The Pleiotropic Effects of Atorvastatin on Stable Angina Patients: Evidence by Analysis of High-Density Lipoprotein Size and Subclasses, and Plasma mRNA / Plejotropni Efekti Atorvastatina Kod Pacijenata Sa Stabilnom Anginom: Dokazi Dobijeni Analizom Veličine I Raspodele Subfrakcija Lipoproteina Velike Gustine I Plazmatske mRna

Open access

Summary

Background: High-density lipoproteins (HDL) have atheroprotective biological properties: antioxidative, anti-apoptotic, anti-inflammatory, and they have the efflux capacity of cellular cholesterol. Plasma mRNA analysis can be used to investigate statin pleiotropy in vivo as a new analytical tool for non-invasive assessment of gene expression in vascular beds. The aim of this study was to assess the pleiotropic effects of atorvastatin in stable angina patients with highrisk values (group A) as compared with patients who had borderline and desirable HDL-cholesterol (HDL-C) values (group B).

Methods: The atorvastatin therapy (20 mg/day) was given to forty-three patients with stable angina for 10 weeks. We investigated three statin pleiotropy-targeted genes: intercellular adhesion molecule-1, chemokine (C-C motif) ligand 2 and cathepsin S and assessed by gel electrophoresis gradient the effects of atorvastatin on HDL size and subclasses.

Results: In group A, after therapy, HDL-C concentration was significantly increased but not in group B. Atorvastatin lowered plasma chemokine (C-C motif) ligand 2 and intercellular adhesion molecule-1 mRNA levels in both groups, but did not change the plasma cathepsin S mRNA levels. In group A only, baseline total bilirubin showed negative cor relations with the genes of cathepsin S (r=-0.506; p=0.023) and significantly increased after therapy.

Conclusion: HDL-C and bilirubin can be promising therapeutic targets in the treatment of cardiovascular diseases. Analysis of cell-free mRNA in plasma might become a useful tool for estimating statin pleiotropy

1. Kontush A, Chapman MJ. Functionally defective highdensity lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharma col Rev 2006; 58: 342-74.

2. Rosenson RS, Brewer HB Jr, Chapman MJ, Fazio S, Hussain MM, Kontush A, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 2011; 57: 392-410.

3. Korita I, Bulo A, Langlois, Blaton V. Inflammation markers in patients with cardiovascular disease and metabolic syndrome. J Med Biochem 2013; 32: 214-9.

4. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Eur J Cardiovasc Preven Rehab 2007; 14 (Suppl 2): E1-40.

5. Fruchart JC, Sacks F, Hermans MP, Assmann G, Brown V, Chapman J, et al. Executive statement, The Residual Risk Reduction Initiative: A call to action to reduce residual vascular risk in dyslipidemic patients. Diab Vasc Dis Res 2008; 5: 319-35.

6. Wang CY, Liu PK, Liao JK. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical results. Trends Mol Med 2008; 14: 37-44.

7. Mirjanić-Azarić B, Rizzo M, Sormaz L, Stojanović D, Uletilović S, Sodin-Semrl S, et al. Atorvastatin in stable angina patients lowers CCL2 and ICAM1 expression: Pleiotropic evidence from plasma mRNA analyses. Clin Biochem 2013; 46: 1526-31.

8. Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res 1999; 19: 91-104.

9. Blanco-Colio LM, Martín-Ventura JL, de Teresa E, Farsang C, Gaw A, Gensini G. Elevated ICAM-1 and MCP-1 plasma levels in subjects at high cardiovascular risk are diminished by atorvastatin treatment. Ator - vastatin on Inflammatory Markers study: a substudy of Achieve Cholesterol Targets Fast with Atorvastatin Stratified Titration. Am Heart J 2007; 153: 881-8.

10. Lutgens LP, Cleutjens KB, Daemen MJ, Heeneman S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007; 21: 3029-41.

11. de Nooijer R, Bot I, von der Thüsen JH, Leeuwenburgh MA, Overkleeft HS, Kraaijeveld AO, et al. Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler Thromb Vasc Bio 2009; 29: 188-94.

12. Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 111: 897-906.

13. Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 2006; 27: 1341-81.

14. Černe D, Stern I, Kranjec I, Marc J. Optimisation of methods for quantifying plasma mRNA levels from genes responsible for coronary artery plaque development and destabilization. Med Glas (Zenica) 2011; 8: 90-6.

15. Nestorov J, Matić G, Elaković I, Tasić N. Gene expression studies: How to obtain accurate and reliable data by quantitative real-time RT PCR. J Med Biochem 2013; 32: 325-38.

16. Rainwater DL, Andres DW, Ford AL, Lowe WF, Blanche PJ, Krauss RM. Production of polyacrylamide gradient gels for the electrophoretic resolution of lipoproteins. J Lipid Res 1992; 33: 1876 81.

17. Vekić J, Topić A, Zeljković A, Jelić-Ivanović Z, Spa - sojević-Kalimanovska V. LDL and HDL subclasses and their relationship with Framingham risk score in middleaged Serbian population. Clin Biochem 2007; 40: 310-6.

18. Zeljković A, Spasojević-Kalimanovska V, Vekić J, Jelic- Ivanović Z, Topić A, Bogavac-Stanojević N, et al. Does simultaneous determination of LDL and HDL particle size improve prediction of coronary artery disease risk? Clin Exp Med 2008; 8: 109−16.

19. Zeljković A, Vekić J, Spasojević-Kalimanovska V, Jelić- Ivanović Z, Bogavac-Stanojević N, Gulan B, et al. LDL and HDL subclasses in acute ischemic stroke: prediction of risk and short-term mortality. Atherosclerosis 2010; 210: 548−54.

20. Jürgens G, Hermann A, Aktuna D, Petek W. Dissociationenhanced lanthanide fluorescence immunoassay of lipoprotein(a) in serum. Clin Chem 1992; 38: 853-9.

21. Hammer A, Kager G, Dohr G, Rabl H, Ghassempur I, Jürgens G. Generation, characterization, and histochemical application of monoclonal antibodies selectively recognizing oxidatively modified apoB-containing serum lipoproteins. Arterioscler Thromb Vasc Biol 1995; 15: 704-13.

22. Brown BG, Zhao XQ, Chait A, Fisher LD, Cheung MC, Morse JS, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001; 345: 1583-92.

23. Johansson J, Carlson LA, Landou C, Hamsten A. High density lipoproteins and coronary atherosclerosis. A strong inverse relation with the largest particles is confined to normotriglyceridemic patients. Arterioscler Thromb 1991; 11: 174-82.

24. Musunuru K, Orho-Melander M, Caulfield MP, Li S, Salameh WA, Reitz RE, et al. Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arterioscler Thromb Vasc Biol 2009; 29: 1975-80.

25. Asztalos BF, Horvath KV, McNamara JR, Roheim PS, Rubenstein JJ, Schaefer EJ. Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients. Atherosclerosis 2002; 164: 361-9.

26. Schaefer EJ, McNamara JR, Tayler T, Daly JA, Gleason JA, Seman LJ, et al. Effects of atorvastatin on fasting and postprandial lipoprotein subclasses in coronary heart disease patients versus control subjects. Am J Cardiol 2002; 90: 689-96.

27. Kostapanos MS, Milionis HJ, Filippatos TD, Christo gian - nis LG, Bairaktari ET, Tselepis AD, et al. Dose-dependent effect of rosuvastatin treatment on HDL-subfraction phenotype in patients with primary hyper li pidemia. J Cardiovasc Pharmacol Ther 2009; 14: 5-13.

28. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 2000; 20: E83-88.

29. Takeuchi S, Kawashima S, Rikitake Y, Ueyama T, Inoue N, Hirata K, et al. Cerivastatin suppresses lipopolysaccharide- induced ICAM-1 expression through inhibition of Rho GTPase in BAEC. Biochem Biophys Res Commun 2000; 269: 97-102.

30. Katsiki N, Tziomalos K, Chatzizisis Y, Elisaf M, Hatzitolios AI. Effect of HMG-CoA reductase inhibitors on vascular cell apoptosis: beneficial or detrimental? Atherosclerosis 2010; 211: 9−14.

31. Abisi S, Burnand KG, Humphries J, Waltham M, Taylor P, Smith A. Effect of statins on proteolytic activity in the wall of abdominal aortic aneurysms. Br J Surg 2008; 95: 333-7.

32. Vitek L, Jirsa M, Brodanová M, Kalab M, Marecek Z, Danzig V, et al. Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis 2002; 160: 449-56.

33. Novotný L, Vítek L. Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Exp Biol Med 2003; 228: 568-71.

34. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A 2002; 99: 16093-8.

35. Jobs E, Ingelsson E, Risérus U, Nerpin E, Jobs M, Sund - ström J, et al. Association between serum cathepsin S and mortality in older adults. JAMA 2011; 306: 1113-21.

36. Wallner M, Marculescu R, Doberer D, Wolzt M, Wagner O, Vitek L, et al. Protection from age-related increase in lipid biomarkers and inflammation contributes to cardiovascular protection in Gilbert’s syndrome. Clinical Science 2013; 125: 257-64.

37. Yesilova Z, Serdar M, Ercin CN, Gunay A, Kilciler G, Hasi mi A, et al. Decreased oxidation susceptibility of plasma low density lipoproteins in patients with Gil - bert’s syndrome. J Gastroenterol Hepatol 2008; 23: 1556-60.

Journal of Medical Biochemistry

The Journal of Society of Medical Biochemists of Serbia

Journal Information


IMPACT FACTOR 2017: 1.378
5-year IMPACT FACTOR: 0.704



CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.523
Source Normalized Impact per Paper (SNIP) 2018: 0.581

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 199 15
PDF Downloads 73 65 3