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This article outlines a framework for formal description, justification and evaluation in
development of architectures for large-scale statistical production systems. Following an
introduction of the main components of the framework, we consider four related issues:
(1) Use of some simple schematic models for survey quality, cost, risk, and stakeholder utility
to outline several groups of questions that may inform decisions on system design and
architecture. (2) Integration of system architecture with models for total survey quality (TSQ)
and adaptive total design (ATD). (3) Possible use of concepts from the Generic Statistical
Business Process Model (GSBPM) and the Generic Statistical Information Model (GSIM).
(4) The role of governance processes in the practical implementation of these ideas.
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1. Introduction: Systems Development, Implementation and Maintenance in the

Context of Total Survey Design

1.1. Definition and Evaluation of Systems for Statistics Production and Their

Architectures

Over the past two decades, large-scale production of official statistics has become

increasingly complex. Efforts to manage the resulting business processes and statistical

production systems have led to development of a literature on “architecture” for these

systems. Ideally, an architecture provides a reference point (used between and within

statistical organisations) for efficient coordination of common business processes,

information flows, production components, and development decisions. Architecture is

considered especially important for reduction of development and maintenance costs and

risks, for improvement of data quality, and for management of transitions from old to new

production systems. See, for example, Dunnet (2007), Penneck (2009), Braaksma (2009),

Pink et al. (2010), Sundgren (2010), Finselbach (2011), and UNECE (2011). In addition, a

system perspective has helped some statistical organizations to improve standardization in
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order to reduce system complexity, and to identify redundant production systems. See, for

example, Sundgren (2007), Field (2009), Renssen and Van Delden (2008), Renssen et al.

(2009), Penneck (2009), Jug (2009), Gloersen and Saeboe (2009) and Studman (2010).

Work with system architecture has also strengthened international collaborations through

the use of common frameworks. See Vaccari (2009), Todorov (2011), ABS (2012),

Hamilton and Tam (2012a, 2012b), and UNECE (2012a). European Commission (2009),

Statistics Canada (2012), UNECE (2011), Sundgren (2011) and Munoz-Lopez (2012)

provide additional background on statistical architecture; and Sowa and Zachman (1992),

CIOC (1999, 2001), Rozanski and Woods (2005), OMB (2009) and The Open Group (2009)

provide background on architectural frameworks and architecture of systems in general. In

addition, the articles in this special issue of the Journal of Official Statistics discuss some

important aspects of architecture for statistical production systems.

The abovementioned references use somewhat varying definitions of the terms

“statistical production system” and “architecture.” For the current article, “statistical

production system” will include systems used for sample surveys (for which the statistical

organization exercises a high degree of control) and for statistical work with administrative

record systems and registers (for which the statistical organization may have a lesser degree

of control). In addition, the term “architecture of a statistical production system” (or simply

“architecture” for short) will mean an overall description of the system structure (input,

output and logic), its components (subsystems), their interrelationships, and the

performance characteristics of the components, the integrated system, and system outputs.

Inclusion of the performance characteristics will be crucial if the architecture is to be useful

to assist in improving a production system. For system output these would typically be an

overall account of system capability and ability to deliver what is required by the business

owner (ideally the same as the clients/users want). Section 1.2 below considers performance

assessments that contribute to the architecture. These assessments simultaneously depend

on methodology factors as well as factors of system design and development.

Careful descriptions of systems architecture generally require balanced discussion of

features related to management, methodology and information technology. It is important

that they contain views from all of these fields and that the descriptions are complementary

and compatible. For some purposes, descriptions at a very high conceptual level can be

useful, but practical evaluation and implementation generally require a substantial amount

of technical detail. These details often involve interactions among heterogeneous

subsystems, as well as evaluation of quality, cost, and risk factors over the full life cycle of

the system (Camstra and Renssen 2011; Munoz-Lopez 2012). Important system features

include efficiency, reliability, durability, maintainability, vulnerability, flexibility,

scalability, adaptability, and extensibility to future systems. These features are not unique

to statistical systems; see MIT (2004) and Rozanski and Woods (2005) for related comments

in a broader context.

1.2. Improving the Balance of Total Survey Quality, Cost and Risk in the Context of

Stakeholder Utility

Because statistical system architecture has developed to improve the balance of quality,

cost, and risk in production systems, it is useful to consider this architecture in the context
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of total survey design and stakeholder utility. For general background on total survey

design, see, for example Biemer (2010), Groves and Lyberg (2010) and references cited

therein. For the current development, we note that a “total survey design” approach can

provide a useful conceptual framework in which to develop, implement, and evaluate a

wide range of methodological features, including work with frames, sampling,

instruments, fieldwork, estimation, and inference. In addition, schematic extensions of

the total survey design approach may help to provide a stronger and more systematic basis

for the integration of methodology with production systems and survey management. This

would involve three long-term goals:

(1) Provide a framework in which to explore the impact that specific features of the

system design may have on the balance among multiple performance criteria,

including data quality, cost, risk, and stakeholder utility. Each of these performance

criteria are multidimensional, and require evaluation over the full lifecycle of a

production system, including initial design and development, implementation,

continuing operations, maintenance, and periodic upgrades. This exploration may

involve direct effects of the system design as such, as well as interactions between the

systems design and relevant features of the methodological and administrative design.

(2) Use the framework in (1) to guide practical decisions related to resource allocation

and governance processes for methodological, systems, and administrative design.

(3) Use the results from (1) and (2) to identify specific areas of research that are most

likely to have a substantial impact on work at the interface of methodological,

systems, and administrative design.

The current article will focus on schematic extensions related to goal (1), while goals (2)

and (3) will be considered in future work. Consider a general survey design characterized

by a vector X, where the term “design” includes both formal design decisions and

implementation of those decisions. Components of X generally would include all features

of standard survey procedures, for example: development and refinement of frames and

related administrative record systems; sample designs; collection methods; review, edit,

imputation, and estimation methods; and procedures for dissemination of the resulting

estimates. Additional components of X include features of the computational systems used

to implement the abovementioned survey procedures, and features of administrative

processes that may have an effect on survey quality, cost, and risk.

In the development of this article, it will be useful to distinguish among factors

associated primarily with methodological (M), systems (S), and administrative (A) features

of the design, and we will partition the design vector X ¼ ðXM ;XS;XAÞ and related model

parameter vectors accordingly. In addition, performance of our survey design may be

affected by uncontrolled factors Z. These factors may include general features of the

statistical environment (e.g., quality of frame information, accessibility of sample units

through prospective collection modes, and the willingness of specific subpopulations to

cooperate with survey requests), availability of resources, operational constraints, and

changes in stakeholder needs for data. The factors Z also include process data and other

forms of metadata and paradata (e.g., data on contact histories, costs, and effort expended

at the unit level of effort, and incomplete-data patterns) as discussed in, for example,

Couper (1998) and Kreuter et al. (2010).
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We emphasize that each of XM, XS and XA may depend heavily on the statistical

production system components of the architecture. Also, the sensitivity of these

components to changes in Z may depend on the architecture.

We can characterize the performance of the resulting survey design in terms of its

quality, cost, risk, and stakeholder utility. In most practical cases, each of these

performance measures will be multidimensional. First, let Q represent standard measures

of data quality. This might include the components of a standard total survey error model,

as well as more qualitative properties like timeliness and relevance, as reviewed by

Brackstone (1999) and others. The quality measures may also include criteria developed

originally in the computer science and information systems literature, for example, use of

generally accepted systems design features, transparency of system architecture and code,

or performance of the system with specified test cases.

Second, let C represent the costs associated with the development, implementation,

maintenance and operation of the procedures; this includes costs for field operations,

systems work, dissemination and methodology. One may consider schematic models for

quality and cost, for example,

Q ¼ gQðX; Z;bQÞ ð1:2:1Þ

and

C ¼ gCðX; Z;bCÞ ð1:2:2Þ

where gQð·Þ and gCð·Þ have (nominally) known functional forms, and bQ and bC are

parameter vectors. In many cases, some or all components of bQ and bC are unknown.

Third, note that standard approaches to survey quality have tended to focus on issues

that arise from cumulative effects of a large number of random or quasi-random events,

such as separate household-level decisions on whether to respond to a survey request.

However, the performance of a statistical production system can be seriously degraded by

a small number of discrete events. For example, in many large-scale surveys, managers

devote considerable effort to prevention of catastrophic degradation in one or more

dimensions of quality. These efforts may include reduction of the probability of a given

failure, as well as development of system features that will ameliorate the effects of

failures that do take place. As a second example, Linacre (2011) and others have noted that

in the development of survey systems, there are substantial risks that the development

project might be aborted for a variety of reasons. For example, in many cases, termination

took place when it became clear that initial assessments of cost or quality effects were

unrealistic.

In principle, one could expand the definition of “survey quality” to include the

abovementioned problems. However, since previous literature on survey quality has

generally not included these issues, we will instead use a separate definition of survey risk

R as the combined impact of a substantial and discrete failure in one or more components

of a survey process. This would include degradation in survey quality, as well as failures in

database management; in system development, testing and maintenance; in confidentiality

protection for disseminated data; or in standard electronic data security. Characterization

of these components of risk generally will include the severity of the failure, the duration

and trajectory of recovery, effects of resource re-allocation arising from the failure, and
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the related impact on institutional credibility and on perceived stakeholder utility. Thus,

for this discussion, the term “risk” incorporates the probability of a specific failure, its

direct and indirect costs, and its broader impact.

As in the case of quality and cost, the survey risk R generally will be multidimensional,

and we can consider a model

R ¼ gRðX; Z;bRÞ ð1:2:3Þ

where gRð·Þ is a function of general form and bR is a vector of unknown parameters.

Fourth, let U represent the perceived stakeholder utility of the resulting survey design as

implemented, and consider a model

U ¼ gUðQ;C;R;X; ZÞ ð1:2:4Þ

intended to link perceived utility with measures of quality, cost, and risk. In some

relatively simple settings, R is perceived to be negligible, gUð·Þ is the identity function and

U ¼ Q. However, in many cases, perceived utility is influenced by components of the

design or environmental factors that may not be captured directly through standard quality

measures Q. Furthermore, perceptions of utility may be influenced by components of risk

and cost. For example, the risk that data releases will not occur on schedule may reduce the

perceived value of these releases. Similarly, if cost structures are unpredictable from one

year to the next, then data availability in a future year may be problematic, which may in

turn reduce the perceived utility of the proposed production system.

In addition, note that Model (1.2.4) includes Q, C, and R (which are functions of X and

Z), and also incorporates X and Z directly. For example, let X1 be the design factor that

determines the level of geographical granularity in the publication; this may have a direct

effect on the perceived utility of the data release. On the other hand, let X2 be the design

factor that determines sample allocation across strata; this factor may affect U only

through the components of Q related to estimator variance.

Fifth, note that each of the performance measures Q, C, R and U will have distinct

subvectors associated, respectively, with development and implementation of the design,

as well as with ongoing production and maintenance. To simplify the exposition, we

will use “performance” as an umbrella term for all of our quality, cost, risk, and utility

measures at any point in the cycle of design, implementation, operations, and

maintenance, and will use

P ¼ gPðX; Z;bPÞ ð1:2:5Þ

to define the resulting “performance surface,” which is somewhat analogous to a

multivariate “response surface” considered in industrial quality control. In addition, we

emphasize that there are often complex multivariate relationships among Q, C, R and U,

and one could expand Model (1.2.5) to reflect these relationships.

Finally, in keeping with the term “schematic” we emphasize that Models

(1.2.1)–(1.2.5) are intended primarily to provide some structure for discussion of the

complex trade-offs among cost, quality, risk, and perceived utility encountered in large-

scale statistical work, and should not be interpreted in an excessively literal or reductionist

form. For example, some components of P may be measured with a reasonable level of

precision, while other important components may allow only very general qualitative
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assessments. Similarly, for some components of P, relationships with factors X and Z may

be reasonably approximated by, for example, a linear or nonlinear regression model, while

in other cases the relationships are highly fluid and not reasonably characterized or

estimated through standard statistical models with available data.

1.3. The Combined Effects of Methodological, Systems, and Administrative Components

of the Design Vector X

To address goals (1) through to (3) presented in Section 1.2, consider a relatively simple

linear form of the performance model:

P ¼ gPðX; Z;bPÞ ¼ bP0 þ bPMXM þ bPSXS þ bPAXA þ ðinteractionsÞ þ eP ð1:3:1Þ

Under Model (1.3.1), bP contains the intercept vector bP0, the main-effect coefficient

vectors bPM, bPS, bPA, and bPZ and the coefficient vectors for the two-factor and higher-

order interactions as needed. In addition, the error term eP is assumed to have a mean of

zero and a variance-covariance matrix VeP that may depend on the design variables X and

the environmental and process variables Z.

Eltinge (2012) and Eltinge and Phipps (2009) explored variants of Model (1.3.1) for

general survey design work. The current article focuses primary attention on the effect that

the system design vector XS has on the mean and variance functions of the performance

measures P. Specifically, in the use of Model (1.3.1), three topics of special interest are:

(a) System features XS that allow the measurement or (partial) control of specified

components of P. Examples include features that facilitate the collection and analysis

of data from a contact history instrument (CHI); computer-assisted recording (CARI);

cost accounting records; audit trails produced by microdata edit and review processes;

or disaggregated reports of interviewer activity linked with survey responses.

(b) System features XS that impose constraints on some components of the

methodological and administrative design vectors (XM, XA), or on the use of

information regarding environmental factors Z. For example, use of certain

standardized system features may preclude some types of local optimization of a

methodological design; or may limit the amount of process data that one may collect

on specific measures of cost, quality, or risk. Moreover, system constraints that do not

allow for poststratification or response-propensity adjustments would restrict the use

of such environmental information in Z for the improvement of survey weights.

(c) Direct effects of XS on P, through the main-effect coefficient bPS and related

interaction coefficients. For example, some system features may allow for improved

editing of collected data; timelier follow-up for nonrespondents; more flexible on-

demand production of estimates for special subpopulations; or real-time monitoring

of estimates based on data collected to date, as considered in some forms of

responsive design. In some cases, one may also consider the effect of XS on VeP, in

keeping with the study of dispersion effects in the response surface methodology

literature (e.g., Brennerman and Nair 2001, Bisgaard and Pinho 2003 and references

cited therein). However, dispersion effects appear to have received relatively little

attention in the survey and systems design literature to date.
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The remainder of this article explores issues (a), (b) and (c) through the following steps.

Section 2 considers the use of the performance model (1.3.1) to inform design decisions.

Section 3 explores the relationship between the general model (1.3.1) and more specific

models developed for Total Statistical Quality and Adaptive Total Design. Section 4 links

the model, and related design decisions, with the Generic Statistical Business Process

Model (GSBPM) and the Generic Statistical Information Model (GSIM). Section 5

outlines related issues with governance processes that link the managerial design features

XA with the system design features XS.

2. Use of Performance Models to Inform Design Decisions

2.1. General Questions for Exploration of Design Decisions

Ideally, one would have extensive information on all relevant aspects of the performance

model (1.3.1), including identification of the applicable predictors X and Z (incorporating

both main effects and interactions); sufficiently precise estimates of the coefficients bP;

and the values of R 2 and other goodness-of-fit measures. Under such conditions, selection

of a preferred design X (including the systems design features XS) is arguably a

straightforward exercise in optimization or satisficing, based on the specified multivariate

performance criteria.

In most practical cases, however, currently available empirical information falls far

short of the abovementioned ideal. Consequently, it is important to apply standard

concepts from social measurement and response surface methodology to describe the more

limited types of design information that may be feasible to obtain, and that may be useful

in practical work with the systems design features XS. The following questions are of

particular interest:

(A) What practical design decisions are under consideration? Examples include:

(A.1) Design of a survey that is mostly or entirely new. For this case, one would seek to

understand the extent to which previous experience with somewhat similar surveys may

offer partial insights into the performance surface for the proposed new survey. Beyond

that limited information, evaluation of the performance surface will depend primarily on

new empirical work, such as small-scale tests of system components and of the interfaces

of those system components with specific methodological or managerial design

components.

(A.2) Comprehensive revision of one or more survey design features, while leaving

other design features largely unchanged. Here, it will be important to identify the extent to

which design components that are subject to change will have substantial interactions with

other factors in the performance surface (1.3.1). If the changed components influence the

performance surface only through main effects, then it may be relatively simple to assess

the likely performance of the survey under the proposed new design. On the other hand, if

the changed components enter Model (1.3.1) through complex interactions, then

evaluation of performance under the new design may require extensive amounts of

additional empirical work.

(A.3) Incremental revision of one or more design features. In this case, detailed

empirical information on the performance surface (1.3.1) under the previous design may
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provide important insights into likely performance under the new design. This final case is

somewhat analogous to “evolutionary operation” approaches considered in industrial

response surface methodology. See, for example, Box (1957) and Box and Draper (1969).

(B) Out of the many potential performance characteristics reviewed in Section 1, which

features are of primary interest to the survey organization? Are there practical and

objective methods available to measure these performance characteristics? If not, what

methodological, systems or management work should one carry out to develop and

implement such measures?

(C) Within the context defined by parts (A) and (B):

(C.1) What information is currently available regarding Model (1.3.1), including its

functional form, dominant main effects and interactions, and parameters bP and VeP?

(C.2) Does the information in (C.1) provide sufficient information to guide the practical

decisions identified in (A)? The definition of “sufficient information” will depend heavily

on the decisions of primary interest in (A). For example, for the extensive redesign work in

cases (A.1) or (A.2), it may suffice to have very rough order-of-magnitude indications of

the improvements in quality or cost likely to follow from the proposed changes in X.

Conversely, one may consider incremental revisions considered in Case (A.3) as part

of a modest effort to obtain moderate improvements in quality or efficiency; and

the corresponding definition of “sufficient information” may depend primarily on the

variances of available estimators of the coefficient vector bP. Similar comments apply to

cost, quality and risk measures related to the system development process itself.

(C.3) If the answer to (C.2) is no, what additional information is needed, and what

methods should be used to obtain that information (e.g., formal experiments, pilot tests, or

comparisons with industry benchmarks)?

(C.4) During development, implementation, operation and maintenance of a designed

production system, what are the ways in which available information will be used to

monitor performance and identify needed mid-course adjustments? This information may

include model parameter data from (C.1)–(C.3), the performance measures from (B), and

related paradata. In keeping with the cautionary note by Linacre (2011) cited above, it is

especially important to use relevant measures of cost, quality and risk incurred during

the process of system development and implementation, as well as performance measures

that apply to operation and maintenance of the production system after implementation.

(D) Are there external constraints that have an important effect on the design project?

These constraints may include standard methodological and managerial constraints,

as well as imposition of limits on certain system design features. For example, senior

management may mandate the use of specified security software, increased use

of standardized system features, or reduced funding available for specified types of

design work.

2.2. Questions Arising from Dynamic Features of Quality, Cost, Risk, and Utility

One may use Model (1.3.1) to characterize a survey process that is static, in the sense that

(after completion of design implementation) the coefficients bP are essentially fixed, the

design vector X is generally not subject to change, and the distribution of the paradata Z is

relatively stable. For this reason, some persons who specialize in one area of methodology,
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management, or systems may tend to perceive the other areas as readily characterized by a

fixed set of “requirements.”

In many practical settings, however, the schematic models presented in Section 1.2 are

fundamentally dynamic in nature. For example, some environmental factors Z may vary

over time, and thus may have an effect on quality, cost, risk, and stakeholder utility. To

take one methodological case, changes in cell telephone and landline telephone use over

the past two decades have had a substantial effect on the quality characteristics of standard

random digit dialing surveys. In addition, during the recent recession, many stakeholders

had increased interest in unemployment rates and other labor-force characteristics, which

in turn led to changes in the linkage between perceived utility and standard quality

measures like accuracy and timeliness.

Similarly, both survey methodology and systems work are dynamic in nature, so the

schematic models for quality, cost, risk, and utility may change over time. Some relatively

simple examples of changes include the maturing of specific methodological features (e.g.,

more sophisticated use of incentives or nonrespondent-conversion techniques); improved

testing and robustness of complex skip patterns in CATI or CAPI instruments; or

amortization of costs related to methodology, training or systems development and

implementation.

Dynamics in the development and maturation of methodology imply that system

architecture work often must go beyond specification and satisfaction of static “system

requirements.” Conversely, dynamics in systems architecture, and in the needs of data

users, imply that methodologists must be open to considering a wide range of performance

criteria, some of which may differ substantially from traditional statistical performance

criteria like bias and mean squared error.

Consequently, it may be important to supplement questions in areas (A) through (D)

with additional questions that are linked directly with the dynamics of the survey process.

Some examples include:

(E.1) In keeping with a suggestion by Hidiroglou (2011, personal communication), what

are appropriate practical criteria to use to determine whether a given methodological or

managerial component has reached a level of “maturity” that warrants incorporation into

standard production systems?

(E.2) To what extent, and in what ways, should one try to build flexibility into

standardized systems to increase the likelihood that they will accommodate further

methodological refinements or managerial changes at a relatively low cost?

2.3. Approximations Arising from Standardization Processes

As noted in the preceding sections, work with system architecture often leads to discussion

of standardization of some or all of the components of a survey process across surveys.

Potential benefits of standardization include improvement in some components of data

quality (especially those related to failure to execute design features as specified), and

reduction of certain components of cost and risk. On the other hand, in some cases

standardization may prevent a given survey from making optimal use of survey-specific

information on, for example, characteristics of the underlying target population. In that

sense, an excessively rigid application of standardization may lead to degradation of some
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components of survey performance. Similar issues have been noted for standardization in

some areas far removed from survey work. For example, Hall and Johnson (2009) discuss

distinctions between environments in which a process may be improved through the

application of “art” or “science” respectively. Extending their general ideas to the

statistical performance model (1.3.1), one could suggest that extensive use of

standardization may be warranted when one can account for most of the variability of

cost, quality, risk and utility through some simple predictors X that correspond to highly

standardized design features. Conversely, standardization may be problematic when much

of the variability of cost, quality, risk and utility are attributable to the uncontrolled

environmental factors Z, unobserved remainder terms eP, or design components X that

correspond to highly customized design decisions.

3. Relationship With Models for Total Statistical Quality and Adaptive Total Design

Sections 1 and 2 were developed in the context of general performance measures P. To

date, the survey literature has devoted a large amount of attention to some quality

measures Q, some attention to cost structure (e.g., Groves 1989), and relatively little

attention to survey risk R and stakeholder utility U. Consequently, this section reviews

some previously developed strategies for continually improving the quality of system

outputs in real time as the outputs are being generated. In previous literature, this approach

has been given several different labels, including active management (Laflamme et al.

2008), responsive design (Groves and Heeringa 2006) and adaptive design (Schouten et al.

2011). It may be of interest to develop similar approaches for C, R and U in future work.

As with many cases involving high-dimensional objective functions, a focus on specific

subcomponents can lead to suboptimization, but nonetheless may be necessary for

tractability.

For the current discussion, we will focus on a strategy known as Adaptive Total Design

(ATD), as presented in Biemer (2010). ATD aims to reduce the risks of poor data quality

in survey processes by using concepts embodied in the total survey error paradigm. In the

notation defined in Section 1, ATD seeks to maximize Q under a constraint on C by

selecting design features X so that Q(X,Z) is maximized subject to the constraint C(X,Z)

, CT where CT is the data collection budget.

Alternatively, the ATD may seek to minimize the total risk, R(X,Z), subject to the same

budget constraint. At the present time, ATD has only been applied for the data collection

process. See, for example, Carly-Baxter et al. (2011) and Cunningham et al. (2012).

In addition, some important features of ATD have been implemented in other data

collection work. For example, Calinescua et al. (2013) apply some elements of ATD to

control nonresponse and measurement error in the initial design, but their approach does not

incorporate quality monitoring and improvement during data collection. Wagner (2008)

uses adaptive design to reduce the effect of nonresponse on the estimates during data

collection; however, his work does not attempt to control other types of nonsampling errors,

such as measurement error or frame error. Further generalizations to other components of

the GSBPM framework are conceivable and will be discussed subsequently.

To illustrate the principles of ATD for real-time, quality improvement we begin with a

preliminary assessment of Z, say Z0, and available budget CT. We choose an initial design
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(or, as in the current case, a data collection approach) X0 which we believe will produce the

optimal quality level Q*. However, typically, the quality level produced by X0 will not be

optimal because either gQ and/or gC are usually misspecified in the initial design or the

initial assessment of Z was not current or otherwise did not describe the true, current

process environment. Suppose that, during the implementation of the process, new

information on Z, say Z1, is obtained. Based upon Z1, the initial design X0 may no longer be

optimal; that is, the quality level that can be achieved by X1 is Q1,Q*. In order to achieve

a quality level that better approximates Q*, the preliminary design must be altered to some

extent, say, to X1 while still ensuring that the budget, CT, is not exceeded. As the process

continues to completion, there may be new assessments of Z, say, Z2, Z3,: : : with

consequential design alterations, X2, X3, : : : .

ATD relies on one’s ability to obtain updated information on Z during production and

perhaps better specifications of gQ and/or gC so that Q(X,Z) can be re-estimated, leading to

a re-optimization of the design. For example, in the data collection setting, information on

interviewer field performance may be continually updated as the interviewers work on

their assignments. This information may relate to the cost of interviewing by area,

difficulties in contacting and interviewing certain types of sample units, sample unit

cooperation as a function of the unit characteristics, and so on. This information and other

paradata streaming in from the field constitute Zk for k ¼ 1, 2, : : : .

As the design is altered during implementation to achieve quality levels that

approach Q*, the budget must be continually assessed requiring precise estimates of the

cost to completion at each stage. For example, at the start of data collection, the full

budget CT was available. However, by the time that Z1 is observed, only C1 of the

original budget remains; that is, CT–C1 has been spent by the time Z1 is observed.

Therefore, in determining what interventions X12X0 are needed to achieve Q* under

Z1, the currently available budget, C1, must not be exceeded. Thus, the shift from X0 to

X1 is made that will produce a final level of quality Q1 where Q0,Q1#Q* where the

costs of X1 are constrained by C1. Note that the difference X12X0, referred to above as

design “interventions,” are changes in the original design necessary to achieve the

desired level of quality. This process of iteratively re-evaluating Z (i.e., Z1, Z2, : : :) and

applying interventions to achieve designs X1, X2, X3, : : : such that Q1,Q2

,Q3, · · · # Q* while holding total costs fixed at CT is referred to as Adaptive Total

Design (Biemer 2010).

To summarize, ATD begins with an initial design X0 which is optimal given Z0, and then

seeks to find a sequence of designs X1, X2, : : : ,Xk based upon the updated information Z1,

Z2, : : : and updated functions gQ and gC such that Q(Xk,Zk)¼Q*k, the maximum quality

that can be achieved for a total cost of CT. ATD can be thought of as a form of

Evolutionary Operation (EVOP; e.g., Box 1957; Box and Draper 1969 and Hahn 1982) for

data collections where the goal is to find the maximum of the performance surface under

cost constraints.

Some of the implications of ATD can be summarized as follows:

a. Paradata feeds the EVOP process by providing updated information on Z and the

specifications of gQ and gC.

b. Therefore, the goal of collecting paradata should be to:
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i. best inform those aspects of Z, gQ, and gC that are most predictive of Q

and C and

ii. best capture the dynamic nature of the data collection process.

c. It is important to monitor these paradata in order to maximize data quality because the

difference Qk – Q1 (i.e., the quality improvement after k ATD cycles) may be quite

large.

d. When the budget is reduced, the reduced budget, say CT1, CT, is entered into the ATD

optimization and the design X is reoptimized. This usually results in a lower level of

quality that can be achieved.

4. Possible Integration With the Generic Statistical Business Process Model

(GSBPM) and the Generic Statistical Information Model (GSIM)

Sections 2 and 3 explored the ideas of Section 1 in the context of general performance

models and Adaptive Total Design, respectively. Detailed conceptual and empirical

expansion of Section 1 also would require a detailed characterization of survey processes.

Over the past decade, several organizations have developed forms of this characterization.

See Dunnet (2007), Renssen and Van Delden (2008), Gloersen and Saeboe (2009), and

Pink et al. (2010). An effort to standardize these approaches and related terminology

through a Common Metadata Framework has led to a Generic Statistical Business Process

Model (GSBPM; Vale 2009) based largely on Statistics New Zealand’s business process

model.

The GSBPM has quite rapidly become a standard instrument to communicate between

organizations. This outcome arose from the resemblance of GSBPM to already existing

descriptive models, its successful union of terminology for higher level statistical

production processes, and good communication and anchoring. The GSBPM was

identified by the High-Level Group for Strategic Developments in Business Architecture

in Statistics (HLG-BAS) as a key standard for modernizing official statistics (UNECE

2011 and UNECE 2012a).

It would be premature to forecast specific impacts of the GSBPM, but its shared process

terminology has the potential to accelerate and improve development of common areas.

For example, it has already been used to pinpoint collaboration areas and to a certain

extent it helped in the harmonization of architectures (see Vaccari 2009). In addition, some

authors have suggested that the GSBPM also could be a framework for process quality

assessment and improvement (Todorov 2011) and that it will facilitate the sharing of

statistical software and components (Hamilton and Tam 2012a, 2012b).

An important complement to the GSBPM is the Generic Statistical Information Model

(GSIM). GSIM is described as “a reference framework of internationally agreed

definitions, attributes and relationships that describe the pieces of information that are used

in the production of official statistics (information objects). This framework enables

generic descriptions of the definition, management and use of data and metadata

throughout the statistical production process” (UNECE 2012b).

In particular, GSIM aims to define and describe in a harmonized way the information

objects that flow through and control the statistical production processes. The resulting

common framework may help development of shared production systems by improving
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communication between distinct disciplines, for example, subject matter statisticians,

IT specialists and methodologists. GSIM is also aligned to standards such as DDI (Data

Documentation Initiative; http://www.ddialliance.org/) and SDMX (Statistical Data and

Metadata eXchange; http://sdmx.org/), but it does not depend on them.

In the future, the GSBPM and GSIM (or similar frameworks) could be valuable for

exploration of the schematic approach outlined in Section 1, and related topics considered

in this special issue of the Journal of Official Statistics. Two cross-cutting areas may

warrant special attention. First, GSBPM (or similar national models) could lead to

standardized and perhaps highly modular production systems and architectures, and GSIM

could support standardized handling of information objects in a complex production

system. Stated in terms of Models (1.2.1)–(1.2.5), the resulting modularity could have an

effect on system performance through both the XS and Z factors. Some effects may be

related to XS because modularity (more subsystems/components) will require system

design with higher attention directed toward the system’s life cycle factors. If a system

fails when one of its components fails, then increased standardization and reuse of

components will increase the importance of managing the full spectrum of risks. This

includes risks associated with individual components, integration of these components,

and performance of the overall production chain. In addition, if standards and

harmonization of information objects lead to more system components that share data,

then the resulting production systems may have performance that is less subject to

uncontrolled environmental factors Z. An arguably desirable development would be that

some factors that today are observable but not controlled (i.e., Z terms) can be replaced

by controllable design factors XM or XS. One such example could be automation of

certain parts of a production system. Hamilton and Tam (2012a, 2012b) and Borowik et al.

(2012) provide thoughts about possible future modular production systems where attention

to these matters is needed.

Second, one could consider expansions of the GSBPM that would incorporate in-depth

collection and use of information on costs and data quality throughout the process chain.

Although quality management is present in the model as an overarching process, it is not

reflected specifically in the model phases or subprocesses. For example, as noted above, an

important part of the design work is the design of ATD monitoring and improvement

components that run simultaneously with, and gather data from, the processes. These

components are critical for updating Z and respecifying X to optimize Q in real time; and

are implemented later, during data collection. Likewise, our ability to conduct post-survey

data quality evaluations requires that components are in place to capture the relevant data

on survey errors that aid these evaluations. In addition, systems for quality control are key

components of work with initial development, as well as data collection and processing.

Quality control components need to be developed and implemented to assure both product

and process quality. Finally, documentation on data quality is a critical component of data

dissemination and archiving. These are just a few areas of the GSBPM where quality

management could be emphasized by providing specific references to subprocesses that

address ATD-related improvements to data quality. In this regard, the current version of

the GSBPM seems to emphasize statistical standards (i.e., standards related to data

production). However, it provides relatively little coverage of quality standards (i.e.,

standards related to quality improvement) and of quality functions like the measures Q
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considered in Section 1 above. The European Code of Practice (available from http://epp.

eurostat.ec.europa.eu/portal/page/portal/product_details/publication?p_product_code ¼

KS-32-11-955), which focuses primarily on developing, producing and disseminating

European statistics, provides some examples of statistical standards. An example of a

quality standard is Eurostat’s Quality Assurance Framework (available from http://epp.

eurostat.ec.europa.eu/portal/page/portal/quality/documents/QAF_version_1.0_EN.pdf),

which focuses primarily on quality assurance and quality management.

5. Governance Processes and Management of Stakeholder Expectations

The development, implementation, testing, operation and maintenance of survey

production systems require cooperative work by several distinct groups within a survey

organization. These groups tend to have different skill sets, institutional cultures and

incentive structures. Consequently, governance processes for architecture and systems

work can involve a complex set of factors. In a formal sense, these factors can be viewed as

some of the components of the “management design” vector XM introduced in Section 1.

This section presents some of these management factors. Subsection 5.1 outlines some

general features of a governance process. Section 5.2 reviews some related features of

institutional and professional environments. Throughout this section, we use the term

“management” as the omnibus term for all relevant management activities.

5.1. Features of a Governance Process

Roles and responsibilities of management. These include the following:

- Resource allocation, including (a) initial investments; (b) internal pricing for use of

production systems (e.g., a free good; partially subsidized use; or full assignment of

costs to users; and procedures for amortization of costs, based on anticipated longevity

of a given system or component); (c) mid-course adjustments and project termination.

- Acquisition and evaluation of relevant and actionable information regarding the

quality, cost and risk factors that are most directly relevant to decisions on all aspects of

the survey process. This generally will require management personnel to have extensive

training and experience in the relevant technical areas.

- Resolution of disagreements among stakeholders, especially in relation to trade-offs

between distinct components of cost, quality and risk. This will require senior personnel

to have broad skills for leadership and consensus-building in environments for which

ambiguity and incomplete information may be quite prominent.

- Communication and implementation of decisions. Depending on the specific

decisions, communication may include a wide range of internal and external stakeholders.

Implementation work includes all of the steps required to convert an abstract decision into

concrete results, and may be especially challenging when management has limited

information on the dominant features of the performance models (1.2.5).

- Personnel management. This includes determination of skills and experience

required for specific tasks; full-time or part-time assignment of specific personnel to
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these tasks; integration of these assignments with general career paths in the survey

organization; and evaluation of individual and group performance for these tasks.

Mechanisms for management. This includes both control of X and the methods used

to control specific components of X. Examples of management mechanisms include

standard direction through a supervisory chain and management through a committee

structure. For committee-based management, clearly defined decision processes may be

especially important, and may include decisions by formal committee vote, decisions

by formation of a consensus, and decisions by a line manager based on advice from the

committee.

Feedback loops for management of specific design components. This includes feedback

loops to provide information on (1) adequacy or limitations of models for C, Q, R and U;

(2) operational risk (e.g., identification of cases in which there are substantial deviations

from the nominal design during implementation); (3) environmental factors Z with large

coefficients for the main effects on Z, or for the interactions between X and Z.

Incentives for individuals or groups. Successful revisions of system architecture

generally require that the relevant individuals and groups have an incentive structure that

is aligned clearly with the survey organization’s need to improve its overall balance of

cost, quality and risk, and to overcome institutional inertia that may stand in the way of

that improvement. Examples of implicit or explicit incentives include: direct mandates for

standardization and systems use; subsidized or free access to systems developed under the

revised architecture; allowing the participating groups to re-invest or otherwise control

some of the savings obtained through the revised architecture; or linkage of participation

with individual promotions or other employment-related benefits. Mechanisms for

implementation of these incentives include standard personnel management processes;

internal competitions for resources used in systems development, testing and

implementation; and allowed flexibility for customization.

5.2. Relevant Features of the Institutional and Professional Environment

In addition to the general features outlined above, the success of a governance process

may depend on several qualitative features of the institutional and professional

environment, and the extent to which those features are coherent with the performance

characteristics of the proposed system.

Expectations regarding objective and measurable criteria for performance. Under a

(generally unattainable) ideal, this would include all relevant dimensions of the C, Q, R

and U vectors. More realistically, this would include dimensions of these vectors that are

considered especially important for key stakeholders.

Professional norms and standards for transparency, credibility, intellectual property

and management confidentiality. These norms and standards appear to vary substantially

across different survey organizations, and across different professional groups within a

survey organization. For example, among professionals in mathematical statistics and

methodology, professional credibility generally depends on a very high degree of

transparency regarding methods used and the strengths and limitations of those methods.

Intellectual property rights generally center on publication copyrights and acknow-

ledgement of priority, rather than formal patent or property rights as such, and
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confidentiality restrictions (with respect to management) generally are limited to certain

business processes (e.g., bid pricing).

External benchmarking of system features and performance measures. Some

organizations expect that most features of a survey process (including the general

architecture, methodology, fieldwork, production systems and management processes)

will be rigorously compared with relevant external benchmark standards. Other

organizations carry out little or no external benchmarking, in some cases due to

perceptions that their processes are too specialized to allow for meaningful external

comparisons.

Use of objective external peer review processes. In parallel with the discussion on

external benchmarking, some survey organizations make extensive use of external peer

review processes, while others do not. For survey groups that do use external peer review

processes, important issues include the selection and management of the peer review

group (e.g., strong standards for expertise and credibility, and procedures to prevent

conflicts of interest); the degree to which review recommendations are binding on the

survey organization; and specific resource allocation decisions and institutional incentives

that are linked with review recommendations. In addition, the effectiveness of an external

peer review process will depend heavily on the extent to which the members of the review

group have a carefully nuanced understanding of the relevant issues, based on their skills

and experience, as well as sufficient access to survey-specific information. Architecture

based on extensive sharing of system components may provide a degree of internal peer

review for some system components, but is not a substitute for systematic external

reviews. See Lyberg (2012) for in-depth discussion of external peer review processes for

survey organizations.

6. Closing Remarks

Work with architecture for a statistical production system involves a complex balance

among a wide range of performance measures that include cost, quality, risk, and

stakeholder utility. Each of these measures may be influenced by design decisions

regarding methodological, systems, and management factors, as well as other factors that

are not subject to control. Models (1.2.1) to (1.2.5) provide a schematic framework

through which one may discuss performance measures and design decisions for statistical

production work.

The preceding five articles in this special issue of Journal of Official Statistics provide

some snapshots of the current state of work at the interface of methodology with the

architecture of statistical production systems. These articles report on recent progress at

the abovementioned interface, and also identify areas in which additional work will be

warranted. We believe that four general topics will be especially important: more

systematic empirical assessment of factors that affect cost, quality, risk, and stakeholder

utility; use of these empirical results to expand previously developed approaches to total

survey error and total statistical design; integration of the schematic models (1.2.1) to

(1.2.5) with the general process descriptions provided by the GSBPM and the GSIM; and

careful development and implementation of governance processes that are tuned

appropriately for the architecture of statistical production systems. We hope that this
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special issue will contribute to a more systematic study of these topics, and look forward

with enthusiasm to further developments in this field.
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