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Abstract: A 2D hydrodynamic (labeled as CAR) model has been proposed in a rectangular Cartesian coordinate system 
with two axes within the horizontal plane and one axis along the vertical direction (global coordinates), considering the 
effects of bed slope on both pressure distribution and bed shear stresses. The CAR model satisfactorily reproduces the 
analytical solutions of dam-break flow over a steep slope, while the traditional Saint-Venant Equations (labeled as SVE) 
significantly overestimate the flow velocity. For flood events with long duration and large mean slope, the CAR and the 
SVE models present distinguishable discrepancies. Therefore, the proposed CAR model is recommended for applications 
to real floods for its facility of extending from 1D to 2D version and ability to model shallow-water flows on steep 
slopes. 
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INTRODUCTION 
 
Shallow-water hydrodynamic models and their extensions 

involving sediment transport have been widely used in hydrau-
lic engineering and geomorphological studies over the past few 
decades (Cao et al., 2017; Huang et al., 2014; Li et al., 2017, 
2018a, 2018b; Qian et al., 2015). The prototype is the tradition-
al Saint-Venant equations (Barré de Saint-Venant, 1871), which 
can be obtained by assuming a vertical hydrostatic pressure 
distribution and integrating three-dimensional Reynolds-
averaged Navier-Stokes equations over the flow depth (Toro, 
2001; Wu, 2007). Yet the assumption of small slope is invalid 
for cases with realistic steep terrain (Denlinger and O’Connell, 
2008; Juez et al., 2017). 

The governing equations of granular flows described by the 
continuum theory bear a superficial resemblance to the shallow-
water equations (Mangeney-Castelnau et al., 2005). Since the 
granular flows often take place on steep slopes, it is inevitable 
to incorporate the steep slope effects in the mathematical mod-
els. Savage and Hutter (1989) introduced the presence of steep 
slope by adopting local coordinates with one axis along the bed 
and the other axis perpendicular to the bed. Then Savage and 
Hutter (1991) derived 1D governing equations in a curvilinear 
coordinate system (local coordinates) aligned with the curved 
bed, which were later extended by Greve et al. (1994) to study 
3D granular flows along a bottom profile that was weakly 
curved downward and plane laterally. Gray et al. (1999) mod-
eled the realistic complex basal topography by defining an 
orthogonal curvilinear reference surface and then superposing 
shallow basal topography on it. Since the topographic data for 
natural spaces is mainly based on digital elevation models 
(DEMs), which are referenced to global coordinates, the afore-
mentioned models have to map the original data to local coor-
dinates. In this connection, Denlinger and Iverson (2004) de-
veloped a nonhydrostatic model in global coordinates, account-
ing for the effects of nonzero vertical accelerations. Juez et al. 
(2013) simulated granular flows using both global and local 
coordinates, assuming hydrostatic pressure distribution normal 
to the bed. Castro-Orgaz et al. (2015) further modified the 
nonhydrostatic model, including the effects of vertical motion 

without the ad hoc assumptions adopted by Denlinger and 
Iverson (2004). 

As for shallow-water flows, Bouchut et al. (2003) and Keller 
(2003) introduced a new 1D shallow-water model in a curvilin-
ear coordinate system aligned with the bottom topography, 
which relaxed the restriction of small slopes of the Saint-
Venant equations and was valid for arbitrary slopes. Ancey et 
al. (2008), Cao et al. (2015) and Fernandez-Feria (2006) ap-
plied the modified version of the Saint-Venant equations in 
local coordinates to model shallow water flows on uniform 
slopes. As establishing models in global coordinates can simpli-
fy the mathematical expressions of governing equations and the 
process of data handling, Denlinger and O’Connell (2008) 
followed the nonhydrostatic model proposed by Denlinger and 
Iverson (2004), which was then further developed by Cantero-
Chinchilla et al. (2017) and Castro-Orgaz and Hager (2017). On 
the other hand, Juez et al. (2017), Van Emelen (2014) and Van 
Emelen et al. (2014) built hydrodynamic models in global 
coordinates following Juez et al. (2013). Van Emelen (2014) 
and Van Emelen et al. (2014) concluded that for rapid flows 
such as dam-break flows, no difference appears between tradi-
tional and modified models; however, differences are detectable 
for uniform flows on slope with bed angles higher than 10°. 
Juez et al. (2017) investigated the influence of gravity effects 
on bed load transport over steep slopes. 

In the present work, a shallow-water hydrodynamic model is 
established in global coordinates, based on the assumption of 
hydrostatic pressure distribution normal to the bed. In addition, 
the bed slope is incorporated in the calculation of bed shear 
stresses. This paper aims to shed new insights on the bed slope 
effects by comparing the performance of the traditional Saint-
Venant equations and the proposed model in applications to 
four dam-break flood events. 

 
MATHEMATICAL MODEL 
Governing equations 

 
The effects of bed slope on both pressure distribution and 

bed shear stresses are considered in the governing equations 
here, which is different from the traditional Saint-Venant equa- 
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Fig. 1. Sketch for local and global coordinates. 
 

tions valid for small slopes. Figure 1 illustrates the comparison of local 
and global coordinates. In local coordinates ( ' ' ')x o z , the pressure 
distribution normal to the bed is 

 
cos ( ' ')sp g z zρ θ= ⋅ −  (1) 

 
where ρ  is the density of water; g  is gravitational acceleration; θ  is 
the slope angle of the bed; 'sz  is the free surface in local coordinates. 
According to geometric relation, the vertical pressure distribution in 
global coordinates ( )xoz  is 
 

2cos ( )sp g z zρ θ= ⋅ ⋅ −  (2) 
 
Note that in the traditional Saint-Venant equations (with the as-

sumption of small slopes so there is cos 1θ ≈ ), the vertical pressure 
distribution in global coordinates ( xoz ) is  

 
( )sp g z zρ= ⋅ −  (3) 

 
Substitutions of Equations (1)–(3) into time-averaged 3D momen-

tum equations of incompressible flow in corresponding Cartesian coor-
dinate systems, together with integrations along flow depth, yield three 
sets of depth-averaged equations, respectively (Wu, 2007). 

The 1D governing equations derived with Equation (1) in local co-
ordinates are given as follows 

 

2 2

' ( ' ') 0
'

( ' ') 1SWE: ( ' ' cos ' )
' 2

' 1'sin cos ' '
'

b
b

h h u
t x
h u h u g h

t x
z

gh g h
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θ θ τ
ρ

∂ ∂+ = ∂ ∂
∂ ∂ + + ⋅ = ∂ ∂

∂
− ⋅ − ∂

 (4) 

 
where t  is time; 'x  is the downstream coordinate; 'h  is the flow 
depth perpendicular to the bed; 'u  is the depth-averaged stream-wise 
flow velocity; 'bz  is the bed elevation in local coordinates; 'bτ  is the 
bed shear stress. This model is referred to as SWE (modified shallow 
water equations) in this paper. Since its 2D version is complex, only 
1D version is presented here. 

As for Equations (2) and (3), the corresponding gov-
erning equations are built in global coordinates and 
therefore the 2D versions can be readily derived 
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∂ ∂ ∂

 (5a) 

 
2

2( ) ( ) ( ) 1 1( ' ) '
2

b
bx

hu hu huv zg h g h
t x y x x

τ
ρ

∂ ∂ ∂ ∂ ∂+ + = − − −
∂ ∂ ∂ ∂ ∂

  
 

 (5b) 
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 (5c) 
 

where x  and y  are the horizontal Cartesian coordi-
nates; h  is the vertical flow depth; u  and v  are the 
depth-averaged velocity components in the x- and y- 
directions; bz  is the vertical bed elevation; bxτ  and byτ  
are the bed shear stresses in the x- and y- directions, 
respectively. According to Equation (2), there is 
 

2 2 2cos if 0'
0 else
g u vg θ ⋅ + >= 


 (6) 

 
The model with Equations (5) and (6) is referred to 

as the CAR (the first three letters of “Cartesian”) model 
in this paper. On the other hand, the traditional Saint-
Venant equations with 'g g=  are labeled as the SVE 
(Saint-Venant Equations) model. 

 
Model closure 

 
To close the governing equations above, the Man-

ning formula is employed here to evaluate the bed shear 
stresses 

 
2 2 2

1/3 cos( cos )bx
n g u u v

h
τ ρ

θθ
⋅ += ⋅  (7a) 

 
2 2 2

1/3 cos( cos )by
n g v u v

h
τ ρ

θθ
⋅ += ⋅  (7b) 

 
where n  is the Manning roughness coefficient. As 
mentioned above, there is cos 1θ ≈  in the SVE model. 
For the SWE model, the angle-related terms would not 
be included in Equation (7) due to the consistency be-
tween the axis and the flow direction. 

The cosine value of the bed angle of the computa-
tional grid ( , )i j  in the CAR model is given by 

 

1, 1, , 1 , 12 2cos ( , ) 1 / 1 ( ) ( )
2 2

bi j bi j b i j bi jz z z z
i j

x y
θ + − + −− −

= + +
⋅ Δ ⋅ Δ

 (8) 
 

where xΔ  and yΔ  are the spatial steps; the subscripts i  
and j  denote the spatial node indexes in the x- and y- 
directions, respectively. 
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Numerical algorithm 
 
Equation (5) constitutes a hyperbolic system which can be 

written in a quasi-linear form as 
 

t x y
∂ ∂ ∂+ + =
∂ ∂ ∂
U F G S  (9) 
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where U  is the vector of conserved variables; F  and U  are 
the convective flux vectors of the flow in the x- and y- direc-
tions, respectively; bS  is the source term related to the pressure 
force at the bed; fS  is the source term involving bed shear 
stresses. Under the framework of finite volume method, an 
explicit discretization of Equation (9) gives (Hou et al., 2013a, 
2013b; Huang et al., 2015) 
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where the superscript n  denotes the time step index; tΔ  is the 
time step; *

1 2,i j+F , *
-1 2,i jF , *

, 1/2i j+G , and *
, -1/2i jG  represent the 

inter-cell fluxes. 
The friction source term in Equation (11) is evaluated by the 

splitting point-implicit method (Bussing and Murmant, 1988; 
Huang et al., 2015). The Monotone Upstream-centered 
Schemes for Conservation Laws (MUSCL) method is used in 
data reconstruction to achieve second-order accuracy in space 
and a second-order Runge-Kutta method is employed to solve 
Equation (12) to obtain second-order accuracy in time (Hou et 
al., 2013b; Liang and Marche, 2009). A robust approach de-
signed by Hou et al. (2013a) is utilized, preserving non-
negative water depth in data reconstruction and transforming 
the slope source term into fluxes so that the whole scheme 
satisfies the C-property and can deal with the wet-dry interfaces 
properly. Given that neighboring grids might possess different 

values of 'g , a centered method, i.e., the FORCE scheme, is 
utilized to calculate the inter-cell fluxes (Toro, 2009). The 
corresponding numerical stability is controlled by a decreasing 
function of the dimension parameter α  (Qian et al., 2017; 
Toro, 2009) 

 

, , , , 1max( , )i j i j i j i ju gh v gh
t Cr

x y
−+ +

Δ = ⋅
Δ Δ

 (13) 

 

0 2 1 /Cr α α< ≤ −  (14) 
 

where Cr  represents the Courant number. For present 2D mod-
eling, there is 2α = . A value of 0.5Cr =  is adopted through-
out the paper. 

 
RESULTS AND DISCUSSION 
 

Four flood events are employed to compare the aforemen-
tioned models. To quantify the differences between solutions, 
the dimensionless discrepancy is defined with the L1-norm 

 

1 OBJ REF

REF

h h
L

h
−

= 


 (15) 

 
where the subscript REF denotes results chosen as the refer-
ence; and the subscript OBJ denotes results to be compared. 

 
Idealized dam-break flow on a steep slope 

 
Fernandez-Feria (2006) provided analytical solutions for 

frictionless dam-break flows upon non-horizontal beds. Here 
the methodology introduced in Fernandez-Feria (2006) has 
been adopted to derive analytical solutions for case with a bed 
inclining angle of 30° . Following Fernandez-Feria (2006), the 
results are given in local coordinates and are expressed in terms 
of dimensionless variables, with the initial water depth 0H  at 

the dam wall and 0gH  as the length scale and the velocity 
scale, respectively. The dimensionless spatial step is set to 

0.01xΔ = , satisfying the criteria of mesh independence. 
Figure 2 shows the analytical and the numerical solutions for 

the advancing flow fronts with time. Apparently, the results 
calculated by the traditional SVE model deviate greatly from 
the analytical solutions while those computed by the other two 
models match rather well with the analytical solutions. Figure 3 
illustrates the flow depth and the velocity profiles at four in-
stants of time. The SWE and the CAR predictions agree well 
with the analytical solutions. However, the SVE model overes-
timates the flow velocity, demonstrating that the SVE model 
does not apply to cases with steep slopes. 
 
Experimental dam-break flow in cascade reservoirs with 
steep slope 

 
The experiment was carried out at State Key Laboratory of 

Hydraulic and Mountain River Engineering of Sichuan Univer-
sity (Xue et al., 2011). As shown in Figure 4, ten probes were 
placed along the bottom to record the flow depth. Two flat 
plates were vertically set as dams in the flume. Once the force 
acting on the plate exceeded the ultimate bearing capacity 
equaling to the hydrostatic pressure in the water depth of 0.53 
m., the plate would fall down in less than 0.35 s, simulating an 
instantly filled dam break. Initial water depths of reservoirs were 
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Fig. 2. Analytical and numerical solutions of the locations of the 
advancing flow fronts with time: (a) left front; (b) right front. 
 

 
 

Fig. 3. Analytical and numerical solutions of the flow at four in-
stants of time: (a) depth profiles; and (b) velocity profiles. The 
black dash lines in (b) are plotted outside the flow region to deline-
ate more clearly the analytical solutions obtained for the velocity of 
the flow fronts. 
 
0.494 m and 0.496 m for the upstream and the downstream 
dams, respectively. In line with the mesh independence analy-
sis, a mesh of Δ x = 0.005 m is adopted here. 
 
 
 
 

Table 1. Calibrated values of Manning roughness for two models. 
 

Model Manning Roughness n Dam-break time (s) 

SVE 
0.0170 2.38 
0.0177 2.40 
0.0180 2.41 

CAR 
0.0150 2.38 
0.0155 2.40 
0.0160 2.41 

 
According to Xue et al. (2011), the downstream dam broke 

due to the overloading, 2.4 s after the collapse of the upstream 
dam. This is used to calibrate the Manning roughness for the 
SVE and the CAR models, with the aforementioned capacity 
being the criterion of dam break. The calibration results are 
listed in Table 1, with values of 0.0177 and 0.0155 for the SVE 
and the CAR models respectively. This is in accordance with 
the fact that the traditional SVE model neglects the effects of 
bed slope so that a larger value of Manning roughness is de-
manded to prevent the flood from propagating too fast, as com-
pared to the CAR model. 

Figure 5 shows the computed depth hydrographs by the 
CAR and the SVE models at ten gauging points as compared 
against the measured data (Xue et al., 2011). Although different 
values of Manning roughness have been adopted in the two 
models, the results are qualitatively and quantitatively similar, 
both reproducing the measured data satisfactorily. Given the 
short duration of about 6 s, the difference between the two 
models is minor and can only be manifested by the calibrated 
Manning roughness even though the bottom slope is 12° . 
 
Presumed glacier-lake outburst flooding 

 
A sudden outburst of a glacier-lake in Pengqu Basin, Tibet, 

China has been presumed for numerical studies in several pre-
vious works (Cao et al., 2007; Wang et al., 2010; Yue et al., 
2008). The topography provided in DEM is shown in Figure 6a, 
with the initial condition the same as that in Wang et al. (2010). 
The Manning roughness of the whole domain is set to 0.05n = . 
The hydrographs of flow depth of four points have been record-
ed, located at P1 (15561 m, 5928 m), P2 (13053 m, 6954 m), 
P3 (10659 m, 8550 m), and P4 (5472 m, 18240 m). 

Figure 6 illustrates the evolution of the free surface of the 
GLOF simulated by the CAR model, which is qualitatively 
similar to that of Wang et al. (2010). Figure 7 shows the depth 
hydrographs of four selected points. Note that P1 and P2 are 
located within the glacial-lake. The fictitious vibration of flow 
depth in Figure 7b dictates that the model employed by Wang et  
 

 
 

Fig. 4. Sketch of the flume and the layout of gauging points (unit: m). 
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Fig. 5. Computed depth hydrographs compared against measured data. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Top view: (a) the study area and the initial state of the glacier-lake; and (b)–(d) distributions of flow depth. 
 
 
 
 
 
 
 
 
 

al. (2010) was not well-balanced. On the contrary, the results 
given by the CAR and the SVE models feature a period of static 
state for both P1 and P2, demonstrating the enhanced perfor-
mance of the numerical models used in the present work. On the 
other hand, the curves given by the two models are almost indis-
tinguishable in Figure 7. Table 2 presents the quantitative differ-
ences between those two results and both the L1-norm and the 

relative error of arriving time at Point P4 are larger than those at 
Point P3, in line with the fact that P4 is downstream of P3. 

Although the simulation has been carried out for 25 min, the 
discrimination between the two models remains minor. This is 
because the average slope of the main channel is 8.3% (Wang et 
al., 2010), still within the range of small slope. Hence, the SVE 
model holds its validity in application to cases with small slopes.  
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Fig. 7. Hydrographs of flow depth at P1–P4. 

 

 
Table 2. Comparison of the results calculated by two models at 
Points P3 and P4. 
 

Point Model L1 (%) Arriving time 
(s) 

Relative error 
(%) 

P3 SVE / 44.71 / 
CAR 0.08 44.78 0.15 

P4 SVE / 1100.58 / 
CAR 2.31 1108.09 0.68 

 
Hypothetical dam-break flood induced by the sudden  
release of a barrier lake 
 

Since the SVE and the CAR models exhibit minor difference 
in flood events with short duration or small bed slope, a rela-
tively large-scaled catchment is designated here, covering an 
area of 10 km 8 km× . A barrier lake with a volume of more 
than 160000 m3, is presumed to collapse completely. The max-
imum water depth before the dam is 20 m. The average channel 
slope along the thalweg is approximately 21.9%, with the 
piecewise linear expression given below  

 
0.00 0 km
0.60 0.4 km
0.54 0.9 k m
0.36 1.9 k m
0.24 4.9 k m
0.12 4.9 k m

if x
if x
if x

e
if x
if x
if x

≤
 ≤
 ≤=  ≤
 ≤


>

 (16) 

 
The lateral cross sections are designed to be parabolic and 

symmetric for simplicity, with eight points P1–P8 selected 
along the thalweg, which are located at 0.2 km, 1.4 km, 2.6 km, 
3.8 km, 5.0 km, 6.2 km, 7.4 km, and 8.6 km downstream of the 
dam (Figure 8). The Manning roughness is supposed to be 

0.025n =  throughout the whole region. The spatial steps are 
20 mx yΔ = Δ = . 

 
 

Fig. 8. Top view of the study area. 
 

Figure 9 illustrates the distributions of flow depth at four in-
stants of time. The flood computed by the CAR model propa-
gates slower than that simulated by the SVE model. Corre-
spondingly, the flow depth from the CAR modeling is deeper 
than that predicted by the SVE model at the same location. 

A set of increased Manning roughness has been chosen for 
the SVE model to test if an increased drag force, which can 
slow down the propagation of flood, would make up for the 
neglect of bed slope effects in the SVE model. The arriving 
times computed by the SVE model with 0.025n =  are set as 
references, and those calculated by the SVE models with tuned 
Manning roughness and the CAR model minus the references 
are the lag times. Figure 10 illustrates that an increased rough-
ness coefficient adopted by the SVE model does slow down the 
propagation of flood, but the corresponding upward concave 
curves deviate remarkably from that of the CAR model, which 
features a downward concavity. Essentially, the influence of an 
increased drag force accumulates downstream while the dis-
crepancy of the CAR and the SVE model is in line with the bed 
slope. Since an increased drag force cannot compromise the 
neglect of bed slope effects in the SVE model, the CAR model 
is recommended for flood events, especially those featuring 
both long durations and steep bed slopes. 

 
 
 
 
 
 
 



Yufang Ni, Zhixian Cao, Qingquan Liu 

258 

 

 
Fig. 9. Distributions of flow depth at four instants of time. 
 
 

 
 

Fig. 10. Lag times of flood arriving at eight points predicted by 
different model or values of Manning roughness. The results com-
puted by SVE model with the Manning roughness set to 0.025 are 
chosen as references. 
 
CONCLUSIONS 

 
A 2D hydrodynamic (labeled as CAR) model has been pro-

posed for shallow water flows over steep slopes in a Cartesian 
coordinate system with two axes within the horizontal plane 
and one axis along the vertical direction, taking into account the 
bed slope when calculating pressure distribution and bed shear 

stresses. A well-balanced finite volume method, which achieves 
second-order accuracy in time and space, has been adopted to 
solve the governing equations. 

The CAR model is tested against the analytical solutions of 
an idealized dam-break flow over a steep slope, along with the 
traditional SVE model and the modified SWE model. Both the 
CAR and the SWE models satisfactorily reproduce the analyti-
cal solutions, while the SVE model overestimates the flow 
velocity so it does not apply to cases with steep slopes. Alt-
hough the CAR and the SVE models give results with minor 
differences for cases with short duration or small mean slope, 
the SVE model keeps predicting a faster propagation of flood. 
In this connection, a flood event has been designed with longer 
duration and larger average slope, and the two models present 
distinguishable discrepancies. Extensively, an increased drag 
force cannot compromise the neglect of bed slope effects in the 
SVE model. Hence, the proposed CAR model is advocated for 
applications for its facility of extending from 1D to 2D version 
and simple data handling as opposed to the SWE model. 

Extensions of the present work can focus on the fully cou-
pled shallow water hydro-sediment-morphodynamic models 
incorporating rainfall and infiltration and their practical appli-
cations, such as rainfall-induced flash floods in watersheds. 
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