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A major challenge faced by basically all institutes that collect statistical data on persons,
households or enterprises is that data may be missing in the observed data sets. The most
common solution for handling missing data is imputation. Imputation is complicated owing to
the existence of constraints in the form of edit restrictions that have to be satisfied by the data.
Examples of such edit restrictions are that someone who is less than 16 years old cannot be
married in the Netherlands, and that someone whose marital status is unmarried cannot be the
spouse of the head of household. Records that do not satisfy these edits are inconsistent, and
are hence considered incorrect. A further complication when imputing categorical data is that
the frequencies of certain categories are sometimes known from other sources or have
previously been estimated. In this article we develop imputation methods for imputing
missing values in categorical data that take both the edit restrictions and known frequencies
into account.
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1. Introduction

National statistical institutes (NSIs) publish figures on many aspects of society. To this

end, NSIs collect and process data on persons, households, enterprises, public bodies,

and so on. A major challenge faced by NSIs is that data may be missing from the collected

data sets. Some units that are selected for data collection cannot be contacted or may

refuse to respond altogether. This is called unit nonresponse. For many individual units,

data on some of the items may be missing. Persons may, for instance, refuse to provide

information on their income or on their sexual habits, while at the same time giving

answers to other, less sensitive questions on the questionnaire. Enterprises may not

provide answers to certain questions, because they may consider it too complicated or too

time consuming to answer these specific questions. Missing items of otherwise responding

units is called item nonresponse. Whenever we refer to missing data in this article we will

mean item nonresponse, rather than unit nonresponse.

In the statistical literature, ample attention is paid to missing data. The most common

solution for handling missing data in data sets is imputation, where missing values are
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estimated and filled in. An important problem of imputation is to preserve the statistical

distribution of the data set. This is a complicated problem, especially for high-dimensional

data. For more on this aspect of imputation and on imputation in general we refer to

several articles and books on imputation, such as Kalton and Kasprzyk (1986), Rubin

(1987), Schafer (1997), Little and Rubin (2002), Longford (2005), and De Waal et al.

(2011). Imputation methods can be divided into two broad classes: methods for categorical

data and methods for numerical data. In the present article we focus on imputation of

missing categorical data.

At NSIs the imputation problem is further complicated owing to the existence of

constraints in the form of edit restrictions, or edits for short, that have to be satisfied by the

data. Examples of such edits are that someone who is less than 16 years old cannot be

married in the Netherlands, and that someone whose marital status is unmarried cannot be

the spouse of the head of household. Records that do not satisfy these edits are

inconsistent, and are hence considered incorrect. The problem of missing categorical data

having to satisfy edits is examined by Winkler (2003) and De Waal et al. (2011).

A further complication for categorical data is that the frequencies of certain categories are

sometimes known from other sources or have previously been estimated. Such frequencies

will also be referred to as totals in this article. A population frequency of a category may, for

instance, be known from an available related register. Alternatively, previously estimated

frequencies may be known, and assumed fixed. In the Dutch Social Statistical Database

estimated frequencies are fixed and later used to calibrate estimates of other quantities

(see Houbiers 2004, and Knottnerus and Van Duin 2006). In fact, this strategy of fixing

frequencies and later using these fixed frequencies to calibrate other quantities to be

estimated forms the basis of the so-called repeated weighting method: a weighting method

designed to obtain unified estimates when combining data from different sources.

In the present article we develop imputation methods for categorical data that take edits

and known frequencies into account. The problem of imputation of missing categorical

data having to satisfy edits and to preserve totals is also discussed in Favre et al. (2005). In

contrast to the methods proposed here, the imputation is not used as an estimation

technique, rather as a way to obtain consistency with edits and previously estimated totals.

Another difference is that in Favre et al. (2005) only one variable to be imputed is

considered. Their method does not guarantee that edits involving several variables to be

imputed will be satisfied. The related problem of imputation of missing numerical data

having to satisfy edits and to preserve totals is examined in Pannekoek et al. (2008). Liu

and Rancourt (1999) discuss imputation of missing categorical data having to preserve

totals. They do not consider edits, however.

The imputation methods developed in this article are intended to be used in the situation

where one wants to impute all units of the (sub-)population under consideration. By

imputing, we pursue three goals:

. To preserve the statistical distribution of the true, but unknown, data as well as

possible.

. To facilitate further processing, for example producing statistical tables after

imputation is simply a matter of counting, without having to worry about

inconsistencies between various tables or logical inconsistencies.
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. To integrate data from different sources; for example, microdata from one source are

calibrated to totals from another source. In this sense the imputation methods we

propose in this article can be seen as data integration techniques (also see ESSnet on

Data Integration 2011).

A word of caution is in place here: an imputed data set should not be seen as a restored

complete data set. In particular, in an imputed data set variances may be underestimated

and correlations may be disturbed, despite attempts to preserve them as well as possible.

Estimating variances and correlations taking into account the imputations is quite complex

and will not be considered in this article. For an overview of methods for estimating

variances with data that have undergone imputations, we refer to Chapter 10 by Haziza in

Pfefferman and Rao (2009).

Rubin (1976) introduced a classification of missing data mechanisms. He distinguishes

between Missing Completely At Random (MCAR), Missing At Random (MAR) and Not

Missing At Random (NMAR). Roughly speaking, in the case of MCAR there is no

relation between the missing data pattern, that is, which data are missing, and the values

of the data, either observed or missing. In the case of MAR there is a relation between

the missing data pattern and the values of the observed data, but not between the missing

data pattern and the values of the missing data. Using the values of the observed data

one can then correct for the relation between the missing data pattern and the values of

the observed data, since within classes of the observed data the missing data mechanism

is MCAR again. In the case of NMAR there is a relation between the missing data

pattern and the values of the missing data. Such a relation cannot be corrected for

without positing a model. Given that the missing data mechanism is either MCAR or

MAR, we can test whether the data are MCAR or MAR. However, there are no

statistical tests to differentiate between MCAR/MAR and NMAR. In practice, the only

way to distinguish MCAR/MAR from NMAR is by logical reasoning. For more on

missing data mechanisms we refer to Little and Rubin (2002), McKnight et al. (2007)

and Schafer (1997).

In this article we assume that the missing data mechanism is MCAR. Our imputation

methods can, however, easily be extended to the case of MAR, by constructing imputation

classes within which the missing data mechanism is MCAR.

The remainder of this article is organized as follows. Section 2 intro-

duces the edit restrictions we consider in this article. Section 3 describes the

imputation algorithms we have developed for our problem. An evaluation study using

real data is described in Section 4. Finally, Section 5 ends the article with a brief

discussion.

2. Edits and Frequencies for Categorical Data

2.1. Edits for Categorical Data

We denote the number of variables by n. Furthermore, we denote the domain, that is the set

of all allowed values of a variable i, by Domi. All domains are assumed to be non-empty.

In the case of categorical data, an edit j is usually written in so-called normal form, that is
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as a Cartesian product of non-empty sets F
j
i ði ¼ 1; 2; : : : ; nÞ:

F
j
1 £ F

j
2 £ : : : £ Fj

n;

meaning that if for a record with values (v1, v2, : : : , vn) we have

vi [ F
j
i for all i ¼ 1; 2; : : : ; n, then the record fails edit j, otherwise the record satisfies

edit j. One generally demands that at least one of the F
j
i ði ¼ 1; 2; : : : ; nÞ should be a

proper subset of the domain Domi, that is, should be strictly contained in Domi, as the

“edit” with all F
j
i ði ¼ 1; 2; : : : ; nÞ equal to Domi cannot be failed by any record.

Example: Suppose we have three variables: Marital Status, Age and Relation to Head of

Household. The possible values of Marital Status are “Married”, “Unmarried”,

“Divorced” and “Widowed”, of Age “,16 years” and “$16 years”, and of Relation to

Head of Household “Spouse”, “Child”, and “Other”. Suppose we have two edits, the first

edit saying that someone who is less than 16 years cannot be married, and the second one

that someone who is not married cannot be the spouse of the head of household. In normal

form the first edit can be written as

ð{Married}; {, 16 years}; {Spouse; Child; Other}Þ; ð1Þ

and the second one as

ð{Unmarried; Divorced; Widowed}; {, 16 years;$ 16 years}; {Spouse}Þ: ð2Þ

2.2. Frequencies for Categorical Data

When a frequency for categorical data is known, for instance because it has already been

estimated in another source, this simply means that one knows how many units in the data

set should have a specific value for a certain variable. For instance, one may know how

many people in the data set have a certain age and how many people in the data set are

married, even though some values of the variable Age and the variable Marital Status are

missing in an observed, but incomplete data set. In this article we assume that for several

categories such frequencies are known, and our aim is to obtain a fully imputed data set

that preserves these frequencies.

Note that if the known frequencies are available from administrative data, then our

imputation methods will duplicate the distribution of administrative marginal totals in the

completed data. Our imputation methods do not necessarily preserve the distributions in

the reported data. In our evaluation study in Section 4 we will examine how well the

distributions in the reported data are preserved.

In practice, it may happen that a variable is fully observed in the data set while at the

same time a different total is known from another source. In that case either (at least) one

of the sources contains errors, or the differences are caused by different concepts, different

definitions, different moments of observation and so on. We recommend using statistical

data editing and data integration techniques to correct these errors and other differences

before proceeding with the imputation process (see De Waal et al. 2011, and ESSnet on

Data Integration 2011, for an overview of statistical data editing and data integration

techniques, respectively).
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3. The Imputation Methods

3.1. The Basic Idea

The imputation methods we apply in this article are all based on a hot-deck donor

approach. When hot-deck donor imputation is used, for each record containing missing

values, the so-called recipient record, one uses the values of one or more other records, the

so-called donor record(s), to impute these missing values.

Usually, hot-deck donor imputation is applied multivariately, that is several missing

values in a record are imputed simultaneously, using the same donor record. For our

problem this approach is less suited. If an imputed record fails the edits, all one can do is

reject the donor record and use another donor record. For a relatively complicated set of

edits, one may have to test many different potential donor records until a donor record is

found that leads to an imputed record satisfying all edits. Moreover, for a relatively

complicated set of edits one may not even be able to find a donor record for a certain

recipient record such that the resulting imputed record satisfies all edits.

Even if we were able to find single donor records for all records requiring imputation,

this would then solve only part of our problem, as the totals would only be preserved in

very rare cases.

We therefore apply sequential univariate hot-deck donor imputation, where for each

missing value in a record requiring imputation a different donor record may be

selected. The variables with missing values are imputed sequentially. For each variable,

the records for which the value of this variable is missing are imputed one by one.

Once all records for this variable have been imputed, the next variable with missing

values is considered. The univariate hot-deck imputation methods we apply are

described in Subsection 3.2. These univariate hot-deck imputation methods are used to

construct a list of possible donor values for a certain missing field. Whether a value is

actually used to impute the missing field depends on whether the edits can be satisfied

and the totals can be preserved.

While imputing a missing value, care is taken to ensure that the record can satisfy all

edits. Only values of donor records that can result in a consistent record, that is a record

that satisfies all edits, are eligible to be used. In Subsection 3.3 we explain how we

determine whether a value is eligible to be used for imputation. For each record we make a

list of values eligible for imputation for the variable under consideration.

An eligible value may only be used for actual imputation if the total can be preserved.

Before an eligible value is actually used to impute a value, we first check whether the

corresponding total can be preserved. If so, we use the value for imputation. If the total

cannot be preserved, the value is rejected and the next value on the list of eligible values is

selected. This process goes on until we find an eligible value such that the corresponding

total can be preserved.

3.2. Univariate Hot-Deck Imputation Methods

In this article we apply two univariate hot-deck donor imputation methods: a nearest-

neighbour approach and a random hot-deck approach.
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3.2.1. Nearest-Neighbour Hot-Deck Imputation

Suppose we want to impute a certain variable v in a record r0 using a pool of donors where

the variable v is not missing. In the nearest-neighbour approach we calculate for each other

record r in the pool of donors for which the value of v is not missing a distance given by

Dist ðr0; rÞ ¼
i–v

X
wi x0

i ; x
r
i

� �
; ð3Þ

where the sum is taken over all variables except variable v, x0
i denotes the value of the i-th

variable in record r0, xr
i the value of the i-th variable in record r, and 0 # wi x0

i ; x
r
i

� �
# 1 a

user-specified weight expressing how serious one considers a difference between x0
i and xr

i

to be. The weight wi x0
i ; x

r
i

� �
equals zero if x0

i ¼ xr
i . The weight wi x0

i ; x
r
i

� �
is large if one

considers the difference between x0
i and xr

i to be important, and small if one considers the

difference to be unimportant. The value of the i-th variable in record r0, x0
i , or the value of

the i-th variable in record r, xr
i , may be missing. If x0

i or xr
i is missing, we set wi x0

i ; x
r
i

� �
to 1.

To impute a missing value, we first select the potential donor value from the record with

the smallest distance. If that value is allowed according to the edits (see Section 3.3), we

put this value on an ordered list of potential donor values: the list of eligible values. If that

value is not allowed according to the edits, we try the category corresponding to the record

with the second smallest distance, and so on until we find a donor value that is allowed

according to the edits. After all potential donor records have been checked for eligible

values, we try all values not observed in the donor records (if any). Generally all possible

values are observed in the donor records. However, in principle, some values may not be

observed in the donor records and may be needed to satisfy the edits and preserve totals.

Note that, once a potential donor record has been checked, all subsequent records with

the same value for v will give the same result for the check, and hence do not have to be

checked.

As a remark, if we used the subset of variables that are observed for all records in (3)

instead of the set of all variables, the potential donor records for a certain recipient record

would be ordered in the same way for each variable with missing values. In that case, if

possible, multivariate imputation, using several values from the first potential donor record

on this list, would be used. Only if a value of the first potential donor record could not be

used because this would lead to failed edits or nonpreserved totals, a value from another

potential donor record would be used.

3.2.2. Random Hot-Deck Imputation

When random hot-deck imputation is applied, a random donor record is selected, often

within certain subgroups defined by auxiliary data. In our case we use random hot-deck to

construct a list of possible donor values for the missing field. Let K denote the number of

categories of the variable to be imputed, and let R be the total number of records with an

observed value for this variable. For each category ck ðk ¼ 1; : : : ;KÞ we determine the

ratio pk defined by the number of records for which the observed value for the variable to

be imputed is equal to ck divided by R. We then draw categories ck ðk ¼ 1; : : : ;KÞ

without replacement with probabilities pk ðk ¼ 1; : : : ;KÞ in the donor population.
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To impute a missing value, we first select the potential donor value that was drawn first.

If that value is allowed according to the edits (see Subsection 3.3), we put this value on a

list of potential donor values. If that value is not allowed, we try the potential donor value

that was drawn second, and so on until we find a donor value that is allowed according to

the edits. After all potential donor records have been checked for eligible values, we try all

values not occurring in the donor records (if any) in a random order. Again, once a

potential donor has been checked, all subsequent records with the same potential donor

value will give the same result for the check and do not have to be checked anymore.

As for nearest-neighbour imputation, we thus construct a list of potential donor values.

For random hot-deck imputation, the exact order of the potential donor values is less

important than for nearest-neighbour imputation. The important point here is that a list

with all potential donor values is constructed.

3.3. Satisfying Edit Restrictions

In order to ensure that the set of edits can be satisfied, we derive so-called implied edits.

These implied edits are necessary to guarantee that whenever we impute the current

variable, the remaining variables can indeed be imputed in a manner consistent with

the edits.

To determine the set of edits for the remaining variables to be imputed while imputing

the current variable, we use the method proposed by Fellegi and Holt (1976) to eliminate

a variable.

To eliminate a variable vt, we start by determining all index sets S such that

j[S
<Fj

t ¼ Domt ð4Þ

and

j[S
>F

j
i – B for i – t: ð5Þ

From these index sets we select the minimal ones, that is the index sets S that obey (4) and

(5), but none of whose proper subsets obey (4). Given such a minimal index set S we

construct the implied edit

j[S
> F

j
1 £ : : : £

j[S
>F

j
t21 £ Domt £

j[S
>F

j
tþ1 £ : : : £

j[S
>Fj

n:

By adding the implied edits resulting from all minimal sets S to the current set of edits and

then removing all edits involving the eliminated variable, one obtains a set of edits for the

remaining variables. It can be shown that if, and only if, this set of edits for the remaining

variables can be satisfied, a value for the eliminated variable exists such that the original

set of edits can be satisfied. We call this the lifting property, namely that the set of edits can

be satisfied when a certain number of variables is “lifted” to a higher number of variables.

The idea of the proof of the lifting property is that if a value does not exist for the

eliminated variable such that the original set of edits can be satisfied, then one would be

able to construct a violated implied edit, which would be a contradiction (see Fellegi and

Holt 1976, and De Waal and Quere 2003, for details of the proof).
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For records where multiple values are missing, we now order these variables in some

order that we will describe in Subsection 3.5. Next, we eliminate the variables according to

this order. Let us assume that, say, the values of variables v1 to vm are missing. We first

substitute the values of the other variables into the original set of edits. This gives a set of

edits E0 that have to be satisfied by variables v1 to vm. We then eliminate variable v1 from

E0 and obtain a set of edits E1 that have to be satisfied by variables v2 to vm. Next, we

eliminate variable v2 from E1 and obtain a set of edits E2 that have to be satisfied by

variables v3 to vm. We continue this process until we eliminate vm21 from Em22, and obtain

a set of edits Em21 for variable vm. For a single variable, edits simply define a set of

allowed values for that variable. So, for variable vm we now know which values are

eligible for imputation. By a repeated application of the lifting property it can be shown

that the original set of edits can be satisfied if and only if vm satisfies Em21.

Once we have determined the edit sets Ek ðk ¼ 0; : : : ;m 2 1Þ, we can impute the

variables in reverse order. That is, we try to impute vm by means of one of our hot-deck

imputation methods (see Subsection 3.2) until we have selected an eligible value that

can also preserve the total for this variable (see Section 3.4). We fill in this value for vm

into the edits in Em22. This gives us a set of eligible values for variable vm21. We continue

this procedure until we have imputed all variables. What is important here is that whenever

we want to impute a certain variable in a certain record, we know the set of eligible

values for that variable in this record. We will use this property to preserve totals

(see Subsection 3.4).

Implied edits are often used to automatically identify erroneous fields in a data set

(see Fellegi and Holt 1976). It is well known that the number of implied edits may be very

large. In order to identify erroneous fields automatically, one basically has to generate

implied edits for every possible subset of the variables. In our case, however, the number

of implied edits is much less since we only have to consider a limited number of possible

subsets as the variables are eliminated in a fixed order. For instance, if there are five

variables, we would have to consider 32 subsets (ranging from eliminating no variables

to eliminating all five variables) for identifying errors automatically in the Fellegi and Holt

approach. For our method, we only need to examine six subsets (ranging from eliminating

no variable, eliminating variable 1, eliminating variables 1 and 2, etc., to eliminating

variables 1, 2, 3, 4 and 5).

Example: To illustrate the use of implied edits, we assume that we have a data set with

the three variables Marital Status, Age and Relation to Head of Household and their

categories defined in Subsection 2.1. We also assume that these variables have to satisfy

edits (1) and (2). Now suppose that both Marital Status and Age in a certain record are

missing, and that the value of Relation to Head of Household equals “Spouse”. Suppose

that we first impute Age and subsequently Marital Status. In this case we cannot simply

ignore the edits involving the variable to be imputed later, Marital Status, while imputing

Age, since it would be possible to impute the value “,16 years” for the missing value of

Age, leading to no value for Marital Status such that all edits are satisfied.

The edits (1) and (2) imply the edit

ð{Married; Unmarried; Divorced; Widowed}; {, 16 years}; {Spouse}Þ; ð6Þ
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which expresses that someone who is less than 16 years of age cannot be the spouse

of the head of household. This follows from (4) and (5) by taking S ¼ {1; 2}

and eliminating variable Marital Status as explained here: The sets F
j
i ði ¼ 1; 2; 3; j ¼ 1; 2Þ

are given by F1
1 ¼ {Married}, F1

2 ¼ {, 16 years}, F1
3 ¼ {Spouse; Child; Other},

F2
1 ¼ {Unmarried; Divorced; Widowed}, F2

2 ¼ {, 16 years;$ 16 years} and F2
3 ¼ {Spouse}.

In order to eliminate variable Marital Status, we take the union of F1
1 and F2

1, and the

intersections of F
j
i ði ¼ 2; 3; j ¼ 1; 2Þ.

If we take the implied edit in (6) into account while imputing the missing value for Age,

we find that we cannot impute the value “,16 years” and that only “$16 years” is

allowed. When “$16 years” is imputed, Marital Status can indeed be imputed in a

consistent manner.

Now that we have explained why implied edits are needed, we illustrate how we use

them in our approach. Suppose we order the variables as follows: Marital Status and then

Age. We substitute the value of Relation to Head of Household (“Spouse”) into the edits

(1) and (2), and obtain the edits

ð{Married}; {, 16 years}Þ ð7Þ

and

ð{Unmarried; Divorced; Widowed}; {, 16 years;$ 16 years}Þ ð8Þ

for Marital Status and Age. In this very simple case we now only have to eliminate one

variable, Marital Status, and obtain the edit

ð{, 16 years}Þ ð9Þ

that has to be satisfied by Age. Edit (9) defines the set of eligible values for Age: in this case

only the value “$16 years” is allowed. If we impute “$16 years” for the missing value of

Age, we can be sure that a value for Marital Status exists such that all edits are satisfied.

Imputing the value “$16 years” for Age and substituting this value into edits (7) and (8)

gives the edit

ð{Unmarried; Divorced; Widowed}Þ

for Marital Status. The set of allowed values for Marital Status hence consists of the value

“Married” only.

3.4. Preserving Totals

In the previous subsection we have explained that whenever we want to impute a certain

variable in a record we know the set of eligible values. For every record we now construct

such a set of eligible values for the variable to be imputed. Suppose the variable to be

imputed has K categories c1 to ck. We can then summarise the problem in a table as

shown in Table 1 where Nrec is the number of records, a 0 denotes that the category is not

eligible for imputation, a “*” that the category is eligible for imputation and a 1 that this

value is observed (not missing) in the corresponding record. The tk ðk ¼ 1; : : : ;KÞ denote

the known totals.
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Now, we impute the variable under consideration record by record. We select a value

from the set of eligible values for the variable to be imputed for record 1. As explained in

Subsection 3.2, the list of eligible values has been constructed using one of our hot-deck

approaches. After a category cx has been selected from the list of eligible values, we

perform the following two checks:

1. Is the number of records that have been assigned to the selected category cx less than

the total tx? If so, we perform the second check. If not, we reject the selected category

cx and select a new one.

2. Will it be possible to preserve the totals involving this variable if we accept the

selected category cx? If so, we accept this value, and go to the next record to be

imputed. If not, we reject the selected category cx and select a new one, which is

again subjected to the same checks.

Checking whether the total can be preserved if we accept the selected category cx is a well-

known problem of combinatorial mathematics. It is called the “Harem problem” (see

Anderson 1989). The “Harem problem” is a generalization of the “Marriage problem” (see

e.g., Anderson 1989, and Van Lint and Wilson 2001). In the “Harem problem”, several

men (the categories in our case) can select a specified number (the tk in our case) of wives

(the records in our case) they are willing to marry (assign a record to a category in our

case) and add to their “harem”. For each category we make a list of records that can be

assigned to this category (using the *’s and the 0’s in Table 1). The 1’s in Table 1

correspond to records in which categories have been observed, and hence have already

been assigned to these categories.

A condition and a constructive algorithm for solving the “Harem problem” are given in

Anderson (1989). The condition given by Anderson (1989) is: tk ðk ¼ 1; : : : ;KÞ records

can be assigned to categories ck ðk ¼ 1; : : : ;KÞ if, and only if, for every subset

{i1; : : : ; im} of {1; : : : ;K} the lists of categories ci1 ; : : : ; cim contain in their union at

least ti1 þ · · ·þ tim records. This condition is hard to check directly. Fortunately, the

constructive algorithm for solving the “Harem problem” described by Anderson (1989)

provides a relatively simple way to check the condition and construct a solution at the

same time. The underlying idea of this algorithm is to assign records to categories in a

simple manner until one gets “stuck”. Once that happens, a reshuffling algorithm (see the

Appendix for a brief description of this algorithm, or Anderson 1989, for more details) is

applied with the aim to assign one more record to the categories. This algorithm is

repeatedly applied until either all records are assigned to categories, or until one again gets

Table 1. Illustration of the sets of eligible values

Cat. c1 Cat. c2 : : : Cat. cK

Record 1 * 0 : : : *
Record 2 1 0 : : : 0
Record 3 0 * : : : *
: : : : : : : : : : : : : : :
Record Nrec * * : : : 0

t1 t2 tk
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“stuck”. In the first case we have constructed a solution to this instance of the “Harem

problem”, and we have shown that it is possible to preserve the totals if we accept the

selected category cx. In the second case we have demonstrated that a solution to this

instance of the “Harem problem” is not possible.

Note that if, for a certain variable to be imputed, the first record with a missing value has

a solution to the “Harem problem”, by construction all subsequent records to be imputed

for that variable also have solutions to the “Harem problem”.

Example: We illustrate the “Harem problem” and our approach to the imputation

problem by means of a simple example. Suppose that for a certain variable to be imputed,

we have summarised the problem in Table 2.

Now if we select category c3 for the first record, the “Harem problem” for the remaining

records turns out to be infeasible. This is easy to see: The remaining total of four records

must be assigned to categories c1 and c2 in some way. However, record 3 cannot be

assigned to either of these categories since a 0 denotes an ineligible category. This means

that category c3 must be rejected for record 1, and we have to impute category c2 for this

record. The “Harem problem” for the remaining records is then feasible. In fact, there is

only one solution: Assign record 1 to category c2, record 3 to category c3, and records 2, 4

and 5 to category c1.

3.5. Order of Imputing Variables and Records

In our evaluation study in Section 4 we have imputed the variables in increasing order of

missing values. That is, we impute the variable(s) with the least number of missing values

first, and end with the variable(s) with the most missing values. Possibly better orders for

the variables to be imputed can be developed (see, e.g., Di Zio et al. 2004).

Obviously, for a given variable, for the first record it is generally easier to find solutions

to the “Harem problem” than for later records. That is, for later records, one generally

needs to try more potential donor values on average before one finds a value that satisfies

edits and preserves the total (although one can be sure that such a value exists if the

“Harem problem” has a solution for the first record). Since it may be difficult to find

suitable imputation values for different variables of the same record, we randomize the

records each time before we start imputing a new variable.

As noted in the previous subsection, for each new variable, it is only for the first record

to be imputed that it may be impossible to find an imputation value that satisfies all edits

and preserves the total. If we cannot find a suitable imputation value for that record, we

Table 2. An example of the “Harem problem”

Cat. c1 Cat. c2 Cat. c3

Record 1 0 * *
Record 2 * * *
Record 3 0 0 *
Record 4 * * *
Record 5 * 0 *

3 1 1

Coutinho, De Waal and Shlomo: Calibrated Hot-Deck Imputation 309



would have to backtrack. That is, we would have to return to a previously imputed

variable, and impute one or more missing values for that variable in another way. This

would lead to an extremely complicated and time consuming process.

By imputing the variable(s) with the least number of missing values first and the

variable(s) with the most missing values last, we try to avoid having to backtrack. The later

in the imputation process, the more difficult it is to satisfy all edits and preserve all totals.

Therefore, by imputing the variables with the most missing values last, we try to make

finding solutions for those variables a bit easier as the more values are missing, the more

“freedom” one has to satisfy edits and to preserve the totals.

In addition, in order to avoid having to backtrack, we can also try to fill in values that de-

activate edits at the start of the imputation process for variables to be imputed later, even if

this leads to a slightly higher distance in (3) for the nearest-neighbour approach. For

instance, edit (1) could be deactivated for Relation to Head of Household by filling in the

value “Unmarried” for Marital Status. Instead of backtracking or deactivating edits one

could also relax the problem by removing edits or by tolerating edits or totals to not be

strictly satisfied. In our evaluation study described in Section 4, we did not have to

backtrack or relax the problem. We did deactivate edits while imputing the first variable.

For later variables we applied the usual approach described in Sections 3.1 to 3.4.

4. Evaluation Study

In this section we describe a study on a real data set to evaluate our imputation approaches.

However, as the results may be influenced by the nonresponse mechanism, we ensure

MCAR by artificially creating missingness.

4.1. Evaluation Data

The evaluation data set consists of observed data from the 2001 UK Census. The data set

included 1,000 randomly selected households from one area. In the data set we have one

record per person in the selected households. In total the data set contained 2,447 records.

Each record contained six variables (the numbers of categories are in parenthesis): Age (4),

Ethnicity (12), Employment Status (4), Sex (2), Marital Status (6) and Relation to Head

of Household (10). In our evaluation study we assume that totals are known for all

six variables.

For this data set three explicit categorical edits were defined:

. Someone whose age is less than 16 years cannot be employed.

. Someone whose age is less than 16 years cannot be married.

. Someone whose relation to the head of household is husband or wife has to be

married.

The original data set for the 2001 UK Census did not contain any missing values. In this

data set we randomly introduced fixed percentages of missing values using an MCAR

mechanism where for each variable we created exactly the same percentages of missing

values. We created ten replications of six data sets, each data set having a fixed percentage

of missing values per variable: 1%, 2%, 5%, 10%, 20% and 90%. These data sets were

imputed, using the imputation methods described in Section 3. The resulting imputed data
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sets were subsequently compared to the original data. The evaluation measures used for

this comparison are discussed in Subsection 4.3 and are calculated by averaging the

evaluation measures calculated for each replication of the six data sets according to the

percentage of missing values. As the nearest-neighbour imputation is deterministic in our

implementation, all ten replications gave the same imputations. The evaluation measures

for the random hot-deck method were relatively stable across the ten replicates.

Note that although we carried out ten replications of the imputation methods on each of

the six data sets, our methods are in essence single imputation methods, rather than

multiple imputation methods (see Rubin 1987). In practice, single imputation methods are

preferred at NSIs rather than multiple imputation methods. In principle, our imputation

methods can be adapted to multiple imputation to account for the extra variation arising

from imputation.

4.2. The Imputation Methods

We evaluated two different imputation methods: one based on random hot-deck donor

imputation and one based on nearest-neighbour hot-deck imputation. For the imputation

method based on nearest-neighbour hot-deck imputation we have examined two versions.

For both versions based on nearest-neighbour imputation, wi x0
i ; x

r
i

� �
¼ 0 if x0

i ¼ xr
i and

wi x0
i ; x

r
i

� �
¼ 1 if x0

i – xr
i for all variables except Age in the distance function (3). The two

versions based on nearest-neighbour hot-deck imputation differ with respect to the weights

used in the distance function (3) for variable Age.

In the distance function the values of Age are subdivided into four age groups. In one

version of the method based on nearest-neighbour hot-deck imputation, wi x0
i ; x

r
i

� �
¼ 0 if

x0
i is in the same age group as xr

i and wi x0
i ; x

r
i

� �
¼ 1 if x0

i is in a different age group than xr
i .

This imputation method is referred to as the “equal nearest neighbour method”. In the

other version of the method based on nearest-neighbour hot-deck imputation,

if, wi x0
i ; x

r
i

� �
¼ 0 if x0

i is in the same age group as xr
i , wi x0

i ; x
r
i

� �
¼ 0:25 if x0

i and xr
i

differ by only one age group, wi x0
i ; x

r
i

� �
¼ 0:5 if x0

i and xr
i differ by two age groups, and

wi x0
i ; x

r
i

� �
¼ 0:75 if x0

i and xr
i differ by three age groups. This imputation method is

referred to as the “unequal nearest neighbour method”.

4.3. Evaluation Results

The imputation methods are compared using the quality measures described as follows.

Note that the measures are used as indicators where the smaller the value, the more the

method is preferred.

Let T represent a frequency distribution for a two-way table produced from the data and

let T(r,c) be the frequency in the cell in row r and column c.l (In this section r and c refer to

“row”, respectively “column”, instead of to “record” and “category” as in earlier sections.)

Distance metric: We use the Hellinger’s Distance defined as:

HD ðTorig; TimpÞ ¼ 0:5
r;c

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Torigðr; cÞ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Timpðr; cÞ

p� �2

( )1=2

with orig and imp referring to the original and imputed tables respectively. The HD
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provides a measure of similarity between two probability distributions typically used for

positive or zero counts.

Impact on measure of association: The first measure of association is defined as the

per cent difference in the Cramer’s V statistic as:

RCV ðTorig; TimpÞ ¼
100 £ {CV ðTimpÞ2 CV ðTorigÞ}

CV ðTorigÞ

where

CV ðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

min ðNR 2 1;NC 2 1Þ

s

is the Cramer’s V measure of association defined in terms of x2, the usual Pearson chi-

squared statistic for testing independence in a two-way table, NR is the number of rows and

NC is the number of columns. The RCV provides a measure of attenuation of the

association in the table.

The second measure of association is defined as the per cent difference in the variance of

the cell counts:

RV ðTorig; TimpÞ ¼
100 £ {V ðTimpÞ2 V ðTorigÞ}

V ðTorigÞ

where

V ðTÞ ¼
r;c

X
ðTðr; cÞ2 �T Þ 2

NRNC 2 1
:

The RV provides a measure of attenuation of the counts in the table indicating whether

the cell counts are “flattening” as a result of the imputation.

Impact on an ANOVA analysis: Another form of bivariate analysis consists of

comparing proportions in a category of a column (outcome) variable between categories of

a row (explanatory) variable. Let

PcðrÞ ¼
Tðr; cÞ

c

X
Tðr; cÞ

be the proportion in column c for row r and define the between-row variance of this

proportion by:

BVðPcÞ ¼
r

X
ðPcðrÞ2 PcÞ2

NR 2 1
where Pc ¼

r

X
Tðr; cÞ

r;c

X
Tðr; cÞ

:

The measure is defined as:

BVR Pc
orig;P

c
imp

� �
¼

100 £ BV Pc
imp

� �
2 BV Pc

orig

� �n o

BV Pc
orig

� �
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The BVR provides a measure of attenuation of between group differences in an

ANOVA analysis and indicates the undesirable result that the group proportions are

“flattening” towards the overall proportion.

Figures 1 through 4 present graphs of the average quality measures across the ten

replicates for some main distributions in the data set. The unequal nearest neighbour

method provided similar results to the equal nearest neighbour method and hence we

compare the random hot-deck method (denoted by “random”) with the equal nearest

neighbour method (denoted by “equal_nn”) in the figures.

Figure 1a presents the Hellinger’s Distance (HD) on a table of counts spanned by Age

Group and Employment Status (16 cells). For all imputation rates, the equal nearest
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Fig. 1. (a) Average Hellinger’s Distance (HD) across replicates on the table Age Group and Employment

Status. (b) Average Hellinger’s Distance (HD) across replicates on the table Age Group and Relation to Head of

Household
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neighbour method has lower Hellinger’s Distance compared to the random method.

Figure 1b presents the Hellinger’s Distance for the table spanned by Age Group and

Relation to Head of Household (40 cells) showing similar results.

Figure 2a presents the per cent relative difference in the variance of the cell counts for

the table spanned by Age Group and Employment Status. The negative values of the RV

measure means that the variance of counts with imputed values is less than the original

variance of counts. The cell counts are “flattened” as a result of the imputation, leading to a

smaller variance of the counts. The equal nearest neighbour method (as well as the unequal

nearest neighbour method) has less change in the variance of the cell counts compared to

the random method. Figure 2b presents the RV measure for the table spanned by Age

Group and the Relation to the Head of Household with similar results.
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Fig. 2. (a) Average per cent relative difference in variance of cell counts (RV) across replicates on the table Age

Group and Employment Status. (b) Average per cent relative difference in variance of cell counts (RV) across

replicates on the table Age Group and Relation to Head of Household
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Figure 3 presents the per cent relative difference in the between variance of the

proportion of employed persons in groups defined by Sex and Age groups (BVR). The

negative values of the BVR measure means that the between variance of the group

proportions of employed persons with imputed values is less than the original between

variance. The group proportions are attenuating to the overall proportion as a result of the

imputation. Again, equal nearest neighbour method (and the unequal nearest neighbour

method) has less change in the BVR compared to the random method.

Figure 4a presents the per cent relative difference in the Cramer’s V statistic of the table

spanned by Age Groups and Employment Status (RCV). The negative values of the RCV

measure means that the Cramer’s V statistic on the table with imputed values is less than the

original Cramer’s V statistic. The table of counts is attenuating towards assumptions of

independence compared to the original table. For all imputation rates, the equal nearest

neighbour method has less change in the Cramer’s V statistic than the random method and

similarly for the unequal nearest neighbour method. Figure 4b presents the RCV measure for

the table spanned by Age Groups and Relation to Head of Household with similar results.

In Figure 5, we present box plots of the proportion of values that were not imputed back

to their original value in the data set according to the percentage missing and imputation

method. Each box plot includes a total of 38 proportions which is the number of categories

of the six variables in the data set. The proportions were calculated as the average across

the replications. The proportion is very small for the data sets, with 1% and 2% missing

values. Based on the data sets with 5% missing values and over, we can see a slight

advantage to the equal nearest neighbour approach with less outlying proportions, a

smaller interquartile range of the proportions and a slightly smaller median proportion.

5. Discussion

In this article we have developed two imputation methods for categorical data that take

edits and known totals into account while imputing a record. One of the imputation
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methods proposed in this article is based on random hot-deck donor imputation and the

other on nearest-neighbour donor imputation. Our evaluation study shows that the method

based on nearest-neighbour imputation performs slightly better than the method based on

random imputation. In our evaluation study, changing the weights in the distance function

of the method based on nearest neighbour imputation had little or no effect on the outcome

of the results. All imputation methods provide exactly the totals to those used in the

benchmarking. For non-benchmarked subdomain totals, one can assess the potential bias

as shown by the Hellinger’s Distance in Figures 1a and 1b. To ensure totals for

subdomains of interest, the imputation methods can be carried out separately in each

subdomain assuming that the totals are known.
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The problem of imputing missing data while satisfying edits and preserving totals has

hardly been studied in the literature. Our methods are among the first for this kind of

problem. Many aspects of the developed methods can undoubtedly be extended and

improved upon.

A possible extension is to develop similar methods for the situation where one wants to

impute a sample data set, instead of all units in the population as in the current article.

In order to impute a sample data set so that population totals are preserved, one would have

to extend our methods to deal with sampling weights. If all sampling weights are integers,

a first idea would be to simply make w copies of a record with sampling weight w, and then

apply the methods described in this article. When translating this back to the sample,

fractions of categories would then be “imputed” in each record. If sampling weights are

not integers, the situation is more complicated, and one would have to do some rounding.

It is very likely that more efficient and better approaches can be developed for extending

our methods to sample data sets.

Another interesting extension is to develop similar imputation methods for the case

where bivariate marginal distributions with overlapping variables, say of the pair of

variables (X,Y) and the pair of variables (X,Z), are known instead of only univariate

marginal distributions. In principle, this could be solved by constructing the crossings of

(X,Y) and of (X,Z), and adding these crossings to the set of variables. In order to avoid any

inconsistencies between the marginals of these crossings and the marginals of variables X,

Y and Z, one would then need to add edits, for example: “if (X ¼ x,Y ¼ y) then (X ¼ x)”

and “if (X ¼ x,Y ¼ y) then (Y ¼ y)” for the crossing of X and Y, and similar edits for the

crossing of Y and Z.

Although this is, in principle, a possible approach, it is likely to be time consuming

with more chances of getting “stuck” in the “Harem problem” and having to backtrack.

A more efficient approach for this situation remains to be developed.
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Alternatively, knowing the marginal of (X,Y) and (X,Z), one could estimate

(X,Y,Z) using log-linear modelling and carry out the imputation separately in each

subdomain of this cross-classification. Again, it is likely that better approaches can be

developed.

It is unclear whether the use of known totals in the imputation process preserves

correlations better between variables compared to when totals are not used in the

imputation process. We hope to explore this in future research.

Our imputation methods consist of two different parts: a statistical part (drawing

potential donor values) and a combinatorial part (satisfying edits and preserving totals).

The final aim of research in this area should be to develop a statistical framework that

organically incorporates the combinatorial part as well.

Appendix: The Reshuffling Algorithm for the “Harem Problem”

Assume that (some) records have already been assigned to categories by means of a simple

algorithm, for example by a “greedy” algorithm where first as many records as possible are

assigned to the first category without exceeding the total for this category, then as many

records as possible out of the remaining records are assigned to the second category

without exceeding the total for that category, and so on, until either all records have been

assigned to categories or one gets stuck. In the first case, the “Harem problem” has been

solved. In the second case, we apply the reshuffling algorithm sketched below, which aims

to assign one extra record to the categories.

As in Subsection 3.4, we denote the number of records by Nrec. Define L(ri) as the set of

categories that are eligible for imputation of record ri ði ¼ 1; : : : ;NrecÞ. With r[j ] we

denote the j-th record that is selected in the procedure sketched below. For example, if the

first record selected is r3, then r[1] ¼ r3 and L(r[1]) ¼ L(r3). The same record may be

selected several times, so some of the r[j ] may refer to the same record. Likewise, we use

c[j ] to denote the j-th category that is selected in the procedure, for example if the first

category selected is c3 then c[1] ¼ c3. Again, the same category may be selected several

times, so some of the c[j ] may refer to the same category.

1. Select a record r[1] that has not yet been assigned to a category.

2. Select a category c[1] from L(r[1]).
* If r[1] may be assigned to c[1] without exceeding the total for this category, we are

obviously done.
* If r[1] may not be assigned to c[1], we set Lðr½1�Þ :¼ Lðr½1�Þ2 {c½1�}, i.e., c[1] is

dropped from L(r[1]). Go to Step 3.

3. Select a record r[2] that has been assigned to c[1], and set Lðr½2�Þ :¼ Lðr½2�Þ2 {c½1�}.

4. Select a category c[2] from L(r[2]).
* If r[2] may be assigned to c[2] without exceeding the total for this category, we are

done (see below).
* If r[2] may not be assigned to c[2], we set Lðr½2�Þ :¼ Lðr½2�Þ2 {c½2�} and go to Step 5.

5. Select a record r[3] that has been assigned to c[2], and set Lðr½3�Þ :¼ Lðr½3�Þ2 {c½2�}.

6. And so on.

This reshuffling algorithm will eventually terminate. It can terminate in two possible ways:
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a. We can assign some r[k ] to a category c[k ]. In this case we can assign an extra record

to a category. Namely, we can assign r[k ] to c[k ]. Previously, r[k ] had been assigned to

a category c[m ] (m # k 2 1). To this c[m ] we can assign a record r[p ] ( p # m). We

can continue in this way until we can assign record r[1] to category c[1].

At this moment we have assigned an extra record to a category, and we are ready to

restart the algorithm with another record that has not yet been assigned to a category.

When there are no more records that need to be assigned to a category, this instance of

the “Harem problem” has been solved.

b. We try to select a category from an empty set L(r[j ]). In this case we can conclude that

this instance of the “Harem problem” is unsolvable.

We illustrate the above algorithm on the “Harem problem” given in Table 2. We assume

that some records have already been assigned to categories by means of a simple “greedy”

algorithm. The preliminary assignment of records to categories after application of this

“greedy” algorithm is summarised in Table A.1, where categories that are eligible for

imputation are underlined.

Lðr1Þ ¼ {c2; c3}, Lðr2Þ ¼ {c1; c2; c3}, Lðr3Þ ¼ {c3}, Lðr4Þ ¼ {c1; c2; c3} and

Lðr5Þ ¼ {c1; c3}. Only r3 has not yet been assigned to a category, so we select r[1] ¼ r3.

We select c[1] ¼ c3 from L(r3), and update Lðr3Þ :¼ B. We select a record r[2] that has been

assigned to c3. In this case there is only one option, namely record r2, so, r[2] ¼ r2 and we

update Lðr2Þ :¼ {c1; c2}. We select a category, say c[2] ¼ c2, from L(r2), and update

L(r2): ¼ {c1}. We select a record r[3] that has been assigned to c2. In this case there is again

only one option, namely record r1, so, r[3] ¼ r1, and we update L(r1): ¼ {c3}. We select

c[3] ¼ c3 from L(r1), and update Lðr1Þ :¼ B. We select a record r[4] that has been assigned

Table A.2. Assignment of records to categories

after the reshuffling algorithm

Cat. c1 Cat. c2 Cat. c3

Record 1 0 1 0
Record 2 1 0 0
Record 3 0 0 1
Record 4 1 0 0
Record 5 1 0 0

3 1 1

Table A.1. Preliminary assignment of records

to categories

Cat. c1 Cat. c2 Cat. c3

Record 1 0 1 0
Record 2 0 0 1
Record 3 0 0 0
Record 4 1 0 0
Record 5 1 0 0

3 1 1
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to c3. In this case there is again only one option, namely record r2, so, r[4] ¼ r2. Updating

L(r2) has no effect: L(r2): ¼ {c1}. We select c[4] ¼ c1, from L(r2).

Record r[4] ¼ r2 can be assigned to c[4] ¼ c1. Previously, r2 had been assigned to

category c[1] ¼ c3. In turn, we can assign record r[1] ¼ r3 to category c[1] ¼ c3.

The assignment of records to categories after the reshuffling algorithm is summarised in

Table A.2.

In this case, the “Harem problem” has been solved. In general one needs to apply the

reshuffling algorithm several times before the “Harem problem” is solved, or before one

can conclude that this instance of the problem is unsolvable.
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