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Abstract 

The current research based on greenhouse experiment evaluates the impact of the Lactobacillus strains 

(Lactobacillus plantarum, Lactobacillus paralimentaris, Lactobacillus fermentum, Lactobacillus pentosus, 

and Lactobacillus buchneri) previously isolated from maize silage on the Fusarium verticillioides-infected 

maize plants. The growth parameters as well as catalase, superoxide dismutase, ascorbate peroxidase, and 

peroxidase antioxidant enzymes activity were investigated in one-month old seedlings, after inoculations 

with Fusarium or co-inoculations with Fusarium and the Lactobacillus strains. Application of Lactobacil-

lus strains in maize seedlings significantly enhanced the plant growth and biomass. The best effect was 

observed when the L. buchneri was applied. It was revealed that inoculation with Fusarium stimulated 

antioxidant enzyme activity and co-inoculation with Lactobacillus strains reduced the enzyme activity, 

compared to Fusarium treatment alone. This is the first report that revealed the bioprotective role of Lac-

tobacillus strains against F. verticillioides. 
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INTRODUCTION 

 

Maize (Zea mays L.) is one of the most im-

portant and the third most traded cereal grain in the 

world (Pereira et al. 2011b). Fusarium verticillioides 

(Sacc.) Nirenberg (syn. Fusarium moniliforme) is 

known as one of the most frequent fungal pathogens 

in maize worldwide. In the suitable conditions, the 

pathogen induces root, stalk, ear, kernel, and seed-

ling rot, which causes serious production losses. F. 

verticillioides secretes several toxins that are poten-

tially toxic for humans and farm animals. The most 

important of these toxins produced by F. verticil-

lioides are mycotoxins, the fumonisins (Oren et al. 

2003), possessing carcinogenic effects (Pereira et 

al. 2011b). This species, in association with maize, 

can appear as both a pathogen or a symptomless in-

tercellular endophyte, depending on diverse factors 

such as plant and fungal genotypes, environmental 

conditions, fungal inoculum size, and the presence 

of antagonists (Bacon et al. 2001; Pereira et al. 

2011a). The contamination of maize and wheat 

fields with Fusarium strains, particularly F. verticil-

lioides and F. proliferatum, is commonly reported 

(Mohammadi-Gholami et al. 2013). This contami-

nation is a serious public health hazard because of 

the food spoilage and the presence of carcinogenic 

fumonisin B1 in high levels. Biological control of 

crops̕ disease and pets using microbial inoculants is 

being increasingly noticed as a feasible, ecofriendly 

alternative that limits the enormous use of the syn-

thetic chemical pesticides (Gajbhiye & Kapadnis 

2016; Oliveira et al. 2014; Pereira et al. 2011a). 

Lactic acid bacteria (LAB) are a family of 

gram-positive, non-spore forming, cocci- or rod-

shaped, catalase (CAT)-negative organisms (Patil et 
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al. 2010). LAB have been widely and safely used in 

the food and feed industries as probiotics or starters 

during the past decades (Franz et al. 2010; Oliveira 

et al. 2014). Recently, some studies reported the an-

tifungal activities of these bacteria against some 

plant pathogenic fungi (Gajbhiye & Kapadnis 2016; 

Gupta & Srivastava 2014; Kharazian et al. 2017; 

Kıvanc et al. 2014; Oliveira et al. 2014; Tropcheva 

et al. 2014; Varsha et al. 2014). 

The resistance of plants to fungal colonization 

is often manifested by the hypersensitive reaction 

(HR) of challenged plant cells and the reactive oxy-

gen species (ROS) production. It is the evidence of 

successful recognition of infection and activation of 

plant defenses. The excess of ROS causes damage 

to proteins, lipids, carbohydrates, DNA and finally 

results in cell death (Torres 2010). The role of the 

ROS family is that of a double-edged sword; while 

they act as secondary messengers in various key 

physiological phenomena, they also induce oxida-

tive damages under several environmental stress 

conditions (Das & Roychoudhury 2014). 

The induction of ROS-scavenging enzymes, 

such as superoxide dismutase (SOD), peroxidases 

(PODs), and CAT, are the most important and com-

mon mechanism for detoxifying ROS, synthesized 

during stress responses. These enzymes act by either 

the partial suppression of ROS production or the scav-

enging of the ROS already produced (Torres 2010). 

Many references report the impact of 

Fusarium maize pathogens on antioxidative re-

sponses of the plants (García‐Limones et al. 2009; 

Gherbawy et al. 2012; Sorahinobar et al. 2015), but 

there is no report on the effects of LABs as biocon-

trol agents on the antioxidant enzymes in the 

Fusarium-infected plants. So the objective of the 

present study was to evaluate the impact of the Lac-

tobacillus strains previously isolated from maize si-

lage (Kharazian et al. 2017) on the physiological re-

sponses and growth parameters of Fusarium-in-

fected maize plants. 

 

MATERIAL AND METHODS 

 

Microbial strains 

The F. verticillioides was kindly provided by the 

Maize & Forage Crops Research Department, Seed 

and Plant Improvement Institute (SPII), Karaj, Iran. 

This strain was previously isolated from diseased 

maize plants in the fields. For spore production, the 

fungus was grown in the Potato Dextrose Broth me-

dium at 28 °C, and the spores were collected by fil-

tration. 

The Lactobacillus strains used in the present 

study were isolated from Iranian maize silages, and 

their high antifungal activities against some plant 

pathogenic fungi, including F. verticillioides, Peni-

cillium sp., Pythium aphanidermatum, and Verticil-

lium dahliae have been confirmed (Kharazian et al. 

2017). The Lactobacillus strains used in the present 

work were Lactobacillus plantarum E2, Lactobacil-

lus pentosus E4, Lactobacillus paralimentaris Q2, 

Lactobacillus fermentum Q4, and Lactobacillus 

buchneri (sunkii) Q6 with NCBI nucleotide se-

quence databases (https://www.ncbi.nlm.nih.gov) 

accession numbers KJ736725, KJ736733, 

KJ736727, KJ736732, and KJ736735, respectively 

(Kharazian et al. 2017). 

The Lactobacillus strains were inoculated into 

De Man, Rogosa, and Sharpe (MRS) broth and cul-

tivated overnight at 37 °C. Bacterial suspensions 

were centrifuged at 10,000 g for 20 min to remove 

the nutritional medium, and then they were washed 

twice with sterile water. The bacterial pellets were 

suspended in sterile water to the volume of about 

108 (CFU/ml) and immediately used for inoculation 

of the seedlings. 

In the treatment with the combination of five 

Lactobacillus strains, equal amount of each strain 

was given to the final concentration of about 108 

(CFU/ml). 

Plant material 

The seeds of F. verticillioides – susceptible maize 

line K74/1 were kindly provided by the Maize & 

Forage Crops Research Department of SPII. The 

seeds were surface sterilized by bleach (5.25% so-

dium hypochlorite) for 10 min and then were rinsed 

several times in sterile water. The kernels beaker 

was placed in 60 °C water bath for 3 min, then the 

water was removed, and the kernels were trans-

ferred to a Petri dish and covered with water. For 

germination, the kernels were incubated in the dark 

for two days at 25 °C and then for two days at 4 °C 

(Bacon et al. 1994). 

https://www.google.com/search?espv=2&biw=1920&bih=955&q=verticillium+mycotoxins&spell=1&sa=X&ved=0ahUKEwi0xoCA0LbOAhXDbhQKHV93Cr8QvwUIGSgA
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Table 1. Design of the greenhouse experiment 

 

Treat-

ment 

Strains 

Fungus  

(Pathogen) 
Bacteria (Antagonists) 

T1 - - 

T2 
F. verticil-

lioides 

L. plantarum E2, 

L. pentosus E4, 

L. paralimentaris Q2, 

L. fermentum Q4, 

L. buchneri (sunkii) Q6 

T3 - 

L. plantarum (E2), 

L. pentosus E4, 

L. paralimentaris Q2, 

L. fermentum Q4, 

L. buchneri (sunkii) Q6 

T4 - L. buchneri (sunkii) Q6 

T5 
F. verticil-

lioides 
L. buchneri (sunkii) Q6 

T6 
F. verticil-

lioides 
Benomyl (Fungicide) 

T7 - Benomyl (Fungicide) 

T8 
F. verticil-

lioides 
- 

 

Plant microbe interactions and growth parame-

ters analysis 

Eight different combinations of the Lactobacillus 

strains were used for inoculation of the maize seed-

lings under greenhouse conditions (Table 1). For the 

treatments 6 and 7, a solution of the fungicide beno-

myl (commercial powder Benlate) with a concentra-

tion of 100 mg·ml-1 was added to the soil substrate 

for controlling Fusarium. 

Maize seedlings with aerial parts of 2.0–3.5 cm 

in length were placed in Petri dishes together with 

Lactobacillus strains suspensions and left for 4 h at 

25 °C and then 4 h with F. verticillioides spore sus-

pensions and then transferred to pots in the green-

house. In the control samples, the seedlings were 

soaked in water instead of bacterial suspensions. 

The greenhouse experiment was conducted in pots 

containing a mixture of 40% peat, 30% loam, 20% 

vermiculite, and 10% compost. There were three 

seedlings per pot and three pots for each treatment. 

The greenhouse temperature was 25–27 °C with 12-

h photoperiod. The plants were irrigated twice in 

a week. After one month, the maize plants were har-

vested. Then different growth parameters, including 

shoot and root length and fresh and dry weights of 

plants were measured. 

Measurement of enzymes activity 

To prepare crude enzyme extracts, fresh leaves 

(0.05 g) were ground with 2 ml of 0.1 M cool phos-

phate buffer (pH 6.8) as described by Kar and Mishra 

(1976). The obtained homogenate was then centri-

fuged at 15,000 g for 15 min at 4 °C. The clear super-

natant was used for assaying the enzyme activities. 

CAT activity was determined by monitoring 

the destruction of H2O2 at 240 nm. The reaction 

mixture in a final volume of 3 ml contained 50 mM 

phosphate buffer (pH 6.8), 100 μl enzyme extract, 

and 15 mM H2O2. The decrease in absorbance at 

240 nm was recorded with a spectrophotometer 

(Shimadzu UV-160) (Aebi 1984). The POD reac-

tion mixture in a final volume of 3 ml contained 

20 mM guaiacol, 25 mM phosphate buffer (pH 6.8), 

40 mM H2O2, and 10 μl of the crude enzyme extract. 

The increase in absorbance at 470 nm because of 

tetra-guaiacol formation was recorded spectropho-

tometrically (Chance & Maehly 1955). Superoxide 

dismutase (SOD) activity was measured by using 

the photochemical nitro blue tetrazolium (NBT) 

method (Beauchamp & Fridovich 1971). The SOD 

reaction mixture in a final volume of 1 ml con-

tained 50 mM potassium phosphate buffer (pH 

7.8), 0.1 mM ethylenediaminetetraacetic acid 

(EDTA), 20 µl of the extract, 75 µM NBT, 13 mM 

methionine, and 4 µM riboflavin. One unit of SOD 

was defined as the quantity of enzyme required to 

inhibit the reduction of NBT by 50%. Total ascor-

bate peroxidase (APX) activity was measured 

spectrophotometrically by detecting the absorb-

ance at 290 nm during oxidation of ascorbic acid, 

using the method described by Nakano and Asada 

(1981). One milliliter of the reaction mixture con-

tained 50 mM potassium phosphate buffer (pH 

7.0), 0.45 mM l-ascorbic acid, 0.3 mM H2O2, and 

30 µl of the extract. One unit of APX was defined 

as the quantity of enzyme required to consume 

1 µM of substrate. 

Statistical analysis 

The experiment was carried out in three replications. 

Analysis of variance, average comparing, and treatment 

groups score were obtained by using SAS (version 9.1) 

and the Duncan’s Multiple range tests (P < 0.05). 
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RESULTS AND DISCUSSION 

 

In the current study, we have made the green-

house experiment to evaluate the impact of inocula-

tions of the F. verticillioides with or without Lacto-

bacillus strains (as biocontrol agent) on maize seed-

lings growth and antioxidant enzymes activity. Our 

previous data from in vitro experiments showed that 

all selected Lactobacillus strains can inhibit growth 

of F. verticillioides (Kharazian et al. 2017). 

Root lengths increased in the seedlings that 

were soaked in suspensions of Lactobacillus 

strains (Figs. 1 and 2A). The treatments 2 

(Fusarium + all 5 Lactobacillus strains) and 5 

(Fusarium + L. buchneri) caused the longest roots 

(24 cm) compared to the control (T1) (11 cm). The 

treatment 6 (fungicide + Fusarium) resulted in the 

shortest roots, which was similar to that of the con-

trol with Fusarium. The root weight increased in 

all Lactobacillus-containing treatments (with or 

without Fusarium inoculation) compared to the 

control (Fig. 2B). The maximum root weight, 

1.854 and 1.729 mg, belonged to the treatments 3 

(all 5 Lactobacillus) and 4, respectively. The low-

est root weight was recorded in the Fusarium treat-

ment (81 mg fresh weight). The treatments 3 and 5 

caused significant increase in the shoot length and 

weight, compared to the control (Fig. 3A and 3B). 

However, other treatments did not show any sig-

nificant differences in shoot lengths compared to 

the control. Fresh weight of the shoots in all Lac-

tobacillus treatments (also in the co-inoculation of 

Lactobacillus with Fusarium) was significantly 

bigger than that of the control, while dry weight of 

the shoots was higher only in treatments 3 and 5. 

The effect of Lactobacillus strains on plant 

growth was previously described by Hamed et al. 

(2011), Limanska et al. (2013), and Narasimha 

Murthy et al. (2012). The positive effect of Lacto-

bacillus strains inoculation on shoot growth and lat-

eral root number was reported by Hamed et al. 

(2011). According to Limanska et al. (2013), the 

physiological response of seedlings for inoculation 

with suspensions of Lactobacillus depends on the 

tested strain. 

Fusarium caused a significant increase in the 

activity of all enzymes (Fig. 4). All the treatments 

with microorganisms have increased POD and SOD 

activities compared to the control (Fig. 4A and 4B). 

The activity of APX and CAT was higher after in-

oculations with the mixture of bacteria and with 

L. buchneri (Fig. 4C and 4D). 

The above results are in agreement with 

Gherbawy et al. (2012), who demonstrated that 

F. moniliforme inoculation resulted in enhanced 

activity of antioxidant enzymes (SOD, CAT, and 

APX) in the wheat shoots. Meanwhile, Pereira et 

al. (2011a) demonstrated that inoculation of maize 

seeds with F. verticillioides, either alone or co-in-

oculated with the Bacillus, resulted in enhanced 

SOD activity. The chances of oxidative burst and 

programmed cell death are minimized because of 

the enhanced antioxidant enzymes activity. As 

a result, F. verticillioides can be protected from the 

oxidative damage during colonization (Kumar et 

al. 2009). Another interesting result of this study 

was that the antioxidant enzymes activity are de-

creased in plants that were co-inoculated with 

F. verticillioides and Lactobacillus strains as com-

pared to plants inoculated with F. verticillioides 

only. Previously, two characteristics, including an-

tagonistic effects against plant pathogenic fungi 

(Yan et al. 2017; Russo et al. 2017; Guo et al. 

2012) and also high antioxidant activity, ROS 

scavenging and inhibition of the production of free 

radicals have been reported for different Lactoba-

cillus species (Virtanen et al. 2007; Xing et al. 

2015). 

Our experiments confirmed the high antifun-

gal activity of the selected Lactobacillus strains 

against F. verticillioides, which may be caused by 

the secretion of antifungal substances by Lactoba-

cillus strains. Some of the known secreted sub-

stances by Lactobacillus strains are cyclic dipep-

tides, proteinaceous compounds, organic acids, 

fatty acids, nisin, and reuterin (Crowley et al. 2013; 

Gajbhiye & Kapadnis 2016; Limanska et al. 2013). 

Further experiments are needed to determine how 

Lactobacillus strains prevent F. verticillioides in-

fection. 
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Fig. 1. The effect of Lactobacillus strains and Fusarium verticillioides inoculation on maize seedlings growth in the 

greenhouse for 4 weeks. T1: control, T2: F. verticillioides + L. plantarum + L. pentosus + L. paralimentaris + L. fer-

mentum + L. buchneri, T3: L. plantarum + L. pentosus + L. paralimentaris + L. fermentum + L. buchneri, T4: L. buch-

neri, T5: F. verticillioides + L. buchneri, T6: F. verticillioides + fungicide, T7: fungicide, T8: F. verticillioides 

 

 

 
 
Fig. 2. A) Root length and B) root fresh and dry weight 

of maize seedlings inoculated with Lactobacillus strains 

and F. verticillioides after 4 weeks of growth in the 

greenhouse. The results are the means of three replicates 

of experiment ± SE. Different letters above the columns 

indicate significant differences between treatments 

(P ≤0.05) according to Duncan’s multiple range tests. For 

treatments see Table 1 and Fig. 1. 

 

 
 
Fig. 3. A) Shoot length and B) shoot fresh and dry weight 

of maize seedlings inoculated with Lactobacillus strains 

and F. verticillioides after 4 weeks of growth in the 

greenhouse. The results are the means of three replicates 

of experiment ± SE. Different letters above the columns 

indicate significant differences between treatments 

(P ≤ 0.05) according to Duncan’s multiple range tests. or 

treatments see Table 1 and Fig. 1.
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Fig. 4. A) Peroxidase (POD), B) superoxide dismutase 

(SOD), C) ascorbate peroxidase (APX) and D) catalase 

(CAT) activities in shoots of maize seedlings inoculated 

with Lactobacillus strains and F. verticillioides after 

4 weeks of growth in the greenhouse. The results are the 

means of three replicates of experiment ± SE. Different 

letters above the columns indicate significant differences 

between treatments (P ≤0.05) according to Duncan’s mul-

tiple range tests. For treatments see Table 1 and Fig. 1.  

 

CONCLUSION 

 

The current results of the greenhouse experi-

ment on maize seedlings suggest that studied Lacto-

bacillus strains may have potential to be used as bi-

ocontrol agents. Field experiments are needed to 

propose using of these strains in crop farming. 
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