Glycans as Biomarkers: Status and Perspectives

Open access

Glycans as Biomarkers: Status and Perspectives

Protein glycosylation is a ubiquitous and complex co- and post-translational modification leading to glycan formation, i.e. oligosaccharide chains covalently attached to peptide backbones. The significance of changes in glycosylation for the beginning, progress and outcome of different human diseases is widely recognized. Thus, glycans are considered as unique structures to diagnose, predict susceptibility to and monitor the progression of disease. In the »omics« era, the glycome, a glycan analogue of the proteome and genome, holds considerable promise as a source of new biomarkers. In the design of a strategy for biomarker discovery, new principles and platforms for the analysis of relatively small amounts of numerous glycoproteins are needed. Emerging glycomics technologies comprising different types of mass spectrometry and affinity-based arrays are next in line to deliver new analytical procedures in the field of biomarkers. Screening different types of glycomolecules, selection of differentially expressed components, their enrichment and purification or identification are the most challenging parts of experimental and clinical glycoproteomics. This requires large-scale technologies enabling high sensitivity, proper standardization and validation of the methods to be used. Further progress in the field of applied glycoscience requires an integrated systematic approach in order to explore properly all opportunities for disease diagnosis.

Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochem Biophys Acta 1999; 1473: 4-8.

Hortin GL, Sviridov D, Anderson NL. High abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem 2008; 54: 1608-16.

Sharon N, Lis H. Glycoproteins: Structure and Function. In: Gabius HJ, Gabius S, editors. Glycoscience: Status and Perspectives. Weinheim: Chapman&Hall, 1997: 133-54.

Spiro R. Protein glycosylation: nature, distribution, enzy matic formation, and disease implication of glycopeptide bonds. Glycobiology 2002; 12 (4): 43-56.

Taylor M, Drickammer C. Introduction to glycobiology, 2nd ed. Oxford University Press, 2003: 280pp.

Varki ACR, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors, Essentials of Glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press 2009: 784pp.

Gagneux P, Varki A. Evolutionary consideration in relating oligosaccharide diversity to biological function. Glycobio logy 1999; 9 (8): 747-55.

Laine RA. The information-storing potential of the sugar code. In: Gabius HJ, Gabius S, editors. Glycoscience: Status and Perspectives. London: Chapmann & Hall, 1997: 1-14.

Gabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochem Biophys Acta 2002; 1572: 165-77.

Gillery P. Nonenzymatic post-translational modification derived products (PTMDPS): New biomarkers of protein aging. Journal of Medical Biochemistry 2011; 30: 201-6.

Čolak E, Majkić-Singh N. The effect of hyperglycemia and oxidative stress on the development and progress of vascular complications in type 2 diabetes. Journal of Medical Biochemistry 2009; 28: 63-71.

Schachter H. Congenital disorders involving defective N-glycosylation of proteins. Cell Mol Life Sci 2001; 58 (8): 1085-104.

Eklund EA, Freeze HH. The congenital disorders of glyco sylation: a multifaceted group of syndromes. Neuro Rx 2006; 3: 254-63.

Becker DJ, Lowe JB. Leukocyte adhesion deficiency type II. Biochim Biophys Acta 1999; 1455 (2-3): 193-204.

Busch C, Aktories K. Microbial toxins and the glycosylation of Rho family GTPases. Curr Opin Struct Biol 2000; 10 (5): 528-35.

Hebert LF Jr, Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, et al. Overexpression of glutamine: fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 1996; 98 (4): 930-6.

Hanover JA, Lai Z, Lee G, Lubas WA, Sato SM. Elevated O-linked N-acetylglucosamine metabolism in pancreatic beta-cells. Arch Biochem Biophys 1999; 362 (1): 38-45.

Tomita M. Biochemical background of paroxysmal nocturnal hemoglobinuria. Biochim Biophys Acta 1999; 1455 (2-3): 269-86.

Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989; 52: 257-331.

Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochem Biophys Acta 1999; 1473: 67-95.

Dennis JW, Granovsky M, Warren C. Glycoprotein glycosylation and cancer progression. Biochem Biophys Acta 1999; 1473: 21-34.

Guo HB, Yhang QS, Chen HL. Effects of H-ras and v-sis overexpression on N-acetylglucosaminyltransferase V and metastasis-related phenotypes in human hepatocarcinoma cells. J Cancer Res Clin Oncol 2000; 26: 263-70.

Varki A, Kannagi R, Toole BP. Glycosylation Changes in Cancer. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Glycobiology, 2nd edition. Cold Spring Har bor (NY): Cold Spring Harbor Laboratory Press; 2009: chapter 44.

Dall'Olio F. The sialyl-alpha2,6-lactosaminyl-structure: biosynthesis and functional role. Glycoconj J 2000; 17 (10): 669-76.

Dall'Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001; 18 (11-12): 841-50.

Miyagi T, Wada T, Yamaguchi K, Hata K. Sialidase and ma lignancy: a minireview. Glycoconj J 2004; 20 (3): 189-98.

Yazawa S, Madiyalakan R, Izawa H, Asao T, Furukawa K, Matta KL. Cancer-associated elevation of alpha(1-3)-L-fucosyltransferase activity in human serum. Cancer 1988; 62 (3): 516-20.

Asao T, Kuwano H, Nakamura J, Okamura A, Berger EG, Matta KL, et al. Tumor cells as the origin of elevated serum 1,3fucosyltransferase in association with malig nancy. Clin Exp Metastasis 2000; 18 (7): 605-10.

Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. Biochem 2008; 143 (6): 725-9.

Podolsky DK, Weiser MM, Isselbacher KJ, Cohen AM. A cancer-associated galactosyltransferase isoenzyme. N Engl J Med 1978, 299: 703-5.

Podolsky DK, Weiser MM. Purification of galactosyltrans ferase »isoenzymes« I and II. Comparison of cancer-associated and normal galactosyltransferase activities. J Biol Chem 1979; 254 (10): 3983-90.

Ogata S, Muramatsu T, Kobata A. New structural charac teristics of the large glycopeptides from transformed cells. Nature 1976; 235: 275-8.

Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS. b1-6 branching of Asn-linked oligosaccharides directlly associated with metastasis. Science 1987; 236: 582-5.

Kobata A, Amano J. Altered glycosylation of proteins pro duced by malignant cell, and application for the diag nosis and immunotherapy of tumours. Immunol Cell Biol 2005; 83: 429-39.

Kobayashi H, Terao H, Kawashima Y. Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer. J Clin Oncol 1992; 10: 95-101.

Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 1997; 75 (8): 594-602.

Desai PR. Immunoreactive T and Tn antigens in malignancy: role in carcinoma diagnosis, prognosis, and immu no therapy. Transfus Med Rev 2000; 14 (4): 312-25.

Ju T, Otto VI, Cummings RD. The tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl 2011; 50 (8): 1770-91.

Metoki R, Kakudo K, Tsuji Y, Theng N, Clausen H, Hakomori S. Deletion of histo-blood group A and B antigens and expression of incompatible A antigen in ovarian cancer. J Natl Cancer Inst 1989; 81 (15): 1151-7.

Lewis JD, Reilly BD, Bright RK. Tumor-associated antigens: from discovery to immunity. Int Rev Immunol 2003; 22 (2): 81-112.

Nakagoe T, Fukushima K, Nanashima A, Sawai T, Tsuji T, Jibiki M, et al. Expression of Lewis(a), sialyl Lewis(a), Lewis(x) and sialyl Lewis(x) antigens as prognostic factors in patients with colorectal cancer. Can J Gastroenterol 2000; 14: 753-60.

Ugorski M, Laskowska A. Sialyl Lewis: a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol 2002; 49: 303-11.

Yuriev E, Farrugia W, Scott AM, Ramsland PA. Three-dimensional structures of carbohydrate determinants of Lewis system antigens: implications for effective antibody targeting of cancer. Immunol Cell Biol 2005; 83 (6): 709-17.

Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 2006; 7(6): 599-604.

Kannagi R. Carbohydrate antigen sialyl Lewis a: its patho physiological significance and induction mechanism in cancer progression. Chang Gung Med J 2007; 30 (3): 189-209.

Makker PN, Conklin J, Hogan V, Raz A. Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. Trends Mol Med 2002; 8 (4): 187-92.

Macmillian D, Daines AM. Recent developments in the synthesis and discovery of oligosaccharides and glyco-conjugates for the treatment of disease. Current Med Chem 2003; 10: 2733-73.

Werz DB, Seeberger PH. Carbohydrates as the next frontier in pharmaceutical research. Chemistry 2005; 11: 3194-206.

Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5: 526-42.

Guo Z, Boons GJ, editors. Carbohydrate-based vaccines and immunotherapies. Hoboken, New Jersey: Wiley & Sons, Inc., publications, 2009: 408pp.

Wandall H, Tarp MA. Therapeutic cancer vaccines: clinical trials and applications. In: Guo Z, Boons GJ, editors. Carbohydrate-based vaccines and immunotherapies. Hoboken, New Jersey: Wiley & Sons, Inc., publications, 2009: 333-55.

Dube DH, Bertozzi CR. Glycans in cancer and inflammation-potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005; 4: 477-88.

Werner RG, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr 2007; 96: 17-22.

Guy B. Adjuvant for protein- and carbohydrate-based vaccines. In: Guo Z, Boons GJ, editors. Carbohydrate-based vaccines and immunotherapies. Hoboken, New Jersey: Wiley & Sons, Inc., publications, 2009: 89-117.

Bertozzi CR, Freeze HH, Varki A, Esko JD. Glycans in Biotechnology and the Pharmaceutical Industry. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Gly cobiology, 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009: chapter 51.

Orntoft TF, Vestergaard EM. Clinical aspects of altered glycosylation of glycoproteins in cancer. Electrophoresis 1999; 20: 362-71.

Rittenhouse-Olson K. Carbohydrate as unique structures for disease diagnosis. In: Guo Z, Boons GJ, editors. Carbohydrate-based vaccines and immunotherapies. Hobo ken, New Jersey: Wiley & Sons, Inc., publications 2009: 367-95.

Patarca R, Fletcher MA. Structure and pathophysiology of the erythrocyte membrane-associated Paul-Bunnel heterophile antibody determinant in Epsteinbarr virus-associated disease. Crit Rev Oncogen 1995; 6: 305-26.

Hakomori S, Wang SM, Young WW. Isonantigenic expression of forssman glycolipid in human gastric and colonicmucosa: its possible identity with »A-like antigen« in human cancer. PNAC 1997; 74: 3023-7.

Thirumalapura NR, Ramachandran A, Morton RJ, Malayer JR. Bacterial cell microarrays for the detection and characterization of antibodies against surface antigens. J Immunol Methods 2006; 309: 48-54.

Yeo SF, Wong B. Current status of nonculture methods for diagnosis of Invasive Fungal Infections. Clin Microbiol Rev 2002; 15: 465-84.

Mendonca-Previato L, Todeschini AR, Heise N, Previato J. Protozoan parasite-specific carbohydrate structures. Curr Opinn Struct Biol 2005; 15: 499-505.

Krishnamurti U, Steffes MW. Glycohemoglobin: A primary predictor of the development or reversal of complications of diabetes mellitus. Clin Chem 2001; 47: 1157-65.

Bean P, Peter JB. A new approach to quantitate carbohydrate deficient transferrin isoforms in alcohol abusers: partial iron saturation in isoelectric focusing/immunoblotting and laser densitometry. Alcohol Clin Exp Res 1993; 17: 1163-70.

Jeppsson JO, Arndt T, Schellenberg F, Wielders JPM, Anton RF, Whitfield JB, Helander A. Toward standardization of carbohydrate-deficient transferring (CDT) measurements: I. Analyte definition and proposal of a candidate reference method. Clin Chem Lab Med 2007; 45 (4): 558-62.

Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 2010; 56: 177-85.

WHO Blood safety and clinical technology, Report WHO consultation on International biological standards for in vitro diagnostic procedure, Genewa, 14-15 september, Switzerland, 2000: 17pp.

Wild D, editor. The Immunoassay Handbook, 3rd ed. Elsevier Ltd, 2005: 930pp.

Bristow A, Berger P, Bidart JM, Birken S, Norman R, Stenman UH, et al. Establishment, value assignment, and characterization of new WHO reference reagents for six molecular forms of human chorionic gonadotropin. Clin Chem 2005; 51: 1177-82.

Sturgeon CM, Berger P, Bidart JM, Birken S, Burns C, Norman RJ, et al. Differences in recognition of the 1st WHO International reference reagents for hCG-related isoforms by diagnostic immunoassays for human chorionic gonadotropin. Clin Chem 2009; 55: 8 1484-91.

Janković MM, Kosanović MM, Hajduković-Dragojlović LD, Golubović SJ. Development of an immunoradiometric assay for determination of free prostate-specific antigen. Jugoslov Med Biochem 2005; 24 (2): 129-34.

Stephan C, Bangma C, Vignati G, Bartsch G, Lein M, Jung K, et al. 20-25% lower concentrations of total and free prostate-specific antigen (PSA) after calibration of PSA assays to the WHO reference materials-analysis of 1098 patients in four centers. Int J Biol Markers 2009; 24 (2): 65-9.

Fillée C, Tombal B, Philippe M. Prostate cancer screening: clinical impact of WHO calibration of Beckman Coulter Access prostate-specific antigen assays. Clin Chem Lab Med 2010; 48 (2): 285-8.

Vestergaard EM, Hein HO, Meyer H, Grunnet N, Jorgensen J, Wolf H, et al. Reference values and biological variation for tumor marker CA 19-9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a Caucasian population. Clin Chem 1999; 45: 54-61.

Janković M, Kosanović M, Milutinović B. Glycans as a target in the detection of reproductive tract cancers Journal of Medical Biochemistry 2008; 27 (1): 1-13.

Hirabayashi J, Arata Y, Kasai K. Glycome project: Concept, strategy and preliminary application to Caenorhabditis elegans. Proteomics 2001; 1: 295-303.

Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R. Glycomics: an integrated approach to structure-function relationships of glycans. Nat Methods 2005; 2(11): 817-24.

Campbell C, Yarema KJ. Large-scale approaches for glycobiology. Genome Biol 2005; 6 (11): 236.

Turnbull JE, Field RA. Emerging glycomics technologies. Nat Chem Biol 2007; 3: 74-7.

Taniguchi N, Hancock W, Lubman DM, Rudd PM. The second golden age of glycomics: from functional glycomics to clinical applications. J Proteome Res 2009; 8: 425-6.

Laughlin ST, Bertozzi CR. Imaging the glycome. Proc Natl Acad Sci U S A 2009; 106: 12-17.

Consortium for functional glycomics. Available from URL: http://www.functionalglycomics.org

Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, et al. Comparison of the methods for profiling glycoprotein glycans-HUPO human disease glycomics/proteome initiative multi-institutional study. Glycobiology 2007; 17: 411-22.

Taniguchi N. Human Disease Glycomics/Proteome Initiative (HGPI) Molecular & Cellular Proteomics 2008; 7.3: 626-7.

Packer NH, Von der Lieth CW, Aoki-Kinoshita KF, Lebrilla CB, Paulson JC, Raman R, et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11-13, 2006). Proteomics 2008; 8 (1): 8-20.

Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, et al. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 2003; 13: 457-70.

Kosanović MM, Janković MM. Sialylation and fucosylation of cancer-associated prostate specific antigen. J BUON 2005; 10 (2): 247-50.

Janković MM, Kosanović MM. Glycosylation of urinary prostate-specific antigen in benign hyperplasia and cancer: assessment by lectin-binding patterns. Clin Biochem 2005; 38 (1): 58-65.

Kosanović M, Janković M. Molecular forms of human prostate-specific antigen in urine of subjects with benign prostatic hyperplasia. Arch Biol Sci 2006; 58 (2): 77-82.

Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Aleixandre N, Hoesel W, et al. Different glycan structures in prostate specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology 2006; 16 (2): 132-45.

Kosanović M, Janković M. Evaluation of the pattern of human serum glycoproteins in prostate cancer. Journal of Medical Biochemistry 2009; 28 (3): 184-90.

Janković M. Cancer antigen 125: biochemical properties and diagnostic significance. Jugoslov Med Biochem 2001; 20: 201-6.

Wong NK, Easton RL, Pancio M, Sutton-Smith M, Morrison JC, Lattanzio FA, et al. Characterization of the oligosaccharides associated with human ovarian tumor marker CA125. J Biol Chem 2003; 278: 28619-34.

Janković MM, Tapušković BS. Molecular forms and micro heterogeneity of the oligosaccharide chains of pregnancy-associated CA125 antigen. Hum Reprod 2005; 20 (9): 2632-8.

Janković MM, Milutinović BS. Pregnancy-associated CA125 antigen as mucin: evaluation of ferning morphology. Mol Hum Reprod 2007; 13 (6): 405-8.

Janković MM, Milutinović BS. Glycoforms of CA125 antigen as a possible cancer marker. Cancer Biomark 2008; 4 (1): 35-42.

An HJ, Miyamoto S, Lancaster KS, Kirmiz C, Li BS, Lam KS, et al. Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res 2006; 5: 1626-35.

Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, Lam KS, et al. A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics 2007; 6 (1): 43-55.

Leiserowitz GS, Lebrilla C, Miyamoto S, An HJ, Duong H, Kirmiz C, et al. Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int J Gynecol Cancer 2007; 18: 470-5.

Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 2001; 313: 15-19.

Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, et al. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res 2009; 8: 595-602.

Wuhrer M. Glycosylation profiling in clinical proteomics: heading for glycan biomarkers. Expert Rev Proteomics 2007; 4: 135-6.

Lebrilla CB, An HJ. The prospects of glycan biomarkers for the diagnosis of diseases. Mol Biosyst 2009; 5: 17-20.

Taylor AD, Hancock WS, Hincapie M, Taniguchi N, Hanash SM. Towards an integrated proteomic and glycomic approach to finding cancer biomarkers. Genome Med 2009; 1: 57.

Morelle W, Flahaut C, Michalski JC, Louvet A, Mathurin P, Klein A. Mass spectrometric approach for screening modifications of total serum N-glycome in human diseases: application to cirrhosis. Glycobiology 2006; 16: 281-93.

Kam RK, Poon TC, Chan HL, Wong N, Hui AY, Sung JJ. High throughput quantitative profiling of serum N-glycome by MALDI-TOF mass spectrometry and N-glycomic fingerprint of liver fibrosis. Clin Chem 2007; 53: 1254-63.

Bones J, Mittermayr S, O'Donoghue N, Guttman A, Rudd PM, et al. Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem 2010; 82 (24): 10208-15.

Qian WJ, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X, et al. Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immu no affinity separation strategy. Mol Cell Proteom 2008; 7: 1963-73.

Yang Z, Hancock WS. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 2004; 1053: 79-88.

Plavina T, Wakshull E, Hancock WS, Hincapie M. Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein bio marker discovery. J Proteome Res 2007; 6: 662-71.

Kullolli M, Hancock WS, Hincapie M. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins. J Sep Sci 2008; 31: 2733-9.

Jung K, Cho W, Regnier FE. Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J Proteome Res 2009; 8: 643-50.

Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydra zide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003; 21: 660-6.

James TD, Phillips MD, Shinkai S. Boronic Acids in Saccharide Recognition, Monographs in Supramolecular Chemistry. Stoddard JF, series editor. Cambridge: The Royal Society of Chemistry, 2006: 174pp.

Nakakita SI, Sumiyoshi W, Miyanishi N, Hirabayashi J. A practical approach to N-glycan production by hydrazinolysis using hydrazine monohydrate. Biochemical and Biophysical Research Communications 2007; 362: 639-45.

Maley F, Trimble RB, Tarentino AL, Plummer TH Jr. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 1989; 180: 195-204.

Huang YP, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Analytical Chemistry 2001; 73: 6063-9.

Merry AH, Neville DCA, Royle L, Matthews B, Harvey DJ, Dwek RA, et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Biochemistry 2002; 304: 91-9.

Hirabayashi J. Lectin-based structural glycomics: glyco-proteomics and glycan profiling. Glycoconj J 2004; 21: 35-40.

Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 2008; 376: 1-12.

Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 2003; 21: 667-72.

Xiong L, Andrews D, Regnier F. Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2003; 2: 618-25.

Costello CE, Contado-Miller JM, Cipollo JF. A glycomics platform for the analysis of permethylated oligosaccharide alditols. Journal of the American Society for Mass Spectrometry 2007; 18: 1799-812.

Botelho JC, Atwood JA, Cheng L, Alvarez-Manilla G, York WS, Orlando R. Quantification by isobaric labeling (QUIBL) for the comparative glycomic study of O-linked glycans. International Journal of Mass Spectrometry 2008; 278: 137-42.

Harvey DJ. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosac charides. Rapid Commun Mass Spectrom 1993; 7: 614-9.

Harvey DJ. Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 2005; 5: 1774-86.

Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. Mass Spectrom Rev 2009; 28: 273-361.

North SJ, Hitchen PG, Haslam SM, Dell A. Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 2009; 19: 498-506.

Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006; 5: 573-88.

Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteom 2007; 6: 1809-17.

Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 2009; 27: 633-41.

Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti- Peptide Antibodies (SISCAPA). J Proteome Res 2004; 3: 235-44.

Ahn YH, Lee JY, Kim YS, Ko JH, Yoo JS. Quantitative analysis of an aberrant glycoform of TIMP1 from colon cancer serum by L-PHA enrichment and SISCAPA with MRM mass spectrometry. J Proteome Res 2009; 8: 4216-24.

Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2005; 2 (11): 851-6.

Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, et al. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 2007; 4: 437-44.

Qiu YH, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M, et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. Journal of Proteome Research 2008; 7: 1693-703.

Packer NH, von der Lieth CW, Aoki-Kinoshita KF, Lebrilla CB, Paulson JC, Raman R, et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11-13, 2006). Proteomics 2008; 8: 8-20.

Journal of Medical Biochemistry

The Journal of Society of Medical Biochemists of Serbia

Journal Information


IMPACT FACTOR 2017: 1.378
5-year IMPACT FACTOR: 0.704



CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 0.307
Source Normalized Impact per Paper (SNIP) 2017: 0.532

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 272 9
PDF Downloads 123 123 6