering,

until some stopping criterion is met.

In practice we also see other, simpler selection functions being applied. The following

are some examples.

. A function that identifies units that are “crucial” because they dominate the totals in

their branch; selected units will be reviewed manually, whether they contain suspect

values or not (selection on influence only).
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. A function that selects influential units for which automatic imputation is not

considered an accurate treatment because some main variables are missing or

obviously incorrect; selected units will be recontacted.

. A function that selects noninfluential units for which automatic imputation is not

considered an accurate treatment because some main variables are missing or

obviously incorrect; selected units will be treated as unit nonresponse, for instance by

weighting techniques in the estimation phase after editing is completed.

. A function that selects units for which an automatic action has failed, for instance, if

the error localisation took too much time and the process was stopped without having

obtained a solution. Selected units can be treated as unit nonresponse or reviewed

manually, depending on their influence.

For some recent theoretical developments in the field of selective editing, see Arbués et al.

and Di Zio and Guarnera in this issue.

4. The Data-Editing Process

Much of the complexity in the design of a data-editing system is caused not by

mathematical difficulties relating to the underlying methods, but by combining the

implementation of those methods into a working process or supporting system. A typical

data-editing process consists of a mixture of domain-specific error correction and

localisation actions, a number of automated editing steps, and a possibility for manual

intervention on selected records. Each part of such a process has its own input, output,

and control parameters that influence how it can be combined with other steps to build up

a full process.

To design, compare and evaluate data-editing processes it is useful to have a common

terminology for the types of activities that are instrumental in realising the end result of a

data-editing process. In line with Camstra and Renssen (2011) we call these types of

activities statistical functions. In Subsection 4.1 below we propose a decomposition of the

overall data-editing process in a taxonomy of statistical functions that are characterised by

the kind of task they perform and the kind of output they produce. The effects of these

statistical functions can be evaluated by inspecting their characteristic output.

A statistical function describes what type of action is performed but leaves unspecified

how it is performed. To implement a statistical function for a specific data-editing

application (discussed in Subsection 4.2), a method for that function must be specified and

configured. It should be noted that the same statistical function can, and often will, be

implemented by several methods even within the same application. For instance, the

statistical function (or type of task or kind of activity) record selection can be implemented

by both a score function methodology and by graphical macro-editing.

An actual implementation of a data-editing process can now be seen as a collection of

implementations of statistical functions. The overall process can be structured by dividing

it into subprocesses or process steps, that each implement one or several (but related)

statistical functions executed by specified methods. Process steps are application-specific

but the statistical functions that they implement are much more general and are used to

categorise the kinds of activities implemented by the process steps. The granularity in

which a process is divided into process steps is, to an extent, arbitrary. For example, one
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may talk about a statistical process as the complete process from gathering input data to

publishing results, and divide that process into process steps using the GSBPM (UNECE

Secretariat 2009). In that model, data editing occurs as a single step. For our purposes

however, it is natural to define a more fine-grained approach.

The choice of methods to be used in the process steps and the order in which the process

steps are executed will depend on the properties and requirements of the specific

application at hand, but some general considerations regarding these choices are discussed

in Subsection 4.3.

4.1. A Taxonomy of Data-Editing Functions

Just like process steps, statistical functions may be separated on several levels of

granularity. In Figure 2 we decompose data editing hierarchically, in three levels, into

ultimately six low-level statistical functions.

At the first level of the decomposition we distinguish between functions that leave the

input data intact (compute indicator) and those that alter the input data (amend values).

At the second level, functions are classified according to their purpose. We distinguish

between indicators that are used to verify the data against quality requirements

(verification) and indicators that are used to separate a record or data set into subsets

(selection). Verification functions are separated further into functions that verify hard

(mandatory) edit rules (rule checking) and functions that compute softer quality indicators

(compute scores). The selection function allows for different records (record selection) or

different fields in a record ( field selection) to be treated differently. There is no separation

based on purpose for the amendment function; amendment functions are only separated

into functions that alter observed values (amend observations) and functions that alter unit

properties (amend unit properties) such as classifying (auxiliary) variables. This may be

interpreted as a decomposition based on a record-wise or field-wise action.

It should be recognised that there are many other dimensions along which one could

separate the types of tasks performed in a data-editing process. For example, Pannekoek

Data editing
Compute
indicator

Verification Rule checking

Compute
scores

Selection Field selection

Record
selection

Amend values
Amend

observations

Amend unit
properties

Fig. 2. A taxonomy of data-editing functions. Each data-editing function has its own minimal input-output

profile which determines how they may be combined in a data editing process (Table 1)
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and Zhang (2012) distinguish between methods that can be performed on a per-record

basis (e.g., Fellegi-Holt error localisation, imputation with historical values) and actions

that need batch processing (e.g., error localisation by macro-editing, imputation with

current means). The point of view we take here is that we wish the taxonomy to abstract

from implementation issues. The lowest-level statistical functions defined here allow one

to define quality indicators for each function, in terms of their effect on data, performance,

expense, and so on, which are independent of the chosen statistical method or

implementation thereof. Below, the six lowest-level data-editing functions are discussed

in some detail.

Rule checking. This verification function checks, record by record, whether the value

combinations in a record are in the allowed region of the space of possible records. Such a

task may be done automatically, when the rules and possible reference data are available in

a machine-readable format, or manually, by expert review.

Compute scores. The score function computes a quality indicator of a record or field.

Examples of score functions are counting the number of missings in a record, determining

whether a field contains an outlier, or counting the number of edits violated by a field. The

output of score functions is often input for automated selection functions. Score functions

are rarely computed manually.

Field selection is used to point out fields in records that need a different treatment than

the remaining fields, for example because they are deemed erroneous. Selection may be

done manually by expert review, or automatically. Examples of automated methods

include detection of unit of measurement errors, and Fellegi and Holt’s method for error

localisation.

Record selection aims to select records from a data set that need separate processing.

This can be done automatically, for example by comparing the value of a score function to

a predefined threshold value. Manual record selection is commonly based on macro-

editing methods, such as sorting on a score function, reviewing aggregates, and graphical

analyses.

Amend observations. This function aims to improve data quality by altering observed

values or by filling in missing values. Many automated imputation and adjustment

methods exist, some of which have been discussed in Section 3. The amendment function

can also be performed manually, for example by data-editing staff who may recontact

respondents.

Amend unit properties. This function does not alter the value of observed variables but

amends auxiliary properties relating to the observed unit. In business statistics, this

function entails tasks like changing erroneous business classification codes (NACE codes)

and is often performed manually. Another commonly performed task falling into this

category is the adjustment of estimation weights for representative outliers.

Pannekoek and Zhang (2012) and Camstra and Renssen (2011) also proposed a

decomposition of statistical functions related to data editing. The former distinguish

between the verification, selection and amendment functions, while the latter also

distinguish calculation of score functions. The taxonomy in the current article further

completes the picture by assigning data-editing functions a place in a hierarchy based on

clearly defined separating principles (amend or not at the first level and select or verify at

the second level).
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4.2. Specification of Data-Editing Functions

As mentioned in the beginning of section 4, each function in the taxonomy of Figure 2 can

be performed with several methodologies, and each methodology may be implemented in

several ways. The operationalisation of a function for a specific data-editing process can

therefore be made by documenting the input, the output, and the method. Indeed, Camstra

and Renssen (2011) propose such a specification model for general statistical functions,

shown in Figure 3. In principle, a data-editing process is completely determined once the

order of process steps and their specifications are known.

As an example, consider a simple record selection function that compares a score value

to a threshold value. The input consists of a score value s and a threshold value t, so the

data model for the input is R2. The method specification is the algorithm

IF ðs . tÞ return ðTRUEÞELSE return ðFALSEÞ;

so the output data model is {FALSE, TRUE}.

The above algorithm is a very simple example of how a selection function may be

implemented. In our taxonomy, the work of Di Zio and Guarnera and Arbués et al.

presented elsewhere in this issue also falls into the category of record selection functions,

even though the methods described there are much more advanced. The most important

commonality between record selection functions is the type of output they produce,

namely a decision for each record on whether it should be selected or not. Regardless of

the method used, such an output can be represented as a boolean vector with the number of

records in the data set as dimension. On the input side, any effective record selection

function will at least need the data to be able to return a reasonable decision vector. At this

level of abstraction, even wildly different methods may be compared to support decisions

about which method to use in which process step. Indeed, the taxonomy described in this

article has been designed with such a purpose in mind.

Just like for the record selection function, it is possible to identify a minimal set of input

and output parameters for each data-editing function, regardless of the method that

implements it. Table 1 denotes this set of minimal in- and output parameters for every low-

level statistical function of the taxonomy. Any extra in- or output parameter used in a

particular process will be related to the specific method chosen to implement a function.

The taxonomy and input-output model presented above make no assumptions about the

type of data or type of rule sets. For example, the model leaves undecided whether each

data record has the same number of variables, or whether the data have a hierarchical

structure (as used in household surveys). Furthermore, there are no assumptions about the

Values of operational
variables (input)

Specification
of data model

Black box (sta-
tistical method)

Specification of
statistical method

Values of operational
variables (output)

Specification
of data model

Fig. 3. A model to specify the operationalisation of statistical functions (Camstra and Renssen 2011). Besides

statistical data, the values of operational variables include auxiliary information and control parameters at the

input side and process metadata and quality indicators at the output side
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type of rules used; they may be numerical, linear, nonlinear, categorical, of mixed type or

otherwise specified.

4.3. Combining Process Steps

An overall editing process can be seen as a combination of process steps, each consisting

of one or more statistical functions executed by specified methods. The choice of methods

that implement these functions, as well as the specifications of parameters or models

for these methods, will differ between applications and depend on the data to be edited,

availability of auxiliary data, output and timeliness requirements, and so on. Moreover, the

order in which process steps will be carried out is also application-dependent. However,

some general considerations about the composition of process steps in terms of statistical

functions, the order of application and the choice of methods will be outlined below.

A single process step can combine several functions that will always be applied

together. For instance, correction of generic and domain-specific systematic errors

typically involves the implementation of a field selection function by a method that detects

a specific systematic error and an amend observations function to replace the erroneous

value with a corrected one. Since the detection is always followed directly by the

correction action specific for the kind of error detected, it is meaningful to combine these

two functions into a single process step with data and rules as input and a field selection

indicator as well as modified data as output. The indicator reflects the detection part and

the modified data the amendment part.

Several process steps will often perform the same statistical function but with different

methods. In particular, amend observations refers to a large group of process steps that

each implement a different method to solve a different problem in (possibly) different data

values. An overall process will often include steps that perform the following amendment

tasks: correction of generic and domain-specific systematic errors, deductive imputation,

model-based imputation and adjustment of imputed values for consistency.

Although the ordering of process steps can differ between applications, there is a logical

order for some process steps. For instance, selection for interactive treatment itself can

occur at different stages of the editing process, but it is evident that for efficiency reasons

such a selection step should always precede the actual manual amendment of values. In

addition, if the selection is performed by a score-function methodology, the calculation of

scores must precede the selection step. Furthermore, automatic amendment steps will

usually start by exhausting the possibilities for solving systematic errors and deductive

imputation before approximate solutions by model-based imputation are applied.

Table 1. The minimal input and output for data-editing functions. The input data consist of N records, where the

number of variables may vary per record. Each record is subject to K rules

Function Input Output

Rule checking Data, rules N £ K edit failure indicator
Compute scores Data N-vector of score values
Field selection Data, rules Field selection indicator
Record selection Data N-vector of subset indicators
Amend observations Data Data
Amend unit properties Unit properties Unit properties
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Timeliness of the results is an important requirement that influences the choice of

methods for the statistical functions. For surveys where the data collection phase extends

over a considerable period of time, it is important that the time-consuming manual editing

starts as soon as possible, that is, as soon as the first data arrive. Selection for manual

editing should then be based on a score function that can be evaluated on a record-by-

record basis without the need to wait until all or a large part of the data are available. On

the other hand, for administrative data or surveys with a short data collection period,

selection for interactive treatment can be done using macro-editing methods that by

definition use a large part of the data.

5. Numerical Illustrations

5.1. Introduction

In this section, we illustrate the effects of applying a sequence of automatic and manual

editing functions using two real data sets. Both data sets come from regular production

processes at Statistics Netherlands. The first example concerns data on Dutch childcare

institutions (Subsection 5.2); the second example concerns SBS data on Dutch wholesalers

(Subsection 5.3).

For both examples, we have identified the following possible process steps that can be

applied during editing.

1. Correction of generic and domain-specific systematic errors:

(a) Correction rules for falsely negative values

(b) Correction of uniform thousand errors

(c) Other direct correction rules

(d) Correction of simple typing errors

(e) Correction of sign errors

(f) Correction of rounding errors

2. Automatic error localisation (under the Fellegi-Holt paradigm)

3. Deductive imputation of missing or discarded values

4. Model-based imputation of missing or discarded values

5. Adjustment of imputed values for consistency

6. Selection for interactive treatment

7. Manual editing (interactive treatment)

The first six numbered steps were treated in Section 3 as part of our overview of automatic

editing methods. Step 7 is the only one considered here that requires real-time human input.

The other steps can be run automatically once they have been set up. As was suggested in

Subsection 4.3, a large number of different editing processes can be obtained by combining

some (not necessarily all) of the above process steps, possibly in a different order. In general,

different choices will have a different impact on the quality of the output data and

on the efficiency of the editing process. This will be illustrated in the examples below.

Some brief remarks on the implementation now follow. All the numerical

experiments reported below have been performed in the R statistical environment.

Definition and checking of edit rules can be done with the editrules package of De Jonge
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and Van der Loo (2012). Typing, sign, and rounding errors can be corrected, while taking

edit rules into account, with the deducorrect package of Van der Loo et al. (2011). The

deducorrect package also offers functionality to reproducibly apply user-defined domain-

specific actions, as discussed in Subsection 3.2. The term “reproducibly” here means that

every action performed on the records is automatically logged, while the user can

configure the conditional actions independently of the source code defining the data-

editing process. Error localisation for numeric, categorical or mixed data can be done with

the editrules package. See De Jonge and Van der Loo (2011) for an introduction.

Deductive imputation methods are again included in the deducorrect package. See Van

der Loo and De Jonge (2011) for a description. For model-based imputation a multivariate

regression method is applied, implemented in R. Imputed values are adapted using the

rspa package of Van der Loo (2012). The code used for selecting records for manual

editing and for repairing thousand errors is not part of any package and has been developed

for the purpose of this article.

5.2. Data on Childcare Institutions

In this illustration we will show the effects of a sequence of automatic editing functions in

terms of the amount of errors detected and the number of resulting amendments to data

values. The data used for this example are taken from a census among institutions for child

day care in 2008. Apart from questions on specific activities, the questions and the

structure of the questionnaire are similar to what is typical for structural business statistics.

For this illustration a subset of the census data was used, consisting of 840 records with

45 variables. For these variables 40 hard edit rules were specified, of which 11 are

equalities, 27 are non-negativity edits and the remaining two are other inequalities. The

edit rules as well as the rules for detecting thousand errors and domain-specific generic

errors are subsets of the rules used in production.

We have applied the automatic process steps 1 through 5 listed in Subsection 5.1 to

these data. The results are displayed in Table 2. The second column of this table shows the

number of changed data values at each process step. In the third column are the numbers of

failed edits after each process step, which can be obtained directly from the failed-edits

matrix. Some edits cannot be evaluated for some records because the edit contains

variables with missing values in that record. The corresponding elements of the failed-

edits matrix are then missing; the number of such missing elements is listed in the column

Not evaluated edits. The number of missing data values is in the last column.

The first line of Table 2 shows that before automatic editing there are, in the whole data

set, 258 edit violations and 158 edits that cannot be evaluted because of 124 missing

values. As a first automatic step, 9 false minus signs are removed by a simple direct rule for

a variable that is not part of any equality edit. Obviously 9 non-negativity edit failures are

resolved by this action. The detection of uniform thousand errors is applied within the

revenues, costs and results section separately and 17 such errors are found. However,

the number of violated edits is increased by one. By looking at the difference between the

failed-edits matrix before and after the correction for thousand errors, it appears that the

newly failed edit is Total revenues – Total costs ¼ Pre-tax result and that this occurs

because a thousand error was detected in the revenues and pre-tax result, but not in the
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costs. Records with thousand error corrections that break edit rules should be followed up

manually because falsely correcting a thousand error is bound to have influential effects

on estimates. The next step concerns the application of other direct rules, resulting in

43 corrections. Again, some of these changes cause edit failures that should be followed up

manually, not only to correct the data but also to see how these direct correction rules can

be modified so that they become consistent with the edit rules.

We now apply the algorithms for resolving simple typing errors, sign errors and rounding

errors discussed in Subsection 3.1.2. There are 53 typing errors detected and corrected, of

which 12 appear to be sign errors. These corrections are very effective in removing errors as

the number of violated edit rules is reduced by 65. After the correction of sign errors in

Step 1a and 1d, the algorithm for more complex sign errors (Step 1e) could not detect any

additional sign errors. Rounding errors (Step 1f ) are also important since 40 of the edit

violations can be explained by such errors and correcting them with the algorithm mentioned

in Subsection 3.1.2 prevents the necessity of treating these violations by the computationally

intensive error localisation in Step 2. Separating the trivial rounding errors from other, more

important, errors also clarifies our picture of the data quality.

At this stage, the possibilities for correction of generic and domain-specific systematic

errors are exhausted. The remaining inconsistencies and missing values are resolved by

applying steps 2 through 5. Error localisation (Step 2) identifies 215 values that need to be

changed in order to be consistent with all edit rules. These values are treated as missing in

the following process steps. The increase in missing values also increases the number of

not evaluated edits to a great extent. To impute the missing values, deductive imputation

(Step 3) is tried first and succeeds in filling in close to half of the missing values with the

unique values allowed by the edit rules. For the remaining 178 missing values, the

multivariate regression method of Subsection 3.4.2 (Step 4) is applied. These imputed

values again result in edit violations. However, contrary to the situation prior to Step 2, the

violation of an edit rule is now not caused by a measurement error in some (probably only

a few) variables but by the fact that all model-based imputations are only approximations

to the real values. Therefore (Step 5) we adjust the imputed values as little as possible and

solve the 109 edit violations and a complete and consistent data set results.

Table 2. Numbers of values changed, edit violations and missings at each step of a sequence of automatic

editing functions

Process step
Changed
values

Violated
edits

Not eval.
edits Missings

0. None 0 258 158 124
1a. Rules for false minus signs 9 249 158 124
1b. Thousand errors 17 250 158 124
1c. Other direct rules 43 252 158 124
1d. Simple typing errors 53 187 158 124
1e. Sign errors 0 187 158 124
1f. Rounding errors 102 147 158 124
2. Error localisation 215 0 477 339
3. Deductive imputation 161 0 248 178
4. Model-based imputation 178 109 0 0
5. Adjustment of imputed values 144 0 0 0
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5.3. Data on Wholesale

For a second illustration, we consider a data set of 323 records from the Dutch SBS of

2007. The data are on businesses with ten employed persons or more from the sector

wholesale in agricultural products and livestock. The survey contains 93 numerical

variables. These should conform to 120 linear edits, of which 19 are equalities.

In terms of the possible process steps listed in Subsection 5.1, the editing process that

was actually used in production consisted of Steps 1(abc) and 6, followed by Step 7 for the

selected records and by Steps 2, 4, and 5 for the rest. Selection for interactive treatment

was based on a score function for businesses with less than 100 employed persons.

Businesses with 100 employed persons or more were always edited manually. In addition,

the model-based imputations in Step 4 were obtained from a linear regression model with

one predictor separately for each variable. We use the outcome of this production process

as a benchmark.

The second column of Table 3 shows the mean values of twelve key variables in the

production-edited data set. The third column shows the corresponding means for the

unedited data (ignoring all missing values). Prior to editing, the observed means of all

financial variables are much too high, which reflects the presence of thousand errors in the

unedited data. Moreover, while the production-edited means satisfy basic accounting rules

such as Total operating revenues ¼ Net turnover þ Other operating revenues (apart from

rounding effects), the unedited means do not.

The above editing process involves a substantial amount of manual editing: the number

of records selected for interactive treatment was 142, or 44% of all records (representing

about 84% of total net turnover in the production-edited data set). We now look at two

different set-ups that involve less manual editing. The first alternative editing process is

almost entirely automated. It consists of the above numbered process Steps 1(abcdef ) and

2 through 5 (in that order). Step 7 is included as a fall-back to treat records for which

automatic error localisation fails. The second alternative process is almost the same, but

we add Steps 6 and 7 at the end, with a simple selection mechanism that sends all

businesses with 100 employed persons or more to manual editing. Note that both

alternative editing processes contain the deductive correction methods 1(def ) and a

deductive imputation step, which were not used in production. These additional steps are

expected to improve the quality of automatic editing.

To compare the outcome of these alternative editing processes to our benchmark, we

simulated the results in R. In the implementation of the process steps, we mostly followed

the methodology originally used in production.

We only made changes to the model-based imputation and adjustment steps. For model-

based imputation, we did not use a separate regression model for each variable but instead

simultaneous regression with all variables, as explained in Subsection 3.4.2. For the

adjustment step, linear optimisation was used in production, but here we used quadratic

optimisation as implemented in the rspa package. Manual editing was simulated by

copying the production-edited values. The number of manually edited records under the

first alternative strategy was 4 (about 1% of all records, also representing about 1% of total

net turnover). Under the second alternative strategy, this number was 34 (about 11% of

records, but 55% of total net turnover).
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The rightmost columns in Table 3 show the means of key variables for both alternative

editing strategies. We see that the first alternative yields large differences with respect to

the benchmark for several variables. Moreover, with one exception, all differences are

positive. Thus it appears that for these data, relying completely on automatic editing does

not produce an acceptable result. By contrast, these second alternative yields values that

are close to the benchmark for all variables but one. For nine of the twelve key variables,

the relative difference is less than one percent. It is interesting to note that automatic

editing appears to have an adverse effect on the quality of the variable Employed persons

(FTE). This may be explained by the fact that the hard edits contain relatively little

information about this variable: it is only involved in two inequality edits, whereas the

other key variables are all involved in at least one equality edit.

The above results suggest that for this data set, some of the manual work could be

replaced by automatic editing without affecting the quality of the main output. However, a

more thorough analysis would be required before we can draw this conclusion. For one

thing, we did not take the sampling design into account. Moreover, other quality indicators

are important besides the unweighted means of key variables. The purpose of this analysis

was merely to illustrate the effects of different editing strategies on real-world data.

6. Discussion and Conclusions

In this article we have discussed the relation between automated and manual (selective)

data editing from three different viewpoints. The first viewpoint we take is that of the

source of error. As it turns out, data-editing staff spend considerable time editing data that

are not observed survey data. Often, classifying variables from the business register (e.g.,

NACE codes) have to be altered as well. The source of error (overcoverage) is then not a

measurement error of the survey but an error in the population register. The amendments

proposed by editors in such cases are usually based on unstructured information such as

websites. Moreover, such amendments often have consequences for other statistical

processes, for example when a centrally maintained variable (such as the NACE code)

needs to be adapted.

The second viewpoint we take is from the current state of the art in automated data

editing. The image emerging from the discussion and numerical examples is that

established automated methods tend to perform well for the majority of records, provided

that hard edit rules have been defined and sufficient structured auxiliary information is

available for the estimation of new values. Exceptions include mostly records of large

businesses; these usually have a more complex structure than small establishments and

data-editing staff often use external unstructured information to repair such records.

Obviously, automated methods are better suited for (computationally, mathematically)

complex calculations than data-editing staff. On the other hand, data-editing staff are

better at judging the violation of soft edit rules, often again by using unstructured auxiliary

information.

Thirdly, we have discussed the relationship between manual and automated data editing

from the point of view of process design. We have decomposed the data-editing process

into several types of tasks (statistical functions), which are independent of how they are

implemented: manually or automatically. This allowed us to separate the tasks which are
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currently easier to implement manually from those that may be implemented

automatically. Here, we find that record selection, possibly supported by macro-editing

tools, as well as judging and amending unit properties, are often performed manually.

Table 4 summarises the above discussion. We may conclude that currently, automated

methods serve very well to edit observed variables in business survey records of

establishments that are not overly complex (large) and are restricted by hard edit rules.

Automated methods are not yet suited to repairing records related to large, complex

companies, records under soft restrictions or performing amendments based on

unstructured data. Those tasks are still mostly performed manually. Of course, manual

editing of observed variables of simple (small) units based on structured information is

always possible; our point is that here the same quality can often be achieved more

efficiently with automated methods.

The decomposition of data editing into different statistical functions given in Section 4

allows one to assess a data-editing process on a task-by-task basis. This leads to a more

refined complementation of automatic editing by (selective) manual editing than what

emerges from the classical literature on selective editing. Evaluation of the results of

automatic editing tasks also enables one to select the best automatic method for a specific

task and thus minimise manual actions related to that task. Furthermore, the statistical

functions in the decomposition each have their own set of minimal, well-defined inputs

and outputs which are independent of the method used to implement the function. This

modular approach to data editing offers clear potential for the development of reuseable

components, yielding efficiency gains in process design.

To conclude, we see the following research opportunities. First of all, standardised

quality aspects of the statistical functions identified in Section 4 should be developed.

Such aspects could be, for instance, the fraction of false negatives or positives in the

selection of suspicious units or erroneous fields, the predictive accuracy of imputed values

obtained by some imputation method or the reduction in bias of estimates due to different

amendment functions. This, then, would allow data-editing processes to be compared in a

Table 4. Relative strengths and weaknesses of manual

and automated data editing

Editing mode

Aspect Manual Automated

Variable
Observed variable 2 þ
Unit property þ 2

Edit rules
Hard edits 2 þ
Soft edits þ 2

Use of aux. information
Structured 2 þ
Unstructured þ 2

Type of unit
Simple 2 þ
Complex þ 2
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standardised way and paves the way for further development of reusable components

based on various methodologies. Secondly, data-editing research should focus on areas

where automated data editing is currently less suitable (Table 4). Interesting fields of

research are the use of unstructured information to verify and/or amend data and the use of

soft edits in automated data editing. Some recent progress in the latter field was made by

one of the authors (Scholtus and Göksen 2012; Scholtus 2013). The use of, for example,

web-scraping or text-mining techniques in data editing remains largely unexplored.
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