Small Non-Coding RNAs - Diagnostic and Therapeutic News

Open access

Male Nekodirajuće RNK-Novine U Dijagnostici I Terapiji

Nekodirajuće RNK predstavljaju specifič nu klasu RNK koje ne služe u procesu translacije proteina. One učestvuju u nizu različitih regulatornih procesa vezanih za proces transkripcije i posttranskripcioni nivo. Pomenuta familija RNK sadrži različite tipove, ali su gotovo sve oko 20-30 nukleotida dugačke, nastale iz prekursora veće dužine. Neke od njih, kao što je siRNK (mala interferentna RNK) formiraju se nakon razgradnje dvostrukospiralnih RNK (dsRNK) i udružene su sa virusnom infekcijom. Druge familije, poznate kao mikro RNK (miRNK), kodiraju se od strane specifičnih gena. Glavna funkcija je inhibicija translacije, razgradnja mRNK ili indukcija razgradnje mRNK, poznata kao utišavanje mRNK. Prepoznavanje target mRNK moguće je po principu komplementarnosti baza. Stepen komplementarnosti određuje uspešnost utišavanja. Korišćenje iRNK u antivirusnom odgovoru predstavlja novi terapijski izazov. Dok neke siRNK imaju zadatak da suprimiraju razvoj oboljenja (virus), druge su uključene u razvoj humanih kancera. Stoga je njihova identifikacija važna sa dijagnostičkog i terapijskog aspekta kod različitih tipova karcinoma i različitih stadijuma oboljenja. Neki tipovi miRNK su udruženi sa razvojem degenerativnih i metabolič kih oboljenja. S obzirom na to da pravilan razvoj nervnog sistema, insulinska sekrecija, kao i važni metabolički procesi zahtevaju preciznu kontrolu na nivou ekspresije gena, kontrola stabilnosti i translacije mRNK putem malih nekodirajuć ih RNK predstavlja dominantnu regulaciju različitih metaboličkih, endokrinih i neuroloških procesa.

Palliser D. An siRNA-based microbicide protects mice from lethal herpes simplex virus infection. Nature 2006; 439: 89-94.

Gao FB. Posttranscriptional control of neuronal development by microRNA networks. Trends in Neurosciences. 2008; 31: 20-6.

Ruvkun G. ≫Molecular biology. Glimpses of a tiny RNA world≪. Science 2001; 294: 797-9.

Gottesman S. The small RNA regulators of Escherichia coli: Roles and mechanisms. Ann Rev Microbiol 2004; 58: 303-28.

Zamore PD, Haley B. Ribo-gnome: The Big World of Small RNAs. Science 2005; 309: 1519-24.

van der Krol A, Mur L, Beld M, Mol JN M, Stuitje AR. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990; 2: 291-9.

Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 2004; 16: 223-9.

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363-6.

Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 2004; 101: 12753-8.

Han J, Lee Y, Yeom K-H, Nam J-W, Heo I, Rhee J-K, Sohn SY, Cho Y, Zhang B-T, Kim VN. ≫Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex≪. Cell 2006; 125: 887-901.

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene≪. Nature 2005; 435: 828-33.

Hannon GJ, Rose JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371-8.

Dorsett Y, Tuschl T. siRNAs: Applications in functional genomics and potential as therapeutics. Nature Reviews 2004; 3: 318-29.

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. ≫MicroRNA expression profiles classify human cancers0171. Nature 2005; 435 (7043): 834-8.

Kerscher AE, Slack FJ. Oncomics-micro RNA with a role in cancer. Nature Reviews 2007; 535-43.

Calin Ga Croce CM. Micro RNA signatures in human cancers. Nature Reviews 2007; 525-34.

Lindbo J, Silva-Rosales L, Proebsting W, Dougherty W. Induction of a highly specific antiviral state in transgenic plants: Implications for regulation of gene expression and virus resistance. Plant Cell 1993; 5: 1749-59.

Waterhouse PM, Graham MW, Wang MB. Virus resistance and gene silencing in plats can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. 1998; 95: 13959-64.

Morrisey DV. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2003; 23, 1002-7.

Kloosterman, WP; Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5: e203.

Soutschek, J. Therapeutic silencing of an endogenous gene by systematic administration of modified siRNAs. Nature 2004; 432: 173-8.

Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and post-transcriptional gene silencing. Cell 2005; 123: 631-40.

Meister G, Landthaler M, Dorsett Y, Tuschl T. ≫Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing≪. RNA 2004; 10: 544-50.

Plasterk RHA. RNA Silencing: The Genome's Immune System. Science 2002; 296: 1263-5.

Hannon GJ. RNA interference. Nature 2002; 418: 244-51.

Hammond SM. Dicing and slicing. The core machinery of the RNA interference pathway. FEBS Lett. 2005; 579: 5822-9.

Mello CC, Conte JD. Revealing the world of RNA interference. Nature 2004; 431: 338-42.

Journal of Medical Biochemistry

The Journal of Society of Medical Biochemists of Serbia

Journal Information


IMPACT FACTOR 2018: 2,000
5-year IMPACT FACTOR: 1,075



CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.523
Source Normalized Impact per Paper (SNIP) 2018: 0.581

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 149 9
PDF Downloads 69 60 2