Association Between Oxidative Stress and Melanoma Progression

Open access

Summary

Background: Overproduction of free radicals accompanied with their insufficient removal/neutralization by antioxidative defense system impairs redox hemostasis in living organisms. Oxidative stress has been shown to be involved in all the stages of carcinogenesis and malignant melanocyte transformation. The aim of this study was to examine association between oxidative stress development and different stages of melanoma. Methods: The measured oxidative stress parameters included: superoxide anion radical, total and manganese superoxide dismutase, catalase and malondialdehyde. Oxidative stress parameters were measured spectrophotometrically in serum samples from melanoma patients (n=72) and healthy control subjects (n=30). Patients were classified according to AJCC clinical stage. Results: Average superoxide anion and malondialdehyde concentrations were significantly higher in melanoma patients than in control group, with the highest value of superoxide anion in stage III, while malondialdehyde highest value was in stage IV. The activity of total and manganese superoxide dismutase was insignificantly higher in melanoma patients than in control group, while catalase activity was significantly higher. The highest activity of total activity of manganese superoxide dismutase was in stage IV. Catalase activity was increasing with the disease progression achieving the maximum in stage III. Conclusion: Results of our study suggest that melanoma is oxidative stress associated disease, as well as deteriorated cell functioning at mitochondrial level.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bandarchi B Ma L Navab R Seth A Rasty G. From melanocyte to metastatic malignant melanoma. Der - matol Res Pract 2010; 2010: 583748.

  • 2. Stanojević I Gavević M Jović M Miju{ković Z Zevević R Zolotarevski L et al. Interferon alpha-induced re - duction in the values of myeloid-derived suppressor cells in melanoma patients. Vojnosanit Pregl 2015; 72(4): 342-9.

  • 3. Hayat MJ Howlader N Reichman ME Edwards BK. Cancer statistics trends and multiple primary cancer analyses from the Surveillance Epidemiology and End Results (SEER) Program. Oncologist 2007; 12(1): 20-37.

  • 4. Ali Z Yousaf N Larkin J. Melanoma epidemiology biology and prognosis. EJC Suppl 2013; 11(2): 81-91.

  • 5. Zhang Z Zhu S Yang Y Ma X Guo S. Matrix metalloproteinase- 12 expression is increased in cutaneous melanoma and associated with tumor aggressiveness. Tumour Biol 2015; 36(11): 8593-600.

  • 6. Swetter SM Clarke CA Keegan THM. Why Do Men Have Worse Melanoma Survival than Women? Is It Behavior Biology or Both? The Melanoma Letter Summer 2014; 32(2): 4-6.

  • 7. Olsen CM Carroll HJ Whiteman DC. Estimating the attributable fraction for melanoma: a meta-analysis of pigmentary characteristics and freckling. Int J Cancer 2010; 127(10): 2430-45.

  • 8. Williams PF Olsen CM Hayward NK Whiteman DC. Melanocortin 1 receptor and risk of cutaneous mela - noma: a meta-analysis and estimates of population burden. Int J Cancer 2011; 129(7): 1730-40.

  • 9. Gandini S Sera F Cattaruzza MS Pasquini P Abeni D Boyle P et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 2005; 41(1): 28-44.

  • 10. Olsen CM Carroll HJ Whiteman DC. Estimating the attributable fraction for cancer: A meta-analysis of nevi and melanoma. Cancer Prev Res (Phila) 2010; 3(2): 233-45.

  • 11. Denat L Kadekaro AL Marrot L Leachman SA Abdel- Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 2014; 134(6): 1512-8.

  • 12. Djukic M Ninkovic M Jovanovic M. Oxidative stress - clinical diagnostic significance. J Med Biochem 2008; 27(4): 409-425.

  • 13. Li YR Jia Z Trush MA. Defining ROS in biology and medicine. Reactive Oxygen Species 2016; 1(1): 9-21.

  • 14. Liou GY Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479-96.

  • 15. Balch CM Gershenwald JE Soong SJ Thompson JF Atkins MB Byrd DR et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27(36): 6199-206.

  • 16. Auclair C Voisin E. Nitroblue tetrazolium reduction. In: Green wald RA editor. Handbook of Methods for Oxygen Radical Research 3th ed. Florida: CRC Press 1985: 123-32.

  • 17. Sun M Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 1978; 90(1): 81-9.

  • 18. Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991; 196(2-3): 143-51.

  • 19. Girotti MJ Khan N McLellan BA. Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J Trauma 1991; 31(1): 32-5.

  • 20. Slominski A Wortsman J Carlson A Matsuoka L Balch C Mihm M. Malignant melanoma: An update. Arch Pathol Lab Med 2001; 125: 1295-306.

  • 21. De Cavanagh EM Honegger AE Hofer E Bordenave RH Bullorsky EO Chasseing NA et al. Higher oxidation and lower antioxidant levels in peripheral blood plasma and bone marrow plasma from advanced cancer patients. Cancer 2002; 94(12): 3247-51.

  • 22. Gadjeva V Dimov A Georgieva N. Influence of therapy on the antioxidant status in patients with melanoma. J Clin Pharm Ther 2008; 33(2): 179-85.

  • 23. Gupta A Bhatt ML Misra MK. Lipid peroxidation and anti - oxidant status in head and neck squamous cell carcinoma patients. Oxid Med Cell Longev 2009; 2(2): 68-72.

  • 24. Panis C Victorino VJ Herrera AC Freitas LF De Rossi T Campos FC et al. Differential oxidative status and immune characterization of the early and advanced stages of human breast cancer. Breast Cancer Res Treat 2012; 133(3): 881-8.

  • 25. Djukic M editor. Oksidativni stres - klini~ko-dijagnosti~ki zna~aj. Belgrade: Mono i Manjana 2008

  • 26. Joosse A De Vries E van Eijck CH Eggermont AM Nijsten T Coebergh JW. Reactive oxygen species and melanoma: an explanation for gender differences in survival? Pigment Cell Melanoma Res 2010; 23(3): 352-64.

  • 27. Hussain MR Baig M Mohamoud HS Ulhaq Z Hoessli DC Khogeer GS et al. BRAF gene: From human cancers to developmental syndromes. Saudi J Biol Sci 2015; 22(4): 359-73.

  • 28. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J 2007; 401(1): 1-11.

  • 29. Fecher LA Amaravadi RK Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol 2008; 20(2): 183-9.

  • 30. Amiri KI Richmond A. Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev 2005; 24(2): 301-13.

  • 31. Sosa V Moliné T Somoza R Paciucci R Kondoh H LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev 2013; 12(1): 376-90.

  • 32. Buonocore G Perrone S Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med 2010; 15(4): 186-90.

  • 33. Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 2005; 38(7): 995-1014.

  • 34. Valko M Leibfritz D Moncol J Cronin MT Mazur M Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.

  • 35. Catalá A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 2006; 38(9): 1482-95.

  • 36. Fagali N Catalá A. Fe2+ and Fe3+ initiated peroxidation of sonicated and non-sonicated liposomes made of retinal lipids in different aqueous media. Chem Phys Lipids 2009; 159(2): 88-94.

  • 37. Ayala A Muñoz MF Argüelles S. Lipid peroxidation: production metabolism and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438.

  • 38. Venza M Visalli M Beninati C De Gaetano GV Teti D Venza I. Cellular Mechanisms of Oxidative Stress and Action in Melanoma. Oxid Med Cell Longev 2015; 2015: 481782.

  • 39. Sander CS Hamm F Elsner P Thiele JJ. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol 2003; 148(5): 913-22.

  • 40. Schadendorf D Zuberbier T Diehl S Schadendorf C Czarnetzki BM. Serum manganese superoxide dismutase is a new tumour marker for malignant melanoma. Melanoma Res 1995; 5(5): 351-3.

  • 41. Mantovani G Macciò A Madeddu C Mura L Massa E Gramignano G et al. Reactive oxygen species antioxidant mechanisms and serum cytokine levels in cancer patients: impact of an antioxidant treatment. J Cell Mol Med 2002; 6(4): 570-82.

  • 42. Yuksel M Ates I Kaplan M Arikan MF Ozin YO Kilic ZMY Topcuoglu C Kayacetin E. Is oxidative stress associated with activation and pathogenesis of inflammatory bowel disease? J Med Biochem 2017; 36; 341-8.

  • 43. Djukic M. Reaktivne hemijske vrste i oksidativni stress. In: Djukic M editor. Oksidativni stres: Slobodni radikali Prooksidansi Antioksidansi. Belgrade: Mono i Manjana 2008: 3-23

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 2,000
5-year IMPACT FACTOR: 1,075



CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.523
Source Normalized Impact per Paper (SNIP) 2018: 0.581

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 802 530 20
PDF Downloads 293 210 8