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We examine the incorporation of analyst input into the constrained estimation process. In the
calibration literature, there are numerous examples of estimators with “optimal” properties.
We show that many of these can be derived from first principles. Furthermore, we provide
mechanisms for injecting user input to create user-constrained optimal estimates. We include
derivations for common deviance measures with linear and nonlinear constraints and we
demonstrate these methods on a contingency table and a simulated survey data set. R code and
examples are available at https://github.com/mwilli/Constrained-estimation.git.
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1. Introduction

Constrained estimation has diverse applications in survey estimation. In the presence of

auxiliary information, calibration of survey weights can improve the efficiency of a design

consistent estimator. Deville and Särndal (1992) define calibrated weights as the weights

that minimize a deviance function subject to the restriction that the weighted sum of

a vector of auxiliary variables is equal to a known population total. They suggest a family

of deviance functions and demonstrate that the resulting calibration estimators are

asymptotically equivalent to a generalized regression estimator, a particular type of

calibration estimator that arises from a quadratic deviance function. Chen and Sitter

(1999) formulate the calibration problem using an empirical likelihood. Calibration can

also be used to reduce a bias due to undercoverage of the sampling frame or nonresponse

(for example, see Kott 2006, Chang and Kott 2008, and D’Arrigo and Skinner 2010). In a

seminal paper, Deming and Stephan (1940) use iterative proportional fitting to enforce a

restriction that the estimated marginal totals of a two-way table agree with census margins.

Whether the purpose of the calibration is to improve the efficiency of a design-unbiased

estimator or reduce a bias due to nonsampling errors, care is often needed to avoid

negative or extreme weights. Deville and Särndal (1992), Chen et al. (2002), and Singh

and Mohl (1996) discuss methods for imposing range restrictions on calibrated weights.
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These ensure that each sampled unit represents a reasonable positive number of units in the

population.

Another application of constrained estimation is benchmarking of small area estimates

to ensure that aggregated model-based estimates agree with a direct estimator or a

previously published statistic for a larger region. Wang et al. (2008) review benchmarking

methods in the context of a linear mixed model. They define a class of benchmarked

estimators by minimizing a quadratic form subject to the benchmarking restriction.

Nandram and Sayit (2011) incorporate linear constraints for small area probabilities using

hierarchical Bayes and the standard beta-binomial model. In related work with shrinkage

estimators, Ghosh (1992) imposes constraints on the mean and variance of Bayes

estimates for a quadratic loss function. While variance constraints are quadratic

(nonlinear), the use of a quadratic loss function leads to a closed form solution.

Many of the applications of constrained estimation discussed above apply linear

constraints (see Särndal 2007; Estevao et al. 1995, who mention ratios of totals) to a set of

initial estimates or initial weights by solving a constrained optimization problem. While

the methods serve different purposes and have distinct interpretations, the functional

forms are similar and derivations can be based on fundamental mathematical principles

(such as the method of Lagrange multipliers). Because of the similarities between

methods, constrained estimation in the survey world can seem like a tangle of overlapping

terms and concepts. One of the objectives of this article is to clarify some of these

associated concepts.

What is missing in the literature is a framework to create an interface between a user and

the automated constraining procedure. Such a framework is essential for a statistical

agency which is tasked with establishing estimates that are timely and accurate with the

expectation of being compatible with subject or commodity knowledge and administrative

data with partial coverage. Incorporating constraints into such a process must go beyond

default settings and a choice of deviance measures. In addition to clarifying concepts, the

purpose of this work is to establish such a framework.

1.1. Motivating Example

For statistical agencies, data often occur in triplets of numerator (n), denominator (d), and

the ratio (r) of the two. Suppose we have a set of such triplets which must agree in

aggregation with known targets (Table 1). Most methods in the literature would use linear

constraints on the totals for n and d. But if r represents an agricultural rate of yield, which

is production (n) per harvested area (d), then biological and industry knowledge would

suggest adjusting the ratio directly (using nonlinear constraints) rather than the total

production. The choice of which two of the three items in each triplet to adjust will often

give distinct solutions. Figure 1 compares the relative adjustments made to each initial

estimate when applying equivalent methods for constrained estimation to n and d versus d

and r. The linear approach applies a constant proportional adjustment (decreasing for n

and increasing for d). The nonlinear approach decreases r and increases d, but not at the

same rates across all rows.

Constrained estimation provides a way for an analyst to incorporate external knowledge

of the process that generated the basic estimators (either the direct survey estimators or
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estimators based on a subsequent model). For instance, contributions of large operators in

establishment surveys, sizes of nonresponse and bias adjustments, administrative records,

historical data, and qualitative information about the data-generating mechanism can be

difficult to integrate into the basic estimation procedure, but might factor into an analyst’s

decision to set some values and reweight the adjustments on others. The analyst would

then need a procedure to enforce these additional “user” constraints. For example, we can

use analyst knowledge to fix entire rows in Table 1 and fix individual ratios ri, and
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Fig. 1. Heat Map for Default Constraint of Triplets: (left to right) Log(Data), % Change (Linear), % Change

(Nonlinear). White to black increases counts or size of change. Signs (2 /þ ) show direction of change

Table 1. Simulated Survey Data (rounded). Targets

increase (light) and decrease (dark)

Num (n) Den (d) Ratio (r)

1 2,586.20 56.55 45.73
2 30,491.31 913.17 33.39
3 4,141.68 78.83 52.54
4 1,975.41 68.59 28.80
5 18,827.87 362.00 52.01
6 6,280.19 137.20 45.77
7 8,597.05 182.03 47.23
8 4,995.37 242.78 20.58
9 7,402.01 216.61 34.17
10 1,168.46 52.52 22.25
11 5,455.36 243.30 22.42
12 1,778.24 60.79 29.25
13 3,208.09 195.24 16.43
14 2,249.00 56.44 39.85
15 2,215.65 72.80 30.44
16 14,297.99 454.96 31.43
17 3,948.72 190.49 20.73
18 1,653.01 77.39 21.36
19 2,545.01 86.12 29.55
20 2,749.02 72.91 37.70

Total 126,565.63 3,820.71 33.13
Target 120,237.35 3,935.33 30.55
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reweight to redistribute the amount of change absorbed by some rows. In heat map

representation (Figure 2), these adjustments take the form of white cells (no change) and

increases in intensity (darker up-weighted cells).

In the next section, we review the relationship between constraints and deviance

measures. We introduce the concept of user interaction with an optimal procedure and

explore several examples that might occur. Section 3 contains the details for a Newton-

type method to generate solutions. In Section 4, we revisit the data set from Deming and

Stephan (1940), applying our framework to incorporate user interaction. In Section 5 we

elaborate on the example of linear and nonlinear constraints for triplets described in

Subsection 1.1. Finally, we conclude in Section 6 with a summary and implications for

further research. R code for methods and examples is available at https://github.com/

mwilli/Constrained-estimation.

2. Constrained Estimation

We consider the vector of observations (or unrestricted estimates) y of length n. We may

wish to impose k , n linear constraints Ax ¼ q, where x is a constrained version of y.

Linear constraints take the form of weighted sums aix ¼
P

j aijxj ¼ qi for i [ 1; : : : ; k

where ai is the ith row of the k £ n coefficient matrix A. We restrict A to have full row rank

k. Otherwise at least one ai leads to a redundant constraint or creates a conflicting

constraint. Consider an example in which constraints are imposed on all marginal totals of

a two-way table with R rows and C columns. Because both row and column margins sum

to the total for the table, a coefficient matrix A containing R þ C rows, one for each

column and row sum, will contain one redundant row. This creates a deficient row rank for

A of R þ C 2 1. A row associated with one of the row or column sums can be removed to

produce a coefficient matrix with R þ C 2 1 rows and thus full row rank. (See Section 4

for further discussion of restrictions on the marginal totals of a two-way table).

We also consider k , n nonlinear constraints g(x) ¼ q. While the general class of

nonlinear functions (all functions which are not necessarily linear) is extremely broad, we

limit consideration to those that are well defined and have n £ k continuous derivatives
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Fig. 2. Heat Map for User Constraint of Triplets: (left to right) Log(Data), % Change (Linear), % Change

(Nonlinear). White to black increases counts or size of change. Signs (2 /þ ) show direction of change. Num and

Den fixed (ND), Ratio set (R), rows reweighted (a)

Journal of Official Statistics378

https://github.com/mwilli/Constrained-estimation
https://github.com/mwilli/Constrained-estimation


Dg(x). In practice we consider polynomial, rational, and transcendental functions and

compositions of them. These are generally wellknown and wellbehaved nonlinear

functions. For example, the ratio of numerator and denominator from our motivating

example (Subsection 1.1) is simple and wellbehaved when the denominator is nonzero.

The variance constraint imposed by Ghosh (1992) for shrinkage estimates is a basic

quadratic function used to counteract the overshrinking which occurs commonly in

applications such as small area estimation.

We can no longer appeal to matrix rank to ensure that we do not have any conflicting

constraints. However, it is clear that equations such as x1 þ x2 ¼ q1, x1 2 x2 ¼ q2, and

x1=x2 ¼ q3 produce a conflict. Many methods for solving nonlinear systems of equations

use linearization techniques involving derivatives (see Section 3). For these methods to

find solutions, further restrictions may be placed on Dg(x). For our purposes we will

assume Dg(x) has full column rank k for each value of x.

2.1. Deviance Measures

Since n . k, the constraints by themselves do not imply a unique solution x, but instead a

family of solutions. A reasonable criteria to select a member of this family is to choose the

x “closest” to y. This concept of closeness implies minimizing a scalar deviance between

x and y. We will generally restrict these deviances to be rather simple and interpretable.

From the calibration literature (for example, see Deville and Särndal 1992), there are

several deviance functions used. We highlight the three most popular (for example, see

D’Arrigo and Skinner 2010): the quadratic deviance x2ðxjyÞ, the Poisson deviance l(xjy),

and the discrimination information D(xjy). Each of these measures falls within the

framework developed. Practitioners may use their current preferred deviance measure and

still take advantage of the results and ideas presented here. Alternatively, one can change

the deviance measure while still maintaining the other structures described below, such as

the weighting matrix and the form of the constraints.

We express these deviances in matrix formulation and provide a weighting structure (W)

which allows for user input from an analyst or another model (see Subsection 2.3). The

matrix formulations for some of the deviance measures may seem unnecessary, but the key

insights come from the matrix formulation of the constraints. Expressing both in terms of

matrix operations makes them more directly compatible (Subsection 2.2). We assume the

base W is symmetric and invertible (although often the case, W need not be positive

definite). We define kvl as a square diagonal matrix with vector v on the diagonal and 0s

elsewhere. We use the notation [·] to denote elementwise operations in two ways: First we

use [ab þ c] for vectors a, b, and c of the same dimension to produce a vector with the ith

element equal to aibi þ ci. Second we denote f [v] as yielding a vector with ith element

equal to f (vi). In other words, f [v] applies the scalar function f (·) elementwise to each vi.

The Quadratic Deviance

x2ðxjyÞ ¼ ðx 2 yÞ0Wðx 2 yÞ

Examples include the Pearson chi-squared distance (W ¼ kyl21) and the Least Squares

distance (W ¼ Var (y)21). Use is often motivated by a regression-based approach

(Fuller 2002).
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The Poisson Deviance

lðxjyÞ ¼ 1 0Wd y log
y

x

h i
2 yþ x

h i

where Wd is a diagonal matrix of full rank. Motivation comes from the deviance measure

of a log-linear model comparing a restricted model of means to the saturated model

(Agresti 2002). In this case, y is the data (or saturated model) and x is the restricted model

for y. We will show in Subsection 2.2 that the Poisson deviance leads to the pseudo-

empirical maximum likelihood estimator of Chen and Sitter (1999).

The Discrimination Information

DðxjyÞ ¼ lðyjxÞ ¼ 10Wd x log
x

y

� �

2 xþ y

� �

The name seems to come from the application of the principal of minimum discriminability

to cell probabilities (see Ireland and Kullback 1968, who attribute this to Good and

Kullback). So-called raking methods such as iterative proportional fitting (IPF; Deming

and Stephan 1940) are readily available to minimize this deviance for specific settings.

Of the three, x2(xjy) is the simplest to implement and will often lead to closed-form

solutions (Subsection 3.1). However, when y are positive survey weights, some of the

resulting x may be negative. D(xjy) and l(xjy) are often preferred in this context, because x

will remain positive for both methods. We can see that D(xjy) and l(xjy) are closely related

and easy to confuse. However, the estimating equations for each are clearly different (see

Table 2), so the emphasis is often placed here rather than on the original measures. To

further add to the confusion, when y is already close to satisfying the constraints (Ay < q

or g(y) < q), the three deviance criteria give very similar results, thus explaining the error

in Deming and Stephan (1940) (see Section 4).

2.2. Solving for Linear and Nonlinear Constraints

Suppose we are given a vector y and wish to find the x satisfying a possibly nonlinear

constraint g(x) ¼ q for some vector-valued function g(x) with derivative matrix Dg(x) (the

linear form Ax ¼ q is a special case with Dg(x) ¼ A0). Since such an x will generally not

be unique, let x minimize the deviance d(xjy). Assume d(xjx) ¼ 0 for all appropriate x.

However d(xjy) need not be symmetric d(xjy) – d(yjx). We assume the derivative

Table 2. Five common deviance measures (Deville and Särndal 1992) and the corresponding functions needed

for estimation

Name Deviance d (1) h[u] h (1)[u]

Quadratic ðx 2 yÞ0Wðx 2 yÞ (x 2 y) y þ u 1

Discrimination 1 0Wd xlog x
y

h i
2 xþ y

h i
log x

y

h i
[y exp[u]] [y exp[u]]

Hellinger ð
ffiffiffi
x
p

2
ffiffiffi
y
p
Þ0Wdð

ffiffiffi
x
p

2
ffiffiffi
y
p
Þ 1 2 y

x

� �1
2 ½y½1 2 u�22� 2½y½1 2 u�23�

Poisson 1 0Wd ylog y
x

� �
2 yþ x

� �
1 2 y

x

� �
½y½1 2 u�21� ½y½1 2 u�22�

Alternative
Quadratic

ðx 2 yÞ0Wdkxl21
ðx 2 yÞ 1 2 y

x

� �2
½y½1 2 u�2

1
2� 1

2
½y½1 2 u�2

3
2�
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›dðxjyÞ=›x ¼Wd ð1ÞðxjyÞ is composed of well-defined elementwise invertible functions

on the x vector. In other words, the ith element d (1)(xjy)i only contains information from xi

and yi not xj or yj. We also assume d (1)(x, x) ¼ 0. It’s clear that x2(xjy), l(xjy), and D(xjy)

are each examples of d(xjy) (see Table 2 for these and two more from Deville and Särndal

1992). We take W to be a symmetric and invertible weight matrix.

In order to minimize d(xjy), subject to constraints g(x) ¼ q, we use the method of

Lagrange multipliers (see, for example Stewart 2011). When such a solution x exists, the

derivatives Wd (1)(xjy) are parallel to the columns in Dg(x), the derivatives of each of the

k constraints. The k £ 1 vector l scales for the differences in magnitude of these parallel

vectors. Symbolically,

Wd ð1ÞðxjyÞ ¼ DgðxÞl; ð1Þ

or equivalently,

d ð1ÞðxjyÞ ¼W21DgðxÞl:

Since d (1)(xjy) ¼ u is an elementwise invertible operation on x producing the vector u, the

inverse function h(u) ¼ x exists and is also elementwise. Together with g(x) ¼ q, we

obtain the following estimating equations

x ¼ h½W21DgðxÞl�

q ¼ gðh½W21DgðxÞl�Þ:
ð2Þ

Two properties become apparent from (1) and (2):

Lemma 1. The solution x to (2) is invariant to the choice of the scalar a – 0 in

Wnew ¼ aWold:

Example: If we are using (x 2 y)0W(x 2 y) or 100(x 2 y)0W(x 2 y) as the deviance

d(xjy), we will get the same solution x.

Lemma 2. The solution x to (2) is invariant to the rotation of constraints Lg(x) ¼ Lq for

full rank square rotation matrix L.

Example: In a two-way table, if we constrain all row and column totals, we have one

redundant constraint. Ignoring any one row or column total gives the same solution x.

Proof. Both properties come from l being a dummy variable, an intermediate value used

to solve for x. This property implies an invariance to one-to-one transformations.

In Equation (1), using aW is equivalent to using h ¼ a21l as the multiplier. Likewise,

rotating Lg(x) will lead to the derivative Dg(x)L0, which is equivalent to using the rotated

multiplier h ¼ L 0l. A

Now consider partitioning y0 ¼ ½y02s; y
0
s� and x0 ¼ ½x02s; x

0
s� indexed by the set s

of size ns and its complementary set 2s of size n2s. Define the selection operator

dðsÞ ¼ ½0ns£n2s
; Ins
�0 such that ys ¼ d 0y. The weight matrix W is also partitioned

corresponding to s and 2s:

W ¼
Wa Wb

W 0
b Wc

" #
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Set values in W corresponding to the set s equal to 0:

W0 ¼
Wa 0n2s£ns

0ns£n2s
0ns£ns

" #

:

Then the Moore-Penrose generalized inverse of W0 is

W2
0 ¼

W21
a 0n2s£ns

0ns£n2s
0ns£ns

2

4

3

5:

Two more properties of the estimating equations (1) and (2) are now available:

Lemma 3. For the estimating equations in (2) we add additional equality constraints of

the form xs ¼ ys. The following implementations give equivalent solutions for x2s:

. Augment the constraint targets q* 0 ¼ ½q 0; y 0s� and the corresponding equations

g* 0 ¼ ½gðxÞ0; x 0d�.

. Keep the original q and g(x) and substitute W ¼W0 and W21 ¼W2
0 .

Lemma 4. For the estimating equations in (2) we add additional equality constraints of

the form xs ¼ zs for arbitrary values zs – ys. If W is diagonal (Wd) or block-diagonal

ðWb ¼ 0n2s£ns
Þ, the following implementations give equivalent solutions for x2s:

. Augment the constraint targets q*0 ¼ [q0,z0s] and the corresponding equations

g* 0ðxÞ ¼ ½gðxÞ0; x 0d�.

. Keep the original q and g(x) and substitute ys ¼ zs, W ¼W0, and W21 ¼W2
0 .

Proof. See Appendix A for details. A

2.3. User Interaction

The goal of this proposed framework is to provide an interface between an informed

analyst (or metamodel) and an automated “optimal” procedure which minimizes a

deviance measure as described above. The choice of deviance measure will likely be made

based on the application area and current conventions (i.e., the discrimination information

for raking problems). A default weight matrix W may be a function of estimated variances

based on a sample design or a specified model. As we have mentioned in our example in

Subsection 1.1, knowledge of the process may be more difficult to fully and directly

incorporate into the initial estimation procedures, thus motivating the need for an analyst

to make adjustments.

We may expect the user to have limited control over the original y and the necessary

constraints q, leaving only the W to be adjusted. However, the user is free to provide

additional constraints by augmenting A and g(x). From Lemmas 3 and 4, several of these

augmentations can be implemented by changing y and W, thus preventing an increase in

the dimension of the estimating equations (2).

. The user wishes to protect some ys from changing. Some values may be the result of

previously published data and are therefore ineligible for adjustment.
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. The user sets xs ¼ zs – ys. The user may wish to replace some dubious values or force

changes in a direction opposite of the default procedure.

. The user reduces the changes to ys without fixing the xs values. From Lemma 1, we

know that choice of scalar a – 0 in aW has no impact on x. However, multiplying

subsets of W by a will affect x:

Wa ¼

1

a
Wa

1
ffiffiffi
a
p Wb

1
ffiffiffi
a
p W 0

b Wc

2

6
6
6
4

3

7
7
7
5
:

For a . 1, the values of x2s stray further from y2s, thus absorbing more change.

The sets {s} and {2s} must be chosen carefully when using W0 to avoid singularities.

Since they are equivalent to adding more constraints to q, we may inadvertently create a

constraint on x which conflicts with g(x) ¼ q. A finite choice of a, which provides weaker

protection, can be used without this problem. Furthermore, W0 and a may be used together

by establishing more than one partitioning set {s}.

This system provides a good compromise between an automated approach which

ignores important expert knowledge for a specific subset xs, and a completely manual

process which may use ad hoc methods to fill in the complementary x2s values where

knowledge is limited.

3. Implementation with Newton’s Method

Given x, we can use Newton’s method to iteratively solve for the l satisfying the second

line of (2). We then update x and iterate the process until convergence. Denote h ð1ÞðuÞ ¼

›hðuÞ=›u as the matrix of derivatives. Since h(u) is an elementwise function on u,

h (1)(u) ¼ kh (1)[u]l where h (1)[u] is a vector of elementwise derivatives of ›hðuiÞ=›ui.

Applying one chain rule for nested function gives:

›gðh½u�Þ=›u ¼ kh ð1Þ½u�l Dgðh½u�Þ:

Then applying another chain rule for a change of variables:

›gðh½Bl�Þ=›l ¼ B 0kh ð1Þ½Bl�l Dgðh½Bl�Þ;

where B is an arbitrary matrix. Let B ¼W21Dg(x). For a given x i, Newton’s method

becomes:

ljþ1
i ¼ lj

i þ D0gðx
iÞW21kh ð1Þ W21Dgðx

iÞlj
i

� �l Dg h W21Dgðx
iÞlj

i

� �� �h i21

£
�

q 2 g h W21Dgðx
iÞlj

i

� �� �	
:

ð3Þ

We update xi in an outer loop to satisfy the first line of (2):

xiþ1 ¼ h W21Dgðx
iÞlj

i

� �
: ð4Þ

After convergence, the estimate x will be the same regardless of rotation (Lemma 2).

However, rotations of the constraints may lead to different intermediate values for
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(3) and (4). By updating h ¼ L 0l using Lg(·), Lq, and Dg(·)L0, we will get the same

final solution, but different x i and lj
i before convergence.

3.1. Linear Constraints

For linear constraints, h(u) will eliminate the need to iterate (4) for every d(xjy). For the

quadratic deviance x2(xjy), the inner loop (3) is one step, thus leading to the closed form

solution

x ¼ yþW21A 0ðAW21A 0Þ21ðq 2 AyÞ: ð5Þ

This result is common in the econometrics and engineering literature (Green 2000; Pizzinga

2010), where the y are least squares estimates of regression coefficients and W is their

covariance matrix. The linear case with diagonal Wd for the quadratic and discrimination

information deviances is available in the survey literature discussed above.

3.2. Alternatives to Newton’s Method

We have presented a Newton method above to provide a general approach that can

utilize different deviance measures and can accommodate both linear and nonlinear

constraints. Many alternatives to Newton methods exist for specific optimization

problems. In the survey literature, alternatives for solving the estimating equations (2)

tend to be specific to one deviance measure and linear constraints. For example, iterative

proportional fitting (IPF) is a popular way to impose linear restrictions on the cells of a

multiway table using the discrimination information deviance. Software for IPF include

the R function “loglin” and the SAS subroutine “ipf”. The function “apop_rake” in the

Apophenia library (http://apophenia.info/) implements IPF in a low-level programming

language.

We emphasize Newton’s method for two main reasons. Firstly, Newton’s method is

applicable to more general classes of constraints, deviance functions, and data structures.

It is not limited to linear constraints on multiway tables, but can apply simple (i.e.,

continuously differentiable) nonlinear constraints to any data set that can be represented as

an array. Secondly, the procedures of Subsection 2.3 for incorporating user input via the

modification of W and g(x) are readily implemented with Newton’s method. Choosing

between methods may depend on software availability, the experience of the user, and the

size and nature of the data set. However, the properties of the solutions (see the Lemmas

above) and the use of a user framework come from the estimating equations (2) and

therefore hold regardless of the manner in which a solution was obtained (IPF, Newton’s

method, stochastic search, etc.).

Within our proposed Newton method there are alternatives to using h(u). Let hx(u) be

a function of u given x satisfying hx(d (1)(x)) ¼ x. The inverse need not be true:

d (1)(hx(u)) – u. Obviously h(u) is a special case of hx(u). For the Poisson deviance, we

choose hx(u) ¼ [xu þ y] with hð1Þx ½u� ¼ x, which is not a function of u. For this choice of

hx(u), for linear constraints, we need an outer loop (4), but not an inner (3) loop for l. See

Appendix B for details. Since both the h(u) and the hx(u) approaches lead to the same

solution at convergence, preference between the two methods may lie in interpretability of
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the intermediate steps. For example, we prefer hx(u) for the Poisson deviance, because the

steps are the same as for the quadratic deviance, but with kxlW21
d replacing the W21. Thus

we can minimize the Poisson deviance by iteratively using the methods for the quadratic

deviance. Using h(u) for the Poisson deviance recreates the pseudo-empirical maximum

likelihood estimator (Chen and Sitter 1999) since the solution x is invariant to choosing

h ¼ 2l. Chen et al. (2002) give an alternative iterative Newton method for linear

constraints using this estimator.

4. Deming and Stephan (1940) Revisited

We revisit a classic example of raking by using our generalized techniques on the data set

from Deming and Stephan (1940). The observed data (Table 3) are cell counts Nij in a two-

way table with margins Ni: and N :j for rows i [ 1; : : : ; 6 and columns j [ 1; : : : ; 4. The

constrained margins Mi: and M:j are the targets q. The grand totals N.. ¼ M.. by

coincidence and need not be true in general. The objective is to find cell counts Mij that are

closest to Nij in terms of deviance, while satisfying the marginal constraints.

Although Deming and Stephan assert that their method of iterative proportional fitting

(IPF) minimizes the least squares deviance x2(xjy), IPF actually minimizes the

discrimination deviance D(xjy) (Deville and Särndal 1992). We can obtain the estimates

that minimize x2(xjy) in one step (5) and use iteration (3) to obtain estimates minimizing

l(xjy) and D(xjy). As it turns out, the estimates are quite close across the three deviance

measures.

Using the discrimination deviance, we wish to compare the original results to those

from two hypothetical user actions (Figure 3). For the default choice, it seems that the row

margins are dominant (rows are all þ or all 2) and that most change occurs in the first

column (darkest).

. The user specifies two cells (M3,1 ¼ 1,516 and M5,4 ¼ 160) and prevents these from

changing. These are changes in the opposite direction from the default. Therefore the

rest of the values in those rows and columns must take on more change (darker) and

may switch direction (2 to þ or þ to 2).

. The user down-weights columns 3 and 4 by a factor of a ¼ 5. This allows the values

in these columns to absorb more change and thus provides a weak protection for

Table 3. Data from Deming and Stephan (1940). Margin targets

increase (light) and decrease (dark)

i \ j 1 2 3 4 Ni: Mi:

1 3,623 781 557 313 5,274 5,252
2 1,570 395 251 155 2,371 2,395
3 1,553 419 264 116 2,352 2,432
4 10,538 2,455 1,706 1,160 15,859 15,766
5 1,681 353 171 154 2,359 2,330
6 3,882 857 544 339 5,622 5,662

N :j 22,847 5,260 3,493 2,237 33,837
M:j 22,877 5,285 3,462 2,213 33,837
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columns 1 and 2. We notice that the general pattern of changes is similar to the

default, but columns 3 and 4 are darker and columns 1 and 2 lighter compared to the

original solution. This confirms that we have indeed shifted more change onto the last

two columns.

4.1. Implementation

First we stack y by rows:

y ¼ ½Ni¼1;Ni¼2;Ni¼3;Ni¼4;Ni¼5;Ni¼6�
0:

Then we formulate q, remembering to remove one redundant constraint M.1 (Lemma 2

assures us that any choice of row or column margin will do):

q ¼ ½M1:;M2:;M3:;M4:;M5:;M6:;M:2;M:3;M:4�
0:

Next we construct A, which is simply a table of 1s and 0s. (Table 4 shows the transpose A0).

For example, the 2nd column of A, (row of A0) corresponds to x2 ¼ M1,2. This cell is

involved in the first constraint M1: ¼
P

j M1;j and the seventh constraint M:2 ¼
P

i Mi;2, so

the corresponding values in A have 1s. The rest of the entries for x2 are 0s. We use

W ¼ kyl21
for x2ðxjyÞ and Wd ¼ I24, the identity matrix, for l(xjy) and D(xjy). For fixing

values, we construct W2
0 and W2

d0 with zeros for setting M3,1 ¼ 1,516 and M5,4 ¼ 160. For

down-weighting values, we pre- and postmultiply W by a diagonal matrix with 1 for

columns 1 and 2 and
ffiffiffiffiffiffiffiffi
1=5

p
for columns 3 and 4.

5. Simulated Survey Example

We now provide more detail for the motivating example in Subsection 1.1, in which data

occur in triplets of numerator (n), denominator (d), and the ratio (r) of the two. At each

level of aggregation (individual, regional, national), we only need to focus on two of the

three. It is often the case that we have already set (and published) triplets at a higher level

of aggregation (national totals) and now wish to set triplets at lower levels constrained to

be consistent when aggregated. For example, we would need the totals for n and d to sum

to the higher level totals. In the context of the methods discussed above, we can do this in

at least two ways:
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Fig. 3. Heat Maps using the Discrimination Measure: (left to right) Original Data, Default Changes, User Set

Changes (M3,1 and M5,4), and Reweighted Changes (M.,3 and M.,4). White to black increases counts or size of

change. Signs (2 /þ) show direction of change
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. We can focus on adjusting n and d leading to linear constraints

q ¼
i

X
ni;

i

X
di

2

4

3

5

0

¼ Ax:

. We can focus on adjusting d and r leading to nonlinear constraints

q ¼
i

X
ridi;

i

X
di

2

4

3

5

0

¼ gðxÞ:

We can motivate the first method based on simplicity. However, the second method

appeals to us if there is more intuition for r than n. It may also be the case that r is more

independent of d than n is. For example, agricultural agencies publish total production (n),

harvested area (d), and yield per area (r) for major crops. Focusing on production n

may be overemphasizing constraints on area d. In addition, there is much scientific and

commodity knowledge about the values for yield r.

We consider a simulated set of triplets for i ¼ 1; : : : ; 20 artificial regions which grow

soybeans. Based on published values for the U.S. (www.nass.usda.gov), we choose a

symmetric distribution of soybean yields ranging between 15–55 bu/acre and a skewed

Table 4. Value of A0 for Deming and Stephan (1940) data

# x# i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 j ¼ 2 j ¼ 3 j ¼ 4

1 M(1,1) 1 0 0 0 0 0 0 0 0
2 M(1,2) 1 0 0 0 0 0 1 0 0
3 M(1,3) 1 0 0 0 0 0 0 1 0
4 M(1,4) 1 0 0 0 0 0 0 0 1
5 M(2,1) 0 1 0 0 0 0 0 0 0
6 M(2,2) 0 1 0 0 0 0 1 0 0
7 M(2,3) 0 1 0 0 0 0 0 1 0
8 M(2,4) 0 1 0 0 0 0 0 0 1
9 M(3,1) 0 0 1 0 0 0 0 0 0
10 M(3,2) 0 0 1 0 0 0 1 0 0
11 M(3,3) 0 0 1 0 0 0 0 1 0
12 M(3,4) 0 0 1 0 0 0 0 0 1
13 M(4,1) 0 0 0 1 0 0 0 0 0
14 M(4,2) 0 0 0 1 0 0 1 0 0
15 M(4,3) 0 0 0 1 0 0 0 1 0
16 M(4,4) 0 0 0 1 0 0 0 0 1
17 M(5,1) 0 0 0 0 1 0 0 0 0
18 M(5,2) 0 0 0 0 1 0 1 0 0
19 M(5,3) 0 0 0 0 1 0 0 1 0
20 M(5,4) 0 0 0 0 1 0 0 0 1
21 M(6,1) 0 0 0 0 0 1 0 0 0
22 M(6,2) 0 0 0 0 0 1 1 0 0
23 M(6,3) 0 0 0 0 0 1 0 1 0
24 M(6,4) 0 0 0 0 0 1 0 0 1
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distribution for harvested area over a 20-fold range with units in either the 100s (county) or

1,000s (state) of acres.

. Simulate 20 values for di , Uni f 1
1;000

; 1
50

� 	h i21

.

. Simulate 20 values for ri , Nðm ¼ 35; s ¼ 10Þ independently of di.

. Calculate ni ¼ di £ ri for each value.

The resulting data were shown in Table 1. The target values for constraints were arbitrarily

chosen such that the target total for n and d were 95% and 103% respectively of the

observed totals.

5.1. A Hypothetical User Experience

A hypothetical user wants to constrain the triplets data from Table 1 with the option of

imposing adjustments based on experience and judgment. The user has experience with

raking, so decides to use the discrimination deviance. The nonlinear formulation is new

to the user, so both it and the linear approach are run in parallel to compare the results.

The actions of the user are summarized as a flowchart in Figure 4.

The user begins with the default solutions from our motivating example above

(Figure 1), but then realizes that regions 1, 3, 10, 12, and 14 are only sampled annually and

Default setting:
no user input

User fixes
annual regions:
1, 3, 10, 12, 14

User sets some
ratios:
2, 5, 16 User sets all

ratios

User reweights:
2, 5, 8, 9,
11, 13, 16

Path1
Path2

User intervention

Fig. 4. Process flow of user decisions and estimates for the triplets data set
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have not been sampled in the current survey. Instead, the most recent valid values have

been passed forward. These have already been published and are therefore not eligible to

be changed. To protect these values, the user adds 0s into the corresponding entries of the

weight matrix W. The procedure is run again and new values are produced.

Now the user looks at the yield ratios r more carefully and compares them to the survey

estimates. Historically, the survey gives high quality estimates for this ratio. If possible,

the user would like to keep these ratios fixed. The user decides to take two different paths

and explore their impact (Figures 5 and 6):

. Path 1: The user sets ratios (rounded to the integer) for regions 2, 5, and 16. Several

regions change more than the user can comfortably justify. Regions 2, 5, 8, 9, 11, 13,

and 16 are reweighted (a ¼ 5) to absorb more change from the other regions. The

heat maps confirm that adjustments are now more concentrated (darker) in these

regions.

. Path 2: The user fixes all ratios and is surprised to see that the linear and nonlinear

approaches give identical results. By setting all r, both r and n are eliminated from

adjustment, producing two linear constraints on d. Regions with higher yield r have

harvested area d decreased, whereas those with lower yield have harvested area
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Fig. 5. Heat Maps for Path 1 (using discrimination deviance) for linear (top row) and nonlinear (bottom row)

approaches. User successively adds constraints (left to right): Fixing annual regions (ND), setting yield ratios

(R), reweighting to redistribute (a)
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increased. Thus the overall production n has been decreased, but the overall

harvested area d has been increased to simultaneously meet both aggregate targets.

5.2. Implementation Details

To implement the process above, we define y 0 ¼ ½n 0y; d
0
y; r

0
y� as the stacked set

of unconstrained values. We seek the corresponding stacked constrained values x0 ¼

½n 0x; d
0
x; r

0
x� whose aggregate values satisfy the target q0 ¼ [120,237.35, 3,935.33, 30.55].

For the linear approach, we use the numerator and denominator directly: y 0l ¼ ½n
0
y; d

0
y�,

x 0l ¼ ½n
0
x; d

0
x�, and q0l ¼ [120,237.35, 3,935.33]. Depending on the user’s choices, the A

matrix varies (Table 5). For the default settings, A is simply two rows of indicators, with 1

where an element of x l is present in the sums
P

ni;
P

di


 �
and 0 otherwise. For Path 1,

the user sets some ri. Then for the total
P

ni, the term ridi replaces some ni. Thus the

corresponding entries in A are 0 for ni and ri for di. Path 2 has a similar A matrix except

with more ri present. No adjustment to A is needed for jointly fixing the pairs {ni, di} for

i ¼ 1, 3, 10, 12, 14. For these cases, we construct W2
0 and W2

d0 with corresponding zeros.

We suggest using W ¼ kyl21
for x2ðxjyÞ and Wd ¼ I40 for lðxjyÞ and DðxjyÞ.

For the nonlinear approach, we directly adjust denominator and ratio: y 0nl ¼ ½d
0
y; r

0
y�,

x 0nl ¼ ½d
0
x; r

0
x�, but still use the total production and harvested area as the targets

q0nl ¼ [120,237.35, 3,935.33]. We define gðxÞ ¼ ½r0xdx; 1
0dx�

0. Then

DgðxÞ ¼
rx 1

dx 0

" #

:

For the nonlinear case, fixing ratios ri introduces more zeros into W2
0 and W2

d0. Setting

values for ri will change the initial ynl (as opposed to changing A for the linear approach).

6. Conclusions and Future Work

In this work, we have provided an overview of constrained estimation and solutions for

several common deviance measures based on first principles. While these tools are useful,

our main goal was to use them to motivate a framework in which an analyst and a default
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Fig. 6. Heat Maps for Path 2 (using discrimination deviance). Linear (left) and nonlinear (right) approaches

converge when the user sets all yield ratios (center). Num and Den fixed (ND), Ratio set (R)
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optimal procedure interact, allowing the user to input extra knowledge to create optimal

“user-constrained” results. We demonstrated this framework on a classic raking example

with linear constraints in the form of margins. We then examined two different approaches

to a standard survey problem of constraining aggregate totals and ratios, one implying

linear constraints and the other nonlinear ones. Overall, these methods provide a

Table 5. Values of A 0 for Triplets Example

Default Path 1 Path 2

# x#

P
ni

P
di

P
ni

P
di

P
ni

P
di

1 n1 1 0 1 0 1 0
2 n2 1 0 0 0 0 0
3 n3 1 0 1 0 1 0
4 n4 1 0 1 0 0 0
5 n5 1 0 0 0 0 0
6 n6 1 0 1 0 0 0
7 n7 1 0 1 0 0 0
8 n8 1 0 1 0 0 0
9 n9 1 0 1 0 0 0
10 n10 1 0 1 0 1 0
11 n11 1 0 1 0 0 0
12 n12 1 0 1 0 1 0
13 n13 1 0 1 0 0 0
14 n14 1 0 1 0 1 0
15 n15 1 0 1 0 0 0
16 n16 1 0 0 0 0 0
17 n17 1 0 1 0 0 0
18 n18 1 0 1 0 0 0
19 n19 1 0 1 0 0 0
20 n20 1 0 1 0 0 0
21 d1 0 1 0 1 0 1
22 d2 0 1 r2 1 r2 1
23 d3 0 1 0 1 0 1
24 d4 0 1 0 1 r4 1
25 d5 0 1 r5 1 r5 1
26 d6 0 1 0 1 r6 1
27 d7 0 1 0 1 r7 1
28 d8 0 1 0 1 r8 1
29 d9 0 1 0 1 r9 1
30 d10 0 1 0 1 0 1
31 d11 0 1 0 1 r11 1
32 d12 0 1 0 1 0 1
33 d13 0 1 0 1 r13 1
34 d14 0 1 0 1 0 1
35 d15 0 1 0 1 r15 1
36 d16 0 1 r16 1 r16 1
37 d17 0 1 0 1 r17 1
38 d18 0 1 0 1 r18 1
39 d19 0 1 0 1 r19 1
40 d20 0 1 0 1 r20 1
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framework from which to build an interface between automated model processes and

expert knowledge via an analyst or metamodel.

We have deliberately avoided discussion of expectations and variances. It should be

clear that y is often stochastic with an estimated distribution (perhaps just a mean and

variance). However, W can be a function of y (as is often the case for the quadratic

measure). More importantly, the user’s choice of q, a, and zs (and whether or not to use the

default settings) is undoubtedly related to both y and external information. Thus the

distribution of x has connections to both y and the decision process of the analyst. Tools

for finding asymptotic variance estimates when the y are sampling weights are already

available in the literature for calibration (Deville and Särndal 1992; D’Arrigo and Skinner

2010) and would require minor modifications to apply to our setting. However, modeling

the uncertainty associated with the decision process of the analyst might first involve

implementing these methods and capturing and exploring their behavior. We feel that the

framework here is sufficient to begin this process. Data-mining and decision science

methods may then be able to construct larger metamodels which incorporate more of these

sources of variability.

Appendix A. Justification of W2
0

Instead of focusing on solving for l and x (see Subsection 2.2), we assume this is possible

and consider the question of whether to modify q or W to enforce additional equality

constraints xs ¼ ys or xs ¼ zs where x0 ¼ ½x02s; x
0
s� and y0 ¼ ½y02s; y

0
s� are partitioned and

zs – ys is arbitrary.

One option is to augment the q vector: q* 0 ¼ ½q 0; y0s� (or q* 0 ¼ ½q 0; z0s�). The

corresponding g(x) is augmented g* 0ðxÞ ¼ ½gðxÞ0; x0d�. Then Dg(x) is also augmented

D*
gðxÞ ¼ ½DgðxÞ; d�. We would then use d ð1ÞðxjyÞ ¼W21D*

gðxÞl
* (with l* 0 ¼ ½l 0;h 0�)

and q* to solve for x.

Another option is to change the W or W21 matrices. Since setting equalities for xs

should reduce the dimensions of the problem, introducing 0s into W may also work. We

partition W accordingly and use W0 and W2
0 as defined in Subsection 2.3. Note that W2

0

and d are related by the following:

W2
0 ¼W21 2 W21dðd 0W21dÞ21d 0W21:

This can be verified using the block inverse formulas to confirm

W21
a ¼ {W21}a 2 {W21}b{{W21}c}21{W21} 0b;

where

W21 ¼
{W21}a {W21}b

{W21} 0b {W21}c

2

4

3

5:

A.1. Proof of Lemma 3

This scenario occurs when a user decides that some of the ys need to be protected and are

kept unchanged during the constraint process. We will show that the W2
0 and the D*

gðxÞ

methods lead to equivalent solutions for xs ¼ ys.
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Starting with the D*
gðxÞ equations:

d ð1ÞðxjyÞ ¼W21D*
gðxÞl

*

d ð1ÞðxjyÞ ¼W21DgðxÞlþW21dh

d 0d ð1ÞðxjyÞ ¼ 0ns
¼ d 0W21DgðxÞlþ d 0W21dh

h ¼ 2ðd 0W21dÞ21d 0W21DgðxÞl:

Then plugging h back in:

d ð1ÞðxjyÞ ¼W21D*
gðxÞl

*

¼W21DgðxÞl 2 W21dðd 0W21dÞ21d 0W21DgðxÞl

¼W2
0 DgðxÞl

This is the same as substituting W2
0 for W21 in the default (no user input) setting.

Not only does the W2
0 approach give the same results as the D*

gðxÞ approach, it also

reduces dimensions instead of increasing them:

d ð1ÞðxjyÞ ¼W2
0 DgðxÞl

{d ð1ÞðxjyÞ}2s

0ns

2

4

3

5 ¼
{W21

a DgðxÞ}2sl

0ns

2

4

3

5 :

Thus we only need to keep track of n2s equations and k constraints for the W2
0 approach

instead of n equations and k þ ns constraints with the D*
gðxÞ approach.

A.2. Proof of Lemma 4

Now let us consider the case that xs ¼ zs for some arbitrary zs – ys. There are at least two

ways to proceed:

. Create y* 0 ¼ ½y 02s; z
0
s� and use the W2

0 approach as in the previous section.

. Keep y and set q* 0 ¼ ½q 0; z0s� with g* 0ðxÞ ¼ ½gðxÞ0; x 0d�.

We begin with the second option and explore the conditions under which the two are

equivalent. For convenience, define d ð1ÞðxsjysÞ ¼ {d ð1ÞðxjyÞ}s. Also note that

d ð1ÞðxsjzsÞ ¼ 0ns
.

Starting with the D*
gðxÞ equations:

d ð1ÞðxjyÞ ¼W21D*
gðxÞl

*

d ð1ÞðxjyÞ ¼W21DgðxÞlþW21dh

d 0d ð1ÞðxjyÞ ¼ d ð1ÞðzsjysÞ ¼ d 0W21DgðxÞlþ d 0W21dh

h ¼ ðd 0W21dÞ21½d ð1ÞðzsjysÞ2 d 0W21DgðxÞl�:
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Then

d ð1ÞðxjyÞ ¼W21D*
gðxÞl

*

¼W21DgðxÞlþW21dðd 0W21dÞ21½d ð1ÞðzsjysÞ2 d 0W21DgðxÞl�

¼W2
0 DgðxÞlþW21dðd 0W21dÞ21d ð1ÞðzsjysÞ

¼W2
0 DgðxÞlþ

{W21}b{{W21}c}21

Ins

2

6
4

3

7
5d ð1ÞðzsjysÞ:

When W is diagonal Wd (or block-diagonal with Wb ¼ 0n2s£ns
): {W21}b ¼ 0n2s£ns

. Then

{d ð1ÞðxjyÞ}2s ¼W21
a {DgðxÞ}2sl. So solving d ð1ÞðxjyÞ ¼W21D*

gðxÞl
* for x2s is

equivalent to solving d ð1Þðxjy*Þ ¼W2
0 DgðxÞl. We would prefer the y* method because

it allows us to use W2
0 to reduce dimensions.

When W is more generally symmetric and invertible (as for the quadratic deviance), we

may get two distinct estimates for x2s from the D*
gðxÞ and W2

0 approaches. Each approach

gives an optimal solution to a set of constraints and slightly different deviance functions.

The W2
0 approach ignores d ð1ÞðzsjysÞ, the discrepancy between ys and zs. Whereas the

D*
gðxÞ method uses the off-diagonal blocks of W to incorporate this term.

Appendix B. Justification of hx(u) for Poisson Deviance

To obtain the x which minimizes l(xjy) subject to the constraint g(x) ¼ q, we derive

alternate estimation equations:

d ð1ÞðxjyÞ ¼W21
d DgðxÞl

1 2
y

x

h i
¼ u

x 2 y ¼ kxlu

x ¼ yþ kxlu

q ¼ gðyþ kxluÞ:

Then hxðuÞ ¼ ½yþ xu� with hð1Þx ðuÞ ¼ kxl.
Substituting hxðuÞ and hð1Þx ðuÞ into (3) and (4), we get an inner iteration

ljþ1
i ¼lj

i þ D0gðx
iÞW21

d kxil Dg yþ kxilW21
d Dgðx

iÞlj
i

� �h i21

£ q 2 g y 1 kxilW21
d Dgðx

iÞlj
i

� �� �

and an outer iteration

xiþ1 ¼ yþ kxilW21
d Dgðx

iÞli:

We suggest x0 ¼ y and l0
0 ¼ 0 as good initial values, with l0

i ¼ li21 from the previous

iteration of x i.
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For the linear case g(x) ¼ Ax, the inner loop (3) is one step, eliminating l:

xjþ1 ¼ yþ kxjlW21
d A 0 AW21

d kxjlA 0
� �21

ðq 2 AyÞ:

We suggest starting with x0 ¼ y since that will give an x1 which minimizes x2(xjy) when

W ¼ kyl21Wd.
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