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We set out two generic principles for selective editing, namely the minimization of interactive
editing resources and data quality assurance. These principles are translated into a generic
optimization problem with two versions. On the one hand, if no cross-sectional information is
used in the selection of units, we derive a stochastic optimization problem. On the other hand,
if that information is used, we arrive at a combinatorial optimization problem. These problems
are substantiated by constructing a so-called observation-prediction model, that is, a
multivariate statistical model for the nonsampling measurement errors assisted by an auxiliary
model to make predictions. The restrictions of these problems basically set upper bounds upon
the modelled measurement errors entering the survey estimators. The bounds are chosen by
subject-matter knowledge. Furthermore, we propose a selection efficiency measure to assess
any selective editing technique and make a comparison between this approach and some score
functions. Special attention is paid to the relationship of this approach with the editing
fieldwork conditions, arising issues such as the selection versus the prioritization of units and
the connection between the selective and macro editing techniques. This approach neatly
links the selection and prioritization of sampling units for editing (micro approach) with
considerations upon the survey estimators themselves (macro approach).

Key words: Selective editing; optimization; observation-prediction model; selection
efficiency measure.

1. Introduction

Data editing is a crucial step in the survey statistics production process. It impinges on

several dimensions of survey quality such as accuracy, timeliness, response burden or cost

effectiveness. This production phase comprises both the detection and treatment of

nonsampling errors, mainly of nonresponse and measurement errors. Over time, a

typology of errors has been developed, identifying systematic errors, random errors,

influential errors, outliers, inliers or missing values, not to mention particular errors within

these classes as measurement unit errors or rounding errors. This diversity has given rise to

different techniques and algorithms to detect and treat them, such as interactive editing,

automatic editing, selective editing, macro editing, and so on (see De Waal et al. 2011 for a

comprehensive overview). Nowadays it is widely accepted that no single technique can
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deal with all kinds of errors. Thus they must be conveniently combined in so-called editing

and imputation (E&I henceforth) strategies, specifically designed and fine-tuned for a

given survey.

Selective editing focuses upon influential errors so that a selection of influential units is

performed to thoroughly treat their errors (mostly with interactive editing), underlining the

importance of recognizing and analyzing their source in order to prevent them when the

survey is conducted on future occasions (Granquist 1997). In the last two decades, this

editing modality has been recognized as a key element in E&I strategies. However, its

principles are heuristics. By and large, selective editing comprises four stages (Lawrence

and McKenzie 2000), namely (i) the construction of anticipated values ŷk for each sample

unit k according to an editing model; (ii) the construction of local score functions; (iii) the

construction of a global score function; and (iv) the choice of cut-off values below which

no further unit is selected. In general terms, the rationale is that those questionnaires k

with a large discrepancy between the anticipated values ŷk and the reported values yk will

be selected.

As a first general remark, our proposal can be succinctly described using the recent

taxonomy of data editing functions by Pannekoek et al. (in this issue). They identify six

types of editing tasks, called editing functions, according to the accomplishment of either

error detection only (as data quality verification or field/record selection) or also including

error treatment. These six editing functions are (i) rule checking, (ii) compute scores, (iii)

field selection, (iv) record selection, (v) amend observations, and (vi) amend unit

properties (see Pannekoek et al. in this issue for details). In this context, our proposal is to

be understood as a record selection editing function.

We set out two general principles to approach selective editing (Arbués et al. 2012b). In

keeping with Latouche and Berthelot (1992), who stated that “in the development of an

effective recontact and follow-up strategy, we have to minimize the amount of resources

used without affecting the overall data quality and timeliness of the survey”, we claim that

i) editing must minimize the amount of resources deployed to recontacts, follow-ups

and interactive tasks, in general;

ii) data quality must be ensured.

This framework is ample enough to give room to the preceding score function approach,

but its rigorous derivation seems difficult to us. In this article we propose a mathematical

translation of these principles into a general optimization problem, whose solution is the

selection of units. In our formulation, interactive editing resources are tantamount to the

number of selected questionnaires, whereas data quality is reduced to the accuracy of

estimators. Thus a general optimization approach is to minimize the number of selected

units, subjected to bounds on loss functions defined for a chosen number of variables of

interest. These loss functions may be targeted at the bias, mean squared error (MSE),

variance or other measures of the estimation uncertainty. They may be heuristic in nature,

such as the so-called pseudo-bias related measures traditionally used for score functions,

or they may be explicitly derived under some measurement-error models that are suitable

for the data. One example is the contamination model (Di Zio and Guarnera in this issue),

which is specified in terms of the full distribution of the true data and the conditional

distribution of the observations given the true data.
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Two versions of the optimization problem are provided, corresponding to the two

typical scenarios for the implementation of selective editing. In the first case, selection is

carried out unit by unit, in such a way that whether a given unit is selected or not does not

depend on the selection of the other units. This mode of execution is suitable for input

editing, where in principle the selection can be made in real time on arrival of each

questionnaire. We refer to this as the stochastic optimization problem, because the real-

time performance of the solution can only be established with respect to hypothetical

repetitions of the selection process. In the second case, selection is carried out jointly for

all (or a group of) units. This mode of execution is suitable for output (or macro) editing,

which takes place at a later stage of the data collection after a sufficient number of

observations have become available. We refer to this as the combinatorial optimization

problem, where the performance of the solution can be established conditional on the

actual sample observations under some specified measurement-error model.

Selection of units does not produce an order of priority by which the units are sorted

according to their respective “urgency” to be edited. But prioritization of units is helpful

for coping with the contingency of editing fieldwork. It is intrinsically related to selection

since it should be possible in some sense to regard the highest prioritized unit as the

optimal selection of a single unit, the second highest prioritized unit as the optimal

selection of a single unit given that the highest prioritized unit has been selected, and so on.

The combinatorial optimization problem can be adapted to yield prioritization. Not only is

this a useful variation for practice, but sometimes it is theoretically necessary for obtaining

a unique optimization solution, as we shall explain.

To perform a comparison with any other selective editing technique, we propose a

selection efficiency measure. The rationale of this measure is to choose as an input the

number of units to select and to compare our selection with an averaged random

selection of this number of units. The comparison is based on the reduction of the

absolute relative pseudo-bias of the survey estimators. In our view, the sooner the

influential units are selected (hence the faster the reduction of the absolute relative

pseudo-bias), the more efficient the technique will be. We perform a comparison with

some score functions in the literature (Latouche and Berthelot 1992) using real data

from the Spanish Industrial Turnover Index (ITI) and Industrial New Orders Received

Index (INORI) survey.

The article is organized as follows. In section 2 we formulate the generic optimization

problem as a mathematical translation of the above two principles. After fixing the

notation and setting out the problem in general terms in Subsection 2.1, we show how the

choice of the actual information used in this problem drives us either to a stochastic

optimization version (Subsection 2.2) or to a combinatorial optimization version

(Subsection 2.3). In Section 3 we show the general principles of the construct of any

observation-prediction model, as well as a general proposal for continuous variables. In

Section 4 we deal with the editing fieldwork and show how to choose the bounds and how

to go from the selection to the prioritization of units under the combinatorial optimization

approach. In Section 5 a selection efficiency measure is proposed and a comparison with

several score functions is carried out using real data from the Spanish ITI and INORI

survey. Finally we include an ample discussion in Section 6 in an attempt to assess this

proposal in the current framework of selective editing with score functions.
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2. The Optimization Problem

Before identifying the variables, the objective function and the restrictions of our

optimization problem, we need to introduce the following notation. The sampling design

according to which a probability sample s is selected will be denoted by p(·). The sample

size will be denoted by n and the corresponding sampling weights by wks. The sample

dependence of the sampling weights implicitly assumes that they do not need to be the

design weights. For example, in a ratio estimator of the form Ŷ rat ¼ X· Ŷ HT

X̂ HT
, where x is a

known auxiliary variable from the sampling frame, X ¼
P

k[U xk is a known population

total, and ŶHT ¼
P

k[s
yk

pk
(analogously for X̂HT ) stands for the Horvitz-Thompson

estimator of the population total Y ¼
P

k[U yk, the sampling weights are given by

wks ¼
X

X̂ HT

1
pk

, where pk is the first-order inclusion probability for unit k. More complex

situations are embedded under this notation. The true, observed and edited values of a

variable y (q), q ¼ 1; : : : ;Q (for ease of notation we drop the superscript (q) hereafter

except when strictly necessary), for unit k will be denoted, respectively, by y0
k , yk and y*

k .

We assign a binary variable rk [ {0, 1} to each unit k to indicate whether it is selected

(rk ¼ 0) or not (rk ¼ 1). The vector r ¼ ðr1; : : : ; rnÞ
t for the whole sample will be referred

to as the selection strategy. The counterintuitive assignment allows us to relate the

preceding three values by the equation y*
kðrÞ ¼ ð1 2 rkÞ·y

0
k þ rk·yk, where we have made

explicit the dependence of the edited values upon the selection strategy. Note that we are

implicitly assuming that the editing work drives us from the observed to the true values.

If we denote the corresponding measurement error by ek ¼ yk 2 y0
k , then we can write

y*
kðrÞ ¼ y0

k þ rkek. Note that these edited values are in fact those to be plugged into the

survey estimators at this point of the E&I strategy. That is, if we are to estimate the

population domain total YUd
¼
P

k[Ud
y0

k (for ease of notation we will drop the subscript

Ud hereafter), then we denote the corresponding chosen estimator by

Ŷ*ðrÞ ¼
P

k[sd
wksy

*
kðrÞ. However, note that this estimator will not be the final estimator

after the whole E&I strategy has been executed. Some later procedures such as weight

adjustment or outlier treatment may follow. The selection of units proposed herein divides

the sample into a critical and a noncritical stream, the treatments of which are decided

by the statistician. We will restrict ourselves to population totals and linear estimators.

All auxiliary covariates not included in the questionnaire for unit k will be denoted by xk.

So far the preceding variables are numeric. To use statistical modelling techniques, we

promote these numeric variables to random variables according to a model m in a

probability space ðV;F ;PÞ. As usual, this promotion will not be specifically indicated in

the notation, except for the selection strategy, so that R will denote the random selection

strategy, and R(w) ¼ r, with w [ V, will be a particular numeric realization called the

selection. A predicted value of variable yk according to the chosen model m will be

denoted by ŷk. Note that the statistical model m embraces all promoted random variables

different from the probability sample s itself. When random variables are used in survey

estimators, we write indistinctly Ŷ0 ¼
P

k[sd
wksy

0
k , Ŷ ¼

P
k[sd

wksyk and Ŷ*ðRÞ ¼
P

k[sd
wksy

*
kðRÞ for the survey estimators targeted at Y. We will denote by Z the set of

random variables actually used by the statistician to select the units in the E&I strategy.

In particular, we will consider two options, namely, either Z ¼ Zlong ; s or Zlong ;
{s;X} for the stochastic problem (see below for the difference) or Z ¼ Zcross ; {s;X;Y}

Journal of Official Statistics492



for the combinatorial version. When this cross-sectional information is restricted to unit k,

we shall write accordingly Zcross
k ¼ {s; x; yk}. The use of information is represented as

conditioning upon the corresponding random variables. The auxiliary covariates X are

chosen by the statistician according to the chosen statistical model to be used in the

problem (see below). They play a similar role to the auxiliary variables in the sampling

design or the known auxiliary variables in the weight calibrating process. Indeed, they may

coincide partially or totally with these auxiliary variables used in other parts of the

estimation process.

2.1. The General Optimization Problem

As stated in the introduction, we want to minimize the number of questionnaires to edit

provided that the chosen loss functions of the survey estimators Ŷ* targeted at the

population total Y are bounded. To formally set up the optimization problem we need

(i) the variables, (ii) the function to optimize, and (iii) the restrictions. Apart from

identifying these elements, it is important to show how the available information enters

into the formulation of the problem.

The ultimate variables are the selection strategy rT ¼ ðri; : : : ; rnÞ for the sample units

s ¼ {1; : : : ; n}, where rk ¼ 0 if the unit k is selected and rk ¼ 1 otherwise. However,

since the measurement error ek ¼ yk 2 y0
k is conceived to be random in nature conditional

on the realized sample s, and given the available information Z chosen to make the

selection of units, this selection can vary depending on the realized y, y0 and Z. Thus let R

denote the stochastic selection strategy so that (i) R(w) ¼ r is a realized selection and

(ii) Em½RjZ� is the vector of probabilities of nonselection under the specific model m given

the chosen information Z. The objective function to optimize, given the information Z,

is then written as Em½1
T RjZ�, whose maximization amounts to minimizing the number of

selected units.

The constraints derive from the application of a loss function to the survey estimators.

Let us concentrate on the two loss functions most used in practice, namely the absolute

loss L ¼ L ð1Þða; bÞ ¼ ja 2 bj or the squared loss L ¼ L ð2Þða; bÞ ¼ ða 2 bÞ2. Then it is

straightforward to prove (see appendix A) that Em½L
ðrÞðŶ*ðRÞ; YÞjZ� # h warrants

Epm½L
ðrÞðŶ*ðRÞ; YÞ� # h1=r þ E1=r

pm LðŶ0; YÞ
� �� �r

, where O(·) stands for the well-known

big O. In other words, each constraint controls the loss of accuracy in terms of the chosen

loss function L due to nonselected units, up to sampling design variability.

For these loss functions, each constraint can always be written as a bound on a quadratic

form, denoted by Em½R
TDRjZ� (see Appendix A). Particular forms suitable for the

stochastic and combinatorial problems will be explained in Subsection 2.2 and 2.3. The

n £ n matrix D specifies the potential losses at the unit level. Measures of bias and/or MSE

seem natural in practice and they stem from the choice of the absolute or the squared loss

function respectively. These measures can be heuristic in nature, such as the pseudo-bias

for traditional score functions, or explicitly derived under some appropriate measurement-

error model. In particular, non-zero off-diagonal terms of D allow for cross-unit terms to

be included in the “overall” loss.

The choice of the matrix D is naturally linked to the choice of the loss function L, hence

the term loss matrix (see Appendix A for details). Thus, if D is diagonal with entries
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jwksekj, then we are choosing the absolute loss so that Em½LðŶ*ðRÞ; Ŷ0ÞjZ� is also bounded

by h (up to sampling design factors). This is targeted at the bias. Similarly, if

Dkl ¼ wkswlseke l, then we are choosing the squared loss so that Em½ðLðŶ*ðRÞ; Ŷ0ÞjZ� is also

equally bounded. In turn, this is targeted at the mean squared error. In both cases, model-

based techniques using data from the current time period can be applied in the

combinatorial version, whereas in the stochastic version we are obliged to resort to

auxiliary information from other periods.

For instance, the (local) score for a given y-variable is usually conceived as the product

of a “risk” component and an “influence” component. A generic measure can be given

using a model-based approach. Let pk ¼ P y0
k – ykjyk

� �
, that is, the posterior probability

that the true value is different from the observed one. Let ~mk ¼ Em y0
k jyk; y

0
k – yk

� �
, that is,

the conditional expectation of the true value given that it is different from the observed

one. Then, we have

Em y0
k jyk

� �
¼ ð1 2 pkÞyk þ pk ~mk and dk ¼ yk 2 Em y0

kjyk

� �
¼ pkð yk 2 ~mkÞ

It follows that wkdk can be used to construct the local score of unit k with respect to y,

which is the product of “risk” measured by pk and “influence” measured by wkð yk 2 ~mkÞ,

where wk can be the sample weight, for example. Di Zio and Guarnera (in this issue) derive

such a measure under the contamination model, which is suitable for the combinatorial

problem. For the stochastic problem, where scoring does not use observations other than

the unit at hand, ~mk cannot be evaluated for the current sample data and instead

information from preceding realizations of this survey or similar surveys must be used. It

is customary to replace it with some reference value, such as yk from a previous time point,

giving rise to a pseudo-bias. Nor can the “risk” component be assessed properly, and some

heuristics measure might be used, such as in the SELEKT approach of Statistics Sweden

(see for example Lindgren 2011). The auxiliary information, which we exploit in the

observation-prediction model (see Section 3), is fundamental.

The main difference between both versions arises when considering their actual

application. The stochastic problem, supplemented by the assumption that ignores the

cross-unit terms, allows the construction of score functions to be applied independently to

each unit. The supplementary assumption amounts to considering these cross-terms more

or less constant over time, hence playing no significative role in the selection. Conversely,

the combinatorial problem needs a sufficient number of observations available to carry out

the selection jointly for all units.

Taking into account the possibility of multiple constraints, we now arrive at the

following general optimization problem:

½P0� max Em½1
T RjZ�

s:t: Em½R
TDðqÞRjZ� # hq; q ¼ 1; 2; : : : ;Q;

R [ V0

where V0 denotes the admissible outcome space of R, and q refers to the different

constraints. Manipulation of V0 creates extra flexibility for adoption. For instance, the

problem can be recast for selection conditional on the units that have already been

selected, by restricting V0 such that certain Rk s are fixed at 0. The different constraints
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may arise from the fact that there are multiple y-variables of interest, or the constraints

may be directed at the different population domains even when there is only a single

y-variable. In particular, the loss matrices Dð1Þ; : : : ;DðQÞ may all be derived under a single

multivariate model for the joint data, even when the bounds are marginally specified for

each target quantity on its own.

Variations of the optimization problem stated above are possible, by either adopting a

different function for optimization and/or different forms of constraints. For instance,

maximization may be changed to minimization as long as suitable alterations of the

selection variables and the loss functions are provided. Alternatively, one may for example

use wkdk in D but state the constraint as Em½jR
TDRj jZ� # h. We do not explicitly consider

such variations of the problem in this article, but note that (i) it is possible to adapt the

solutions presented below, should such variations be desirable in practice, and (ii) the

expounded optimization approach can be carried out in the same spirit.

2.2. The Stochastic Optimization Problem

As stated above, the main assumption in this version of problem P0 is neglecting

the cross-unit terms in each constraint. Then these constraints can be

rewritten as Em½R
TDRjZ� ¼ Em½R

T diagðDÞjZ�. Furthermore, the distinction between

Zlong ¼ s and Zlong ; {s;X} is a matter of choice. In the former case, the restrictions are

required to be fulfilled only on average for all realizations of the survey, whereas in the

latter case they are imposed on the current realization, given the realizations of preceding

time periods. The deduced stochastic optimization problem is solved in Arbués et al. (2012a)

by using the duality principle, the sample average approximation and the interchangeability

principle. The solution resulting from this linear problem is given in terms of matrices

M ðqÞ ¼ Em½D
ðqÞjZcross�. This dependence on Zcross may seem misleading, but only

momentarily. Since this selection scheme is to be applied unit by unit upon receipt of each

questionnaire, and no cross-sectional information except that regarding each unit k

separately will be actually used, the formal conditioning upon Z cross reduces

effectively to conditioning upon the information Zcross
k ¼ {s; x; yk} of each unit. Thus

we write M ðqÞ ¼ Em½DjZ
cross� ¼ diag Em D

ðqÞ
kk jZ

cross
k

h i� �
¼ diag M

ðqÞ
kk

� �
. On the other hand,

in order to obtain the optimal Lagrange multipliersl*
q involved in the dual problem, a historic

double-data set with raw and edited values is necessary. Putting it all together we arrive

at the final solution, which only requires the diagonal entries of the matrices M (q):

Rk ¼

1 if
XQ

q¼1
l*

qM
ðqÞ
kk # 1;

0 if
XQ

q¼1
l*

qM
ðqÞ
kk . 1:

8
>><

>>:
ð1Þ

Note that since the scheme is “trained” on the historic data, the evaluation of M
ðqÞ
kk given

the observations in the current sample necessarily yields a pseudo-measure, regardless of

the definition of the loss matrices.

This provides a score function for unit-by-unit selection. In the special case of Q ¼ 1,

unit k is selected provided Mkk . 1/l*, so that Mkk can be regarded as a single score and

1/l* as the threshold value. Equivalently, one may consider l*Mkk as a “standardized”
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score, in the sense that the threshold value is generically set to 1. The latter extends in a

straightforward manner to the setting with multiple constraints, where each l*
qM
ðqÞ
kk is a

standardized local score, and
PQ

q¼1l
*
qM
ðqÞ
kk is the standardized global score, with the

generic global threshold value 1.

The global scoring derives from the linear structure of the dual problem and few

variations are allowed without a substantial modification of problem P0. As an exception,

if a global score is initially envisaged as the weighted sum of local scores, then one may

incorporate each weight into the constraint that generates the corresponding standardized

local score to begin with.

The stochastic problem thus clarifies the fact that the performance of unit-by-unit

selection can only be established over hypothetical repetitions of the selection process. At

the end of each selection process, we have the realized selection strategy r, and the

realized loss
Pn

k¼1rkM
ðqÞ
kk , which can either be higher or lower than the specified bound hq,

for q ¼ 1; : : : ;Q. Upon any hypothetical repetition of the selection process, however, yk

and y0
k will vary, and so will the corresponding M

ðqÞ
kk and rk. It is over such hypothetical

repetitions that the constraint Em½RDðqÞRjZ� # hq can possibly be satisfied, but not for

each particular realization of the selection process.

2.3. The Combinatorial Optimization Problem

The combinatorial problem deals with the selection among all (or a group of) units. Cross-

unit terms are now allowed and the information actually used is that given by the sample s,

the auxiliary covariates X and the variables of interest Y, that is by Z ¼ Z cross. Notice

that all this information is available only after all questionnaires have been collected, thus

it is only applicable as a form of output editing. It is easily proved that each constraint

reduces to Em½R
TDðqÞRjZcross� ¼ rTMðqÞr, where MðqÞ ¼ Em½D

ðqÞjZcross�, which can now

be possibly evaluated under some measurement-error model. Consequently, it becomes

possible to establish the performance of the realized selection strategy directly. The

optimization problem can be rephrased as

½PcoðM;h;V0Þ� max 1T r

s:t: rT MðqÞr # hq; q ¼ 1; 2; : : : ;Q;

r [ V0

Note that a more direct derivation can be obtained by not promoting the selection

strategy vector r to a random vector R when modelling the measurement errors.

This combinatorial problem is solved in two different forms using two greedy

algorithms, which run in n4·Q and n3·Q times, respectively. The solution of both

algorithms is not exact a priori but suboptimal with a good degree of approximation. The

faster algorithm is noticeably less precise than the slower one. This lack of precision

entails a small amount of overediting in practice, that is, more units than those optimally

obtained will be selected. The fourth and third power dependence on n may appear

discouraging for practical applications. However, firstly, the input size P in problem PCO is

actually P ¼ O(n 2), thus the algorithms run in O(P 2) and O(P 3/2), which are acceptable

speeds for combinatorial problems. Secondly, in practice the problem is intended to be

Journal of Official Statistics496



applied not to entire samples but to their breakdowns into publication cells, which are the

figures upon which precision is called for (see Section 6). These heuristic algorithms

locally search the optimum in each iteration until the current solution satisfies all the

restrictions. To do this we introduce infeasibility functions hi(r) for each algorithm i ¼ 1,

2 (see Salgado et al. 2012 for details) indicating whether a solution satisfies all the

restrictions (h(r) ¼ 0) or not (h(r) . 0). Both algorithms start from the initial solution

r ¼ 1 and in each iteration select the next unit in a locally optimal way until all restrictions

are satisfied. The infeasibility functions will also be used later when constructing the

prioritization of units.

Finally, we can regard both versions as related to two different approaches to the

problem of optimization under uncertainty (see e.g., Wets 2002). The combinatorial

version is consistent with the wait-and-see approach, since it puts off all decisions until all

the information is available. The stochastic version is, at least partially, a here-and-now

approach, since the decision about the procedure or rule of selection (although not the

selection itself) is made before the data collection.

3. The Observation-Prediction Model

To substantiate the constraints in both versions of the optimization problem, we need to

compute the loss matrices MðqÞ ¼ Em½D
ðqÞjZcross� and to choose the bounds hq. We now

show how to undertake the former whereas the latter is dealt with in the next section.

To compute the loss matrices we make use of the standard model-based techniques, but

not in a conventional way. Let us digress very briefly. When facing the editing tasks and, in

particular, the selection of units, one resorts to the very best auxiliary information

available at that precise moment. With full generality, this will comprise (i) the reported

values of the variables of analysis yðtÞk for the present (t ¼ T) and preceding (t , T) time

periods, (ii) the true values of these variables y (0, t) for those edited units in the past t , T,

(iii) and the values of auxiliary covariates xðtÞk for all time periods. In the notation of

preceding sections, we have yk ¼ yðTÞk , y0
k ¼ yð0;TÞk and xk ¼ yðt1Þ

k ; yð0;t1Þ
k ; xðt2Þ

k , with t1 , T

and t2 # T. Note that some of these values can be coincidentally equal (e.g., when the

measurement error is null) and that y0
k is only known after accomplishing the editing work.

But this is not everything. We also know (at least we can know) a point prediction ŷk for

each y-variable based on these auxiliary variables. For instance, we can make use of a time

series model y
ð0;tÞ
k

n o

t,T
to make a point prediction ŷðTÞk . Different choices arise depending

on the amount and type of auxiliary information. These predictions will enter into the

selection problem as auxiliary covariates, so that xk ¼ yðt1Þ
k ; yð0;t1Þ

k ; ŷðTÞk ; xðt2Þ
k , with t1 , T

and t2 # T.

Let us denote by m* the auxiliary model used to make the predictions ŷk, not to be

confused with the measurement error model m considered throughout this paper. This

measurement error model m is given as usual in terms of (i) the conditional distribution of

the predicted values y upon the true values y0, and (ii) the distribution of y0 conditional on

the available auxiliary information X. To be specific, for a y-variable we will assume

yk ¼ y0
k þ eobs

k and y0
k ¼ ŷk þ e

pred
k . In other words, we are using the predicted value

computed according to the auxiliary model m* as an exogenous variable for the model

regarding y 0. In this sense we refer to this proposal as an observation-prediction model.
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Generalizing these ideas, let us consider

i) an observation model Pobsj0ðyjy
0Þ, that is, a conditional probability distribution for

the observed values y given the true values y0;

ii) a prediction model P0jpredðy
0jŷÞ, that is, a conditional probability distribution for the

true values y given the predicted values y0 according to an auxiliary model m*.

Now let us denote by Pobsjpred the probability distribution of y conditional on the predicted

values ŷ and by P0jobs;pred the probability distribution of the true values y0 conditional on

the observed values yobs and the predicted values ŷ. Then by Bayes’ theorem or a

generalization thereof, we can write

P0jobs;pred ¼
Pobsj0 £ P0jpred

Pobsjpred

ð2Þ

The product must be understood in a suitable generalized form when the distributions

are completely general. As usual, if the probability distributions are absolutely continuous

with density functions f :ð·Þ, Equation (2) can be easily recognized as

f 0jobs;predðy
0Þ ¼

f obsj0ðyjy
0; ŷÞf 0ðy

0jŷÞ
Ð
RQ f obsj0ðyjy

0; ŷÞf 0ðy0jŷÞdy0
:

The discrete case also boils down to applying Bayes’ theorem. Once we have the

distribution P0jobs;pred, the loss matrices can be computed as

MðqÞ ¼ E0jobs;pred½D
ðqÞjS;Y; Ŷ�: ð3Þ

To illustrate this proposal, let us consider the following generic example with a

continuous variable y. Let us define the observation model yobs
k ¼ y0

k þ eobs
k and the

prediction model yobs
k ¼ ŷk þ e

pred
k , with the following specifications:

1. eobs
k ¼ dobs

k ek:

2. ek . Beð pkÞ; where pk [ ð0; 1Þ:

3. e
pred
k ; dobs

k

� �
. N 0;

n2
k rksknk

rksknk s2
k

0

@

1

A

0

@

1

A:

4. e
pred
k ; dobs

k and ek are jointly independent of Zcross
k .

5. ek is independent of e
pred
k and dobs

k .

These are equivalent to stating that unit k has a probability 1 2 pk of reporting a value

without measurement error yk ¼ y0
k

� �
and, when reporting an erroneous value, the

measurement error distributes as a normal random variable with zero mean and variance

s2
k . On the other hand, the prediction error distributes as a normal random variable with

zero mean and variance n2
k . Both errors distribute jointly as a bivariate normal random

variable with correlation rk. Reporting an erroneous value is independent of both types

of errors.
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For the time being let us assume that the parameters u ¼ pk;s
2
k ; n

2
k ; rk

� �T
are known.

Let us focus on the squared loss function. Then it is easy to prove (Arbués et al. 2012a) that

Em yk 2 y0
k

� �
jsk; yk; ŷk

� �
¼ nk·

s2
k þ rksknk

s2
k þ n2

k þ 2rksknk

·
yk 2 ŷk

nk

� �

·zk

yk 2 ŷk

nk

� �

; ð4Þ

Em yk 2 y0
k

� �2
jsk; yk; ŷk

h i
¼ n2

k ·
s2

k þ rksknk

s2
k þ n2

k þ 2rksknk

� �2

·

s2
k 1 2 r2

k

� �
s2

k þ n2
k þ 2rksknk

� �

s2
k þ rksknk

� �2
þ

yk 2 ŷk

nk

� �2
" #

·zk

yk 2 ŷk

nk

� �

;

Em yk 2 y0
k

� �
yl 2 y0

l

� �
jsk; yk; ŷk

� �
¼ Em yk 2 y0

k

� �
jsk; yk; ŷk

� �
Em yl 2 y0

l

� �
jsk; yk; ŷk

� �
;

k – l;

where

zkðxÞ ¼
1

1þ
1 2 pk

pk

n2
k

s2
k þ n2

k þ 2rksknk

� �21=2

exp 2
1

2

s2
k þ 2rksknk

s2
k þ n2

k þ 2rksknk

x2

� � :

Should we choose the absolute loss function, then, under the same hypotheses, we

would have (see Appendix A):

Em jyk 2 y0
kksk; yk; ŷk

� �
¼

ffiffiffiffi
2

p

r

·nk · 1F1 2
1

2
;
1

2
; 2
ð yk 2 ŷkÞ

2

2n2
k

� �

·zk

yk 2 ŷk

nk

� �

; ð5Þ

where 1F1ða; b; xÞ denotes the confluent hypergeometric function of the first kind.

The estimation of the parameters u depends on the scenario. For the stochastic problem,

as before, we are obliged to use some reference values or heuristic measures. Once more

we resort to the auxiliary information. Our choice depends very much on the amount and

type of auxiliary information. From the historic double-data sets comprising t past time

periods (e.g., a fixed panel) we can compute

p̂k ¼
1

t

Xt

t¼1

IyðtÞ
k

–y
ð0;tÞ
k
;

ŝ2
k ¼

1

t 2 1

Xt

t¼1

e
ðtÞ
k 2 �ek

� �2
;

n̂2
k ¼

1

t 2 1

Xt

t¼1

e
ðtÞ
k 2 �ek

� �2
; where e ðtÞk ¼ ŷðtÞk 2 y

ð0;tÞ
k ;

r̂k ¼
1

t 2 1

Xt

t¼1

e
ðtÞ
k 2 �ek

� �
e
ðtÞ
k 2 �ek

� �
:

In case of rotating panels or sampling designs with too short a continuity in the sample

for a number of units, we are forced to make simplifying assumptions such as partitioning
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the sample s ¼ <I
i¼1si and positing uk ¼ ui if k [ si. We can also adopt these assumptions

for some of the parameters. The extreme case would uk ¼ u ¼ ð p;s2; n2; rÞT for all

k [ s, which can be further supplemented with extra hypotheses such as r ¼ 0.

On the other hand, for the combinatorial problem we do have (almost) the complete

current sample so that we can make use of these data, although with important limitations.

It is clear that it is impossible to estimate each uk using only the current sample. We are

obliged to make some simplifying assumptions, as above. In practice, however, it is

advisable to use not only data from the current time period (t ¼ T), but also from preceding

periods (t , T). The stationarity across time periods of the response mechanism supports

this course of action.

Alternatively, the contamination model by Di Zio and Guarnera (in this issue) is a

relevant example of a model-based technique which uses exclusively data from the current

period (except for the covariates for the model) to estimate the model parameters. The

usage of statistical models to make the selection of units allows us to cherish the hope of

extending this approach to qualitative and semicontinuous variables, thus paving the way

for the use of selective editing in household surveys.

4. Fieldwork: Selection and Prioritization of Units

The problem is not completely specified until we choose the bounds hq to formulate the

optimization problem completely. The bound h on a given constraint Em½R
tDRjZ� # h

can be set either absolutely or relatively in terms of a chosen figure of merit or reference

value. This can be, for example, the a priori variance used in the sampling design phase so

that the constraint establishes a bound for the loss of accuracy as a fraction of the desired

precision. The decision will necessarily involve some subject-matter knowledge.

So far, the formulation of the selective editing problem as an optimization problem is

complete, providing a selection of units expressed by the solution r. However, in practice

having a selection of units must be confronted with the actual conditions of fieldwork. In

particular, both controllability and availability of resources, such as person hours for

example, are important issues in this respect. Given a particular selection, either we may

run out of resources and cannot edit all selected units or we may finish the editing field

work ahead of time and thus miss the opportunity to achieve better accuracy. In this sense

it seems natural to have at our disposal a set of selections to optimize the actual use

of resources. We achieve this by having a prioritization of units. Next we show how to

prioritize units in the optimization approach. In Section 6 we discuss in more detail this

issue of the selection/prioritization of units in relation with the fieldwork.

From the preceding sections it is clear that it does not make sense to prioritize units in

the stochastic formulation. On the other hand, to prioritize units in the combinatorial

version we propose combining different selections by choosing a sequence of appropriate

values as bounds. The basic idea is to choose large initial bounds which drive us to select

no unit, then to decrease the bounds until one unit is selected and to flag this unit for future

selections. Then we again decrease the bounds until a new unit is selected and flagged for

future selections. The procedure is repeated until all units have been flagged.

Let f ½k� , s ¼ {1; : : : ; n} denote the set of flagged units at iteration k and V½k�0 the

outcome space of the combinatorial problem at iteration k. For any given strategy vector r
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we denote by I21ðrÞ the set of strategy vectors �r obtained from r transforming exactly a

component 1 into 0. For example, I21ðð1; 1; 0ÞT Þ ¼ {ð0; 1; 0ÞT ; ð1; 0; 0ÞT }. Let h denote the

infeasibility function used in the greedy algorithms (see Subsection 2.3).

The algorithm of prioritization reads as follows:

1. Set f ½0� ¼ Ø, V½0�0 ¼ {0; 1}£n, s½0� ¼ and h ½0� ¼ ðs½0�TM ð1Þs½0�; : : : ; s½0�T M ðQÞs½0�ÞT .

2. FOR k ¼ 0 TO k ¼ n

i. Set s½kþ1� ¼ arg min s[I21ðs ½k�ÞðhðsÞÞ. In case of multiple s [kþ1] choose one at

random.

ii. Set l* [ s such that s½kþ1�
l*

– s½k�l*
.

iii. Set f ½kþ1� ¼ f ½k� < {l*},V½kþ1�
0 ¼ V½k�0 2 {s½k�} andh½kþ1� ¼ ðs½kþ1�T M ð1Þs½kþ1�;

: : : ; s½kþ1�T M ðQÞs½kþ1�ÞT .

3. FOR k ¼ 0 TO k ¼ n

i. Set r½k� ¼ arg max ½PcoðM;h;V½k�0 Þ�.

4. Set s ¼
Pn

k¼0rk.

The vector s provides the prioritization: unit k must be edited in the skth place. Notice that

steps 1 and 2 provide a sequence of bounds h [k ] and a sequence of outcome sets V½k�0

which are used in step 3 to solve n þ 1 concatenated combinatorial problems. Two

comments are in place here. On the one hand, in practice, Step 3 indeed reduces to the first

point in Step 2 since r [k ] ¼ s [k ] because h is the infeasibility function of the optimization

algorithm.

On the other hand, this invites us to reconsider the role of the infeasibility function in the

prioritization of units: this depends on the choice of h. Should we choose, instead of the

original infeasibility function h1ðrÞ ¼
PQ

q¼1 rtM
ðqÞ
kl r 2 m2

q

� �þ
of algorithm 1, the function

hðrÞ ¼
PQ

q¼1wq rtM
ðqÞ
kl r 2 m2

q

� �þ
, where wq $ 0 are positive weights expressing the

different priority given to the accuracy of each variable y [q), we would arrive at a different

prioritization. This can also be viewed more geometrically. To produce a sequence of

bounds we begin by having no selected units, that is, by h0 ¼ ð1
tM ð1Þ1; : : : ; 1tM ðQÞ1Þt,

and we need to produce a sequence of points in RQ such that its final point is 0. There exist

infinitely many possibilities (see Figure 1). In this context, the prioritization amounts

to choosing a path from h0 to 0. This path expresses the priority which the statistician

gives to the accuracy of the different estimators along the process of prioritization of

units. The original infeasibility functions of the algorithms confer the same relevance on

every estimator Ŷ ðqÞ.

5. A Selection Efficiency Measure: Comparison with the Score Function Approach

To make a comparison of the selection undertaken under any approach, we propose the

following selection efficiency measure for an estimator Ŷ. Beforehand, we need a double

data set with raw and edited values according to a gold standard so that when a unit is

selected, its raw values are substituted by their corresponding edited counterparts,

considered true. We will denote by Ŷ selðnedÞ the estimator obtained when ned

questionnaires have been selected according to a selective editing technique sel and

edited correspondingly. Note that Ŷ selðned ¼ nÞ ¼ Ŷ0. As a figure of merit for the
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selection of units we will focus upon the absolute relative pseudo-bias of an estimator Ŷ,

given by ARB
,

ðŶ selðnedÞÞ ¼
Ŷ selðnedÞ2Ŷ 0

Ŷ 0













.

The rationale of the proposed measure is the comparison with a random selection of

units. The idea is to compare ARB
,
ðŶ selðnedÞÞ for a selective editing technique sel with

ARB
,
ðnedÞ ; ARB

,
ðE½Ŷ ranðnedÞ�Þ, where ran stands for an equal-probability selection and

E is the expectation with respect to this random selection. It is immediate to show

that ARB
,

0 ðnedÞ ¼ 1 2 ned

n

� �
ARB
,
ðŶ ranð0ÞÞ. Let us denote by g0ðnedÞ and g selðnedÞ the

straight and polygonal lines with vertices g0ðnedÞ . {ð0;ARB
,

0 ð0ÞÞ; ðned;ARB
,

0ÞðnedÞÞ}

and g selðnedÞ . {ð0;ARB
,

0 ðŶ
selð0ÞÞÞ; ð1;ARB

,
0 ðŶ

selð1ÞÞÞ; : : : ; ðned;ARB
,

0 ðŶ
selðnedÞÞÞ},

respectively. Let us also denote by AgðnedÞ the signed area of the surface between the

curve g and the horizontal axis to the left of the vertical line at ned (see Figure 2). The area

is agreed to be positive if the polygonal line lies below the straight line and is otherwise

negative. We propose the following definition for the efficiency of the technique sel:

e selðnedÞ ; ðAg0
ðnedÞ2 Ag selðnedÞÞ=Ag0

ðnedÞ ¼ 1 2
Ag sel ðnedÞ

Ag 0 ðnedÞ
:

Note that this measure depends on the number of units to select. This allows us to

recognize those techniques which prioritize the most influential units first. A typical

situation is depicted in Figure 2.

We have carried out a comparison of the preceding proposal of prioritization of units

with that obtained from some score functions in the literature. In order to avoid possible

interferences with missing data and units recently added to the sample, we have used a

rectangular subset of the sample data of the Spanish ITI and INORI surveys (INE Spain

2010). For clarity’s sake we shall concentrate on one particular score function, illustrate

the corresponding results and make some comments regarding the similar behavior of all

of them. We have used a slightly enhanced version of the RATIO function of Latouche and

h1

h2

0 = (0,0)

w1 > w2

w2 > w1

Fig. 1. Example of two different sequences of bounds with Q ¼ 2 arising from different choices of the weights wq.
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Berthelot (1992). Let rðtÞk ¼
yðtÞ

k

yðt21Þ
k

and define

�r
ðtÞ
k ¼

rðtÞk

mediank rðtÞk

� �2 1























if rðtÞk . mediank rðtÞk

� �
;

1 2
rðtÞk

mediank rðtÞk

� �























otherwise:

8
>>>>>><

>>>>>>:

Also define gðtÞk ¼ wks £ �r
ðtÞ
k £

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max yðtÞk ; y

ðt21Þ
k

� �q
and then the local score

sðtÞk ¼
jgðtÞ

k
2mediank gðtÞ

k

� �
j

IQRk gðtÞ
k

� � , where IQR stands for the interquartile range. For q ¼ 1; : : : ;Q

variables, these combine in the global score function defined as

RATIO2ðk; tÞ ¼ SðtÞk ¼
PQ

q¼1s
ðq;tÞ
k . The enhancement arises due to the fact that only data

from the time period t 2 1 is used and not from t 2 2, as in the original proposal. Thus this

function RATIO2 can only be used as a form of output editing after all data have been

collected (as the combinatorial approach, which we are making the comparison with).

Regarding the prioritization of units computed under the combinatorial approach, firstly

we must specify the auxiliary model m* to find the predicted values ŷk. For each unit we

have fitted three alternative time series models j1 : ð1 2 BÞzt
¼ at, j2 : ð1 2 B12Þzt

¼ at

and j3 : ð1 2 BÞð1 2 B12Þzt
¼ at, where B stands for the backshift operator, zt ¼

log mþ y0
t

� �
(m being a nuisance parameter estimated by maximum likelihood) and at

denotes white noise. Each predicted value ŷk is computed according to the corresponding

best model j* (in terms of the minimal estimated mean squared error). Since the sample

is a fixed panel selected by cut-off, the sampling weights wks are all equal to 1.

Next, we have applied the generic univariate observation-prediction model illustrated in

Section 3 to the logarithmic transforms of the turnover and the new orders received
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Fig. 2. Absolute relative pseudo-bias vs. number of selected units
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independently. The common error probability pk ¼ p and observation variance s2
k ¼ s2

have been estimated from the past three months using a double-data set. The prediction

variance n2
k has been computed according to the corresponding chosen best model j* for

each unit. As loss matrices, we have chosen both the squared and the absolute loss function

with entries given by Equations (4) and (5), respectively.

Finally, to make the comparison with a random selection of units, we have computed

the absolute relative pseudo-bias for 50 equal-probability random selections. We have

calculated the mean and first and third quartiles of the corresponding distribution. This

provides a confidence-like interval for each number of selected units (see Figure 3). The

motivation is to provide an insight not only into the average random selection but also of

its distribution.

We have carried out this comparison for 23 NACE Rev. 2 divisions and subdivisions

(aggregations of groups according to subject-matter knowledge). Firstly, RATIO2 showed

a better performance than the rest of score functions (RATIO, DIFF, FLAG ITI, FLAG INORI;
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Fig. 3. Absolute relative pseudo-bias and editing efficiency vs. number of selected units
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see Latouche and Berthelot 1992). In 15 cases the absolute loss yielded the most efficient

prioritization, with nine of these cases having the RATIO2 score function as more efficient

than the squared loss choice (Figure 3 illustrates this behavior). However in five cases it is

the squared loss function that outperforms the other two choices, in which the absolute loss

also did better than the score function. In the remaining three cases, RATIO2 slightly

overcame the absolute loss, which in turn performed better than the squared loss.

Thus, in general, the absolute loss is more efficient than the squared loss in terms of the

pseudo-bias, as expected. This also happens with the score function RATIO2, since it is also

targeted at the bias. In general, the absolute loss is also more efficient than the score

functions. However, in actual production conditions, both missing data and respondents

newly added to the sample must be taken into account. In these cases, in the optimization

approach the prediction values ŷk must be imputed or fixed under some supplementary

scheme, since the considered time series models fail to produce these values. As an

elementary test, we assigned ŷk ¼ yk in these cases in order for them not to be selected at

first positions. The general result was a slight deterioration of the performance of the score

functions for all values of ned, while in the optimization approach, the behavior was as

good as before for the most influential units ðned ¼ 1; 2; : : :Þ, but noticeably poorer for the

last units (ned $ n/2). We have not considered these issues in the preceding comparison,

since they belong to sophistications of the observation-prediction model.

In our opinion it is important to note that the above results have been obtained with crude

time series models and extremely simplifying assumptions, and they do not incorporate

any subject-matter knowledge. Thus there is more room to elaborate further on them (using

better parameters, building multivariate models, etc.). In this line of thought the most

attractive point will arise if working models can be built for discrete or semicontinuous

variables, paving the way for the use of selective editing techniques also in household

surveys. The possibility of using well-established tools such as time series models or

statistical models in general, reinforces the statistical defensibility of the data editing work.

6. Discussion and Concluding Remarks

Once we have detailed the methodological proposal, we now proceed to discuss

several issues regarding this optimization approach from different perspectives. As two

immediate objections, a cautious reader can point out the limitation to linear estimators

and the polynomial running time of the algorithms. Firstly, the limitation to linear

estimators, which contrasts with the common use in practice of some nonlinear estimators

such as ratio estimators or regression estimators, can be easily overcome as

follows. In practice most nonlinear estimators Ŷ
nl

Ud
are functions of linear estimators

Ŷ
nl

Ud
¼ f Ŷ

ð1Þ

Ud
; : : : ; Ŷ

ðMÞ

Ud

� �
. Then instead of considering the corresponding restriction for

the MSE of Ŷ
nl

Ud
, we consider a restriction for each linear estimator Ŷ

ðmÞ

Ud
; m ¼ 1; : : : ;M.

The rationale amounts to expecting an accurate nonlinear estimator if each linear estimator

is accurate. Moreover, a bounded growth in the number of restrictions is expected, since

nonlinear estimators are usually built from different combinations of survey variables,

whose number is fixed by the questionnaire. Secondly, the polynomial running time of the

selection algorithms is not a practical concern, at least in Spanish sampling sizes standards,

as we will now explain. On the one hand, the estimation problem in a finite population U is

Arbués, Revilla, and Salgado: An Optimization Approach to Selective Editing 505



essentially a multivariate problem seeking accurate and numerically consistent

estimations in given partitions of the population U. These partitions are fixed according

to the breakdown established by the statistical dissemination plan of each survey. Thus the

selection or prioritization should be applied to each of these publication cells, since no lack

of accuracy is rightfully allowed in any published figure. On the other hand, we have

applied this approach to the Spanish ITI and INORI survey as a pilot experience at INE

Spain (details will be published elsewhere). In these monthly short-term business

statistics, the sampling size amounts to around 12,000 industrial establishments broken

down into 37 publication cells with sizes ranging up to 1,500 units at most. The

prioritization of units in all cells took a total of three hours on a desktop PC, which is a

reasonable working time.

As a deeper concern, one can inquire why the roles of the two basic principles of our

formulation are not interchanged, that is, why data quality is not optimized (minimizing the

loss function) restricting the amount of resources used (number of questionnaires to

recontact). We give two reasons to support our proposal. From a broad perspective, in a

statistical office it appears desirable to minimize the cost of each survey in order to optimize

resources to face and embrace as many other surveys in the statistical production as

possible. In our view, this is a natural decision given the increasing demand for information

from stakeholders. From a more methodological standpoint, the multivariate feature of the

problem again arises. If we interchanged the roles of both principles, we would need to

minimize the loss function of the different variable estimators corresponding to each

publication cell restricted to the number of questionnaires to be recontacted. As a matter of

fact this is a multiobjective optimization problem, which ineludibly needs some decisions

to compute a solution (see e.g., Marler and Arora 2004). In this respect, our position in

official statistics production is to minimize the number of decisions taken by the survey

conductor, which is clearly expressed in the following citation by Hansen et al. (1983):

“[: : :] it seems desirable, to the extent feasible, to avoid estimates or inferences that need to

be defended as judgments of the analysts conducting the survey”.

As a matter of fact, the question of the number of decisions is a first relevant point to

establish a comparison with the score function approach. Nowadays the score function

approach is undisputedly the favored technique for selecting influential units in the editing

production phase. Thus it provides the framework to assess advantages and disadvantages of

any other technique. Furthermore, in our opinion, a comparison will help us reveal

fundamental aspects of the editing production phase irrespective of the particular techniques.

Regarding the number of decisions, let us recall that the score function approach comprises

four main decisions to determine a selection of units (Lawrence and McKenzie 2000),

namely (i) an editing model to construct the anticipated values, (ii) each local score function,

(iii) a global score function, and (iv) a cut-off value. On the one hand, in the optimization

approach the first three decisions are jointly substituted and integrated into a single step: the

construction of the observation-prediction model or an alternative statistical error-modelling

technique, and the subsequent formulation of the optimization constraints. Furthermore, in

our view, this integration renders this selection procedure more natural within the statistical

language, in contrast to a score function, which can seem extraneous. In this sense, let us point

out that the construction of an observation-prediction model is a multivariate exercise, so the

integration of the choices of both local and global score functions comes naturally together
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with the construction of the statistical model. On the other hand, the choice of the cut-off

value is now substituted for the choice of the bounds in the optimization problem. In the score

function approach, this value must be chosen normally using data from previous realizations

of the survey and using a heuristic or empirical connection between this value and the chosen

loss function of the survey estimators. In the optimization approach, the choice of the bounds

makes use of a priori values of variances (or some other similar measure) as in the survey

design stage and shows a neater connection with the loss function, thus fitting again more

naturally into the whole survey statistics production process. Indeed, we have shown how the

prioritization of units under the score function approach can be reproduced and slightly

overcome with a very simple model. Furthermore, although admittedly still too far, this

proposal points toward enlarging the traditional sampling strategy (D, T) comprising the

sampling designD and the construction of the estimator T (see e.g., Hedayat and Sinha 1991)

with a selection strategy R, so that we would have a triplet (D, R, T). This follows the spirit of

the total survey design.

The selection/prioritization issue goes hand in hand with the double version of

the optimization approach. This issue arises mainly from resource availability and

controllability, mainly of timeliness and person-hours in the editing fieldwork. When

having a selection of units in practice we face two situations: Either we run out of resources

to accomplish the interactive editing of all selected units, or we end up ahead of time and

then we miss the opportunity to gain more accuracy. Now, since editing near the source is a

must for this production phase, it is advisable to have a real-time selection mechanism on

each questionnaire, as pointed out in the introduction, independently of the rest of the

sample. Conversely, on later stages it is preferable to prioritize units to edit (interactively)

the most influential first. In this line of thought, the stochastic approach suits the selection

whereas the combinatorial approach suits the prioritization. Furthermore, since both

approaches derive from a common general framework focused on the exploitation of

auxiliary information, we envisage a more complex, although unified, editing process. Let

us parameterize the auxiliary information used in the editing work in terms of its

longitudinal, cross-sectional and multivariate dimensions. By longitudinal we mean the

value of variables for each unit in previous time periods. By cross-sectional we refer to the

information stemming from the sample at the current period. Finally, by multivariate we

mean the information arising from the multidimensional character of the survey (always

several variables are investigated). If we focus on the longitudinal and cross-sectional

dimensions of the auxiliary information, Figure 4 represents the transition from micro-

selective to macro editing as the data collection is being completed. In our view, these two

editing techniques appear as the head and tail of a time-continuous process driven by the

evolution of the data collection. We envisage that intermediate techniques combining both

the longitudinal and available cross-sectional information as a time-continuous process

during the data collection will be of practical usefulness.

Regarding the optimization approach, we want to point out that both versions fit

naturally as the head and tail of this time-continuous editing process, so that the stochastic

version corresponds to exploiting longitudinal information as in traditional selective

editing techniques, whereas the combinatorial version arises as a macro editing technique

focusing upon the cross-sectional information. In contrast, the score function approach and

traditional macro editing techniques can hardly be seen under the same methodological
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principles. It remains open for future work to find a more general formulation for this

proposed time-continuous process embedding both optimization versions.

A complementary comparison can be made with the automatic data editing techniques

based on the Fellegi-Holt methodology, in particular with the different approaches to the

error localization problem, which also make an extensive use of optimization techniques

(see De Waal et al. 2011). The common points reduce to the fact that mathematical

optimization appears as a natural translation of the proposed data editing principles.

Conversely, the Fellegi-Holt methodology focuses upon each questionnaire, seeking to

minimize the number of items to change satisfying all edits. In this approach we focus

upon the whole sample, seeking to minimize the number of units to be recontacted

satisfying restrictions upon the loss functions using a statistical model instead of edits.

To conclude, as immediate future prospects, we have recently begun to analyze the

inclusion of these techniques in the current E&I strategies in most business surveys in INE

Spain. A pilot experience with the ITI and INORI survey fosters our hope to reduce current

recontact rates and consequently both editing costs and the response burden at our office.

R packages and SAS macros implementing this optimization approach are under intense

development and being tested in these pilot experiences. Apart from this, more

methodological research is needed to find generic multivariate models fitting the

observation-prediction model and to generalize them to both qualitative and

semicontinuous variables. In this context, multivariate models already present in the

literature for data editing (Di Zio and Guarnera, in this issue) appear as a fruitful

alternative. In addition, we already have a first adaptation of the preceding greedy

algorithms to be applied to surveys with self-weighting samples and qualitative variables.

We are collaborating with experts from the Spanish National Health Survey to produce

an observation-prediction model adapted to these variables.

A. Mathematical Appendix

We include some mathematical proofs. Firstly we prove how the constraints imply a

control on the loss of accuracy. In particular, if L ¼ L (r) denotes the absolute (r ¼ 1) or
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Fig. 4. Schematic representation of the transition from micro-selective to macro editing as data collection is

completed. As data collection is completed, more cross-sectional information is available
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squared loss (r ¼ 2) function, we prove that Em½LðŶ*ðRÞŶ0ÞjZ� # h (where

Z 5 Zst or Zcross) implies Epm½LðŶ*ðRÞ; YÞ� # h1=r þ E1=r
pm ½LðŶ

0; YÞ�
� �r

. It is straight-

forward to prove that dðA;BÞ ¼ E1=r
pm ½L

ðrÞðA;BÞÞ� is a metric. Then, by the triangle

inequality, we have

dðŶ*ðRÞ; YÞ # dðŶ*ðRÞ; Ŷ0Þ þ dðŶ0; YÞ:

Now, using properties of the conditional expectation, we can write

d rðŶ*ðRÞ; Ŷ0Þ ¼ Epm½Em½LðŶ
*ðRÞ; Ŷ0jZ�� # h;

where Z 5 Zst or Zcross. The result follows immediately.

Secondly we show the connection between the loss matrices and

the loss function. In the absolute loss case, we have Em½jŶ*ðRÞ2 Ŷ0j jZ� ¼

Em

P
k[s Rkwksek











� �
jz� #

P
k[s R2

kjwksekj jZ
� �

, since R2
k ¼ Rk. Thus we can write

Em½jŶ*ðRÞ2 Ŷ0j jZ� ¼ Em½R
TDRjZ�, where D is diagonal with entries Dkk ¼ jwksekj.

In the squared loss case, in turn we have Em½ðŶ*ðRÞ2 Ŷ0Þ2jZ� ¼

Em

P
k[s

P
k[s RkRlwksekwlse ljZ

� �
. Thus, we can also write Em½ðŶ*ðRÞ2 Ŷ0Þ2jZ� ¼

Em½R
TDRjZ�, where Dkl ¼ wksek·wlse l.

The conditional moments (4) and (5) are found along similar lines. Under

the hypotheses assumed in Section 3 regarding the observation-prediction model, it

follows that yk 2 ŷk ¼ eobs
k þ e

pred
k and Em yk 2 y0

k

� �r
jsk; yk; ŷk

� �
¼ Em d

ðobsÞr
k jsk; yk; ŷk

� �
.

Em½ekjsk; yk; ŷk�, with r ¼ 1, 2. Conditioning on sk; yk; ŷk amounts to conditioning on

sk; e
obs
k ; ŷk, thus we can rewrite these conditional expectations as Em½·jsk; yk 2 ŷk; ŷk�. Now

the second term is computed using Bayes’ theorem, so that

Em½ekjsk; yk 2 ŷk; ŷk� ¼ zk yk2ŷk

nk

� �
. For the first term, we notice that the random vector

dobs
k ; dobs

k þ e
pred
k

� �T

is normally distributed with expectation m ¼ 0 and variance

S ¼
s2

k s2
k þ rksknk

s2
k þ rksknk s2

k

0

@

1

A. The conditional moments follow then from standard

properties of the multivariate normal distribution.
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