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Abstract: Mixed evergreen-deciduous broadleaved forest is the transitional type of evergreen broadleaved forest and de-
ciduous broadleaved forest, and plays a unique eco-hydrologic role in terrestrial ecosystem. We investigated the spatio-
temporal patterns of throughfall volume of the forest type in Shennongjia, central China. The results indicated that 
throughfall represented 84.8% of gross rainfall in the forest. The mean CV (coefficient of variation) of throughfall was 
27.27%. Inter-event variability in stand-scale throughfall generation can be substantially altered due to changes in rain-
fall characteristics, throughfall CV decreased with increasing rainfall amount and intensity, and reached a quasi-constant 
level when rainfall amount reached 25 mm or rainfall intensity reached 2 mm h–1. During the leafed period, the spatial 
pattern of throughfall was highly temporal stable, which may result in spatial heterogeneity of soil moisture. 
 
Keywords: Throughfall; Spatial variability; Temporal stability; Mixed evergreen-deciduous broadleaved forest; Shen-
nongjia. 
 

INTRODUCTION 
 
Understory rainfall is composed of throughfall and 

stemflow, throughfall is the proportion of rainwater penetrating 
through canopy gaps (free throughfall) or dripping to the 
ground from the canopy (canopy drip), stemflow is the propor-
tion that reaches the ground by funneling down the stems or 
trunks. In contrast to the former, stemflow is generally a small-
er proportion, typically ranges between 0% and 10% of gross 
rainfall; it is a concentrated point source of water that reaches 
tree base (Van Stan and Gordon, 2018). Relatively speaking, 
the quantification of throughfall is substantial and therefore is 
an indispensable component in the watershed water budget 
(Dohnal et al., 2014; Nanko et al., 2016). At the stand scale, 
throughfall represents the largest volumetric component of 
gross precipitation, and usually constitutes more than 70% of 
incident rainfall (Loustau et al., 1992; Shi et al., 2010). 
Throughfall is directly related to the leaching and flushing 
processes of adsorbate of branches and leaves, and so it is con-
sidered as a critical transfer mechanism in biogeochemical 
cycles of forest ecosystems. Soil nutrient availability is influ-
enced by the magnitude and chemical composition of through-
fall (Rosier et al., 2015), areas where have more throughfall 
tend to have higher root density (Ford and Deans, 1978). As a 
consequence, throughfall is key input parameter in a diverse 
range of applications such as moisture recharging and nutrient 
exchange (Guswa and Spence, 2012). Because of the interme-
diate functions in hydrologic processes, throughfall has the 
potential to determine vegetation productivity through influenc-
ing available water and nutrients availability (Carlyle-Moses et 
al., 2014; Carnol and Bazgir, 2013). Improved knowledge of 
the spatial-temporal patterns of throughfall is, therefore, of 
crucial importance for eco-hydrological problems. 

Interception loss constitutes a large proportion of regional 
evapotranspiration, direct in situ measurement of this rainfall 
fraction is challenging, therefore it is typically indirectly esti-
mated by the difference between gross rainfall and the sum of 

throughfall and stemflow (Carlyle-Moses and Gash, 2011; 
Friesen et al., 2015). The estimation accuracy of interception 
loss in forest ecosystems, in most instances, is largely depend-
ent on the measurement accuracy of gross rainfall and through-
fall. Because of the unnegligible quantitative significance in the 
estimation of interception loss, any imprecision in observing 
throughfall would magnify the estimation error of interception 
loss, and thus in-depth knowledge on distribution patterns of 
throughfall becomes a precondition for studies on interception 
loss. 

Canopy characteristics (phenoseason, canopy cover, stand 
density, leaf area index, crown length) (Park and Cameron, 
2008; Siles et al., 2010; Zabret and Šraj, 2018), meteorological 
conditions (temperature, wind and vapour pressure deficit) 
(David et al., 2006; Dunkerley, 2000) and precipitation charac-
teristics (rainfall amount, intensity and duration) (Levia and 
Frost, 2006; Zabret et al., 2018) usually exhibit considerable 
heterogeneity, which may increase the difficulty of understand-
ing the throughfall distribution patterns in forest ecosystems. Of 
all the biotic and abiotic factors, canopy structure and architec-
ture are deemed as the most important controls on throughfall 
heterogeneity. Certain leaf morphology and higher canopy 
epiphytic load, which can intercept and absorb substantial 
rainwater, results in higher throughfall variability (Park and 
Cameron, 2008; Van Stan and Pypker, 2015). 

The arrangement of throughfall collectors is a strong 
influencing factor of throughfall heterogeneity. Loescher et al., 
(2002) didn’t find any significant correlations between 
throughfall volumes and the distance to the nearest branch and 
leaf above the collector within a tropical rainforest in Costa 
Rica, but observed a weak relation between throughfall 
volumes and canopy cover. Herwitz (1987) and Sato et al. 
(2011) observed that collectors close to trunks were inclined to 
receive more throughfall in Australian tropical rainforest and 
Brazilian eucalyptus plantation, whereas Robson et al. (1994) 
reported an opposite tendency within a beech forest in southern 
England. 
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Fig. 1. Maps showing the location of the study area and throughfall collectors. 

 
The mixed evergreen-deciduous broadleaved forest, a widely 

distributed forest type in the subtropical zone of China, is a 
complexity of evergreen broadleaved trees and deciduous 
broadleaved trees (Su et al., 2016a; 2016b). The stand structure 
is complex, the canopy composition is distinctive. Given its 
high biodiversity and small geographical range of the forest, the 
forest is among the most vulnerable ecosystems to climate 
change (Ge and Xie, 2017). Therefore, a better understanding of 
its rainfall distribution pattern is urgently required to predict the 
hydrological processes of the forest under climate change sce-
narios. Although stemflow and interception loss of the particu-
lar forest type have been described (Su et al., 2016a; 2016b), 
the throughfall patterns of the forest are not well known. 

In the present paper, we investigate the spatio-temporal pat-
tern of throughfall during leafed period in a mixed evergreen-
deciduous broadleaved forest. The objectives of the study are 
(1) to identify the magnitude of throughfall in the forest; (2) to 
investigate the driving factors of variation of throughfall; and 
(3) to estimate the spatial and temporal pattern of throughfall. 

 
MATERIALS AND METHODS 
Study area 

 
Shennongjia is located at Qinba Mountain, belonging to the 

“Daba Mountain evergreen forests” subcategory, which falls 
under the category of “Southwest China Temperate Forests” in 
the Global 200 categorization of world ecoregions (WWF, 
2001). Based on its unique ecological system and intact preser-
vation condition, Shennongjia can be seen as a typical repre-
sentative of Daba Mountain evergreen forests, where the zonal 
vegetation is mixed evergreen-deciduous broadleaved forests. 
Shennongjia has preserved the most intact mixed evergreen-
deciduous broadleaved forests in China and even in the North-
ern Hemisphere, and therefore offers a typical example of the 
biological and ecological processes of the forests (Su et al., 
2016a; 2016b). These forests are the transitional zone between 

warm temperate deciduous broadleaved forests and subtropical 
evergreen broadleaved forests (Zhao et al., 2005). 

Measurements of incident gross precipitation and throughfall 
were carried out during the leafed period of 2014 (May 1 to 
October 31) at the Shennongjia Biodiversity Research Station 
of Chinese Academy of Sciences, which is located in northwest 
Hubei at 110°28′27″E, 31°18′23″N. The study site, located at 
the elevation of 1650 m, is classified as typical subtropical 
monsoon climate. Mean monthly temperature varies from 1.2℃ 
in January to 22.0℃ in July, and mean annual air temperature 
(MAT) is 10.6℃, and mean annual precipitation in the area 
between 2001 and 2010 is 1350 mm (Su et al., 2016b). Accord-
ing to the FAO classification, the soils at the site belong to 
Haplic Alisols.  

The mixed evergreen-deciduous broadleaved forest, an ex-
tensively distributed forest type in Shennongjia, is the transi-
tional type of evergreen broadleaved forest and deciduous 
broadleaved forest, which represents the typical forest types of 
the northern subtropical region of China. The study was com-
pleted in a flat 40 m × 40 m plot whose characteristics are de-
scribed in detail by Su et al. (2016a). The density of trees was 
2407 ha–1, the total basal area was 42.56 m2 ha–1. The mean 
height and diameter at breast height were 8.0±2.2 m and 
10.7±3.0 cm, respectively. The dominant evergreen species 
included Cyclobalanopsis multinervis, Cyclobalanopsis oxyo-
don, Rhododendron hypoglaucum, Ilex pernyi, Lindera fra-
grans, the dominant deciduous species included Fagus engleri-
ana, Quercus serrata var. brevipetiolata, Clethra cavalerei, 
Sorbus folgneri, Betula insignis, Dendrobenthamia japonica 
var. chinensis, and so on (Su et al., 2016b). Exact information 
of main tree species is provided in Table 1. 

 
Experimental design

 
Compared with funnel-type collectors, trough-type collec-

tors could considerably decrease the required sample sizes and  
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Table 1. Exact information of the main tree species in the study plot. 
 

Species 
Functional 

group 

Density 

(tree/ha) 

Relative 

abundance 

(%) 

Relative 

frequency 

 (%) 

Basal 

area 

(m2/ha) 

Relative 

dominance 

(%) 

Importance 

value 

(%) 

Quercus serrata var. brevipetiolata Deciduous 256 10.64 5.48 13.24 31.11 15.74 

Fagus engleriana Deciduous 419 17.41 9.63 5.65 13.28 13.44 

Betula insignis Deciduous 81 3.37 2.95 5.84 13.72 6.68 

Sorbus pohuashanensis Deciduous 269 11.18 1.26 2.44 5.73 6.06 

Dendrobenthamia japonica var. chinensis Deciduous 156 6.48 3.62 3.25 7.64 5.91 

Clethra cavalerei Deciduous 50 2.08 1.18 1.92 4.51 2.59 

Euptelea pleiospermum Deciduous 56 2.33 1.16 0.54 1.27 1.59 

Lindera obtusiloba Deciduous 44 1.83 2.05 0.75 1.76 1.88 

Swida ulotricha Deciduous 25 1.04 1.62 0.10 0.23 0.96 

Cyclobalanopsis multinervis Evergreen 269 11.18 16.75 2.94 6.91 10.61 

Cyclobalanopsis oxyodon Evergreen 225 9.35 10.63 1.99 4.68 8.22 

Rhododendron hypoglaucum Evergreen 213 8.85 5.69 1.44 3.38 5.97 

Ilex pernyi Evergreen 138 5.73 2.56 0.32 0.75 3.02 

Lithocarpus henryi Evergreen 44 1.83 1.42 1.93 4.53 2.59 

Lindera fragrans Evergreen 131 5.44 1.46 0.11 0.26 1.97 

Quercus spinosa Evergreen 31 1.29 1.18 0.10 0.23 0.90 

 
eliminate the sensitivity of the mean to outliers (Carlyle-Moses 
et al., 2014; Kostelnik et al., 1989; Zimmermann et al., 2010), 
so trough-type collectors were employed to measure gross 
precipitation and throughfall in the present study. Gross inci-
dent precipitation was collected in an open area, about 50 m 
away from the study site, using three trough-type collectors (the 
collectors were made of stainless steel with an opening area of 
1 m × 0.2 m), where the collected rainwater would flow into a 
plastic pot through a small opening at the bottom of collectors. 
An automatic weather station (Model MAWS301, HydroMetTM 

system, Vaisala Corp., Finland) was situated approximately 500 
m away from the study site, which could provide estimates of 
the duration and intensity of gross rainfall. The diameter of the 
rain gauge was 20 cm, and the sensitivity of sensor was 0.1 
mm. The rainfall data were automatically collected and record-
ed at 30-min intervals. 

Throughfall was measured with 36 collectors in accordance 
with the type of gross rainfall. These throughfall collectors 
were evenly distributed over the 40 m × 40 m study plot in 
fixed positions (Figure 1), and they were cleaned at a frequency 
of every three days. All samples were immediately quantified 
after the cessation of a rain event or the next morning for events 
that occurred or extended into nighttime hours. To qualify as an 
incident rainfall event, an interval of at least 8 h without rain 
must be separated from adjacent rainfall events (Su et al., 
2016b). In this study, storms less than 1.5 mm were unable to 
generate measurable throughfall, and therefore storms larger 
than 1.5 mm were used to analyze throughfall. Although the 
automatic weather station (installed with a tipping bucket) was 
not very far from the study plot, the rainfall amount may vary 
between these two sites in some rainfall events because the 
mountainous climate may differ in very close distance apart. 
The automatic weather station monitored almost the same value 
with trough collectors in most cases, but the former was more 
accurate in measuring small rainfall events. 

To determine leaf area index (LAI) and canopy cover, LAI-
2000 was taken above each of the 36 collectors under cloudy  
 

sky in the middle of the month from May to October in 2014.  
We evaluated the temporal persistence of spatial patterns of 

throughfall using the methodology of Keim et al. (2005). 
Throughfall was quantified using standardized throughfall for 
each of the sample points using the formula as follows: 

 

i mean
i

TF TFTFS
SD

−=       (1) 

 
where TFSi is normalized throughfall at sampling point i, TFi is 
measured throughfall at sampling point i, TFmean is the mean 
throughfall for the rainfall event over all sampling points, and 
SD is the standard deviation of throughfall for the rainfall event 
over all sampling points (Carlyle-Moses et al., 2014). 

 
RESULTS 
LAI and canopy cover 
 

The variability of LAI was very small during the leafed pe-
riod, LAI and canopy cover were biggest in August, and small-
est in May, the mean LAI and canopy cover of August is 1.07 
and 1.05 times of May, respectively. The shooting period of 
most of trees was April, the trees already had relative mature 
leaves and canopy in May and kept relatively stable during the 
leafed period. 

 
Gross rainfall 

 
During the leafed period from early May to the end of Octo-

ber 2014, a total of 48 events amounting to a cumulative depth 
of 1574.0 mm were recorded and snowfall was not detected. 
Mean incident rainfall event was 32.8 mm and varied from 0.1 
mm to 207.7 mm, mean rainfall intensity was 2.68 mm h–1 and 
ranged from 0.25 mm h–1 to 6.94 mm h–1. Of the 48 rainfall 
events, 8 events (with a total of 3.2 mm) were too small to 
produce measurable throughfall, 40 events produced a total of 
1335.1 mm throughfall, accounting for 84.8% of gross rainfall. 
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Variability of throughfall 
 
Throughfall rate against gross rainfall was showed in Figure 

2 by means of box and whisker plots. 40 plots represented 40 
rainfall events generating throughfall, and these events was 
ranked by rainfall amount. Throughfall rate increased with 
increasing gross rainfall amount, and gradually stabilize at 
larger rainfall events. Throughfall rate values greater than 
100% were commonly monitored in larger rainfall events. 

The coefficients of variation (CV) of throughfall were found 
to be highly variable during the leafed period, averaged 
27.27%, and varied from 6.82% to 72.72% for all rainfall 
events (Figure 3). Throughfall CV displayed a large variability 
for rainfall events <25 mm, and the throughfall CV became 
quasi-constant after reaching a gross rainfall input of 25 mm.  

There was a significant power function relationship between 
throughfall CV which was derived from all 36 collectors and 
rainfall intensity (R2 = 0.51, P < 0.01) (Figure 4). With increas-
ing rainfall intensity, throughfall CV showed a trend of rapid-
decreases and was relatively stable. It appeared that for rainfall 
intensity > 2 mm h–1 in magnitude, there was little variation in 
throughfall CV. 

 
Temporal stability of spatial throughfall 

 
The normalized throughfall values were ranked by mean 

values in Figure 5 and the spatial distribution of throughfall was 
stable during the study period. Some collectors (e.g. 22, 33, 36, 
27) gathered more throughfall than the mean normarlized 
throughfall, which would result in relative wet points on the 
forest floor. At the same time, there were also some collectors 
(e.g. 31, 35, 8, 13) receiving less throughfall than the mean 
normarlized throughfall, which would create dry points on the 
ground surface. 

 
DISCUSSION 
Characteristics of throughfall 

 
The mean throughfall CV of the forest (27.27%) was close 

to reported values in subtropical forests. Shen et al. (2012) 
reported that throughfall CV of secondary succession of ever-
green broadleaved forest ranged from 25% to 39%. However,  
 

the present value was higher than the findings in broadleaved 
forests, which were 18% for a deciduous broadleaved forest 
during leafed period (Staelens et al., 2006), 17% for a broad-
leaved secondary forest (Deguchi et al., 2006), and 
15.9%~20.1% in a deciduous forest (Siegert et al., 2016). The 
higher throughfall CV in our study may be attributed to the 
dense canopy structure, which could provide more sheltered 
areas and drip points. Furthermore, the type and amount of 
throughfall collectors, rainfall and forest characteristics, sam-
pling time scales of the aforementioned studies differed signifi-
cantly with our study, making it difficult to directly compare 
the spatial variation of throughfall.  

As indicated in the results, relationships between storm 
characteristics and both throughfall amount and variability are 
consistent with previous work (Carlyle-Moses et al., 2004; 
Loustau et al., 1992; Shinohara et al., 2010). Most of the rain-
water in small rainfall events is portioned as canopy storage, 
and almost all throughfall is in the form of free throughfall, 
which originates from gross rainfall that passes directly through 
canopy gaps to the forest floor (Zimmermann et al., 2009). 
Throughfall variability responds dramatically to stand variables, 
larger canopy interaction usually result in greater spatial 
throughfall variability. After rainfall saturated canopy water 
storage capacity, throughfall variability remains quasi-constant 
with increasing rainfall. A possible explaination for this phe-
nomenon is that the canopy has established quasi-permanent 
canopy drip zones where throughfall is concentrated, and cano-
py shelter zones where intercepted rainwater is either formed as 
interception loss or funneled to other part of the canopy or to the 
trunk and stem. For gross rainfall input exceeding the threshold 
required for the complete establishment of drip and shelter 
points, the spatial distribution of throughfall will be governed 
by these critical points, therefore the throughfall distribution 
patterns reach a steady state (Carlyle-Moses et al., 2014). 
 
Spatial distribution pattern of throughfall 

 
Previous throughfall studies have showed that throughfall 

patterns displayed a high temporal stability (Fan et al., 2015; 
Keim et al., 2005; Sato et al., 2011; Wullaert et al., 2009), this 
phenomenon was verified in our study (Figure 5), the range and 
variability of throughfall matched previous work. As docu- 
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Fig. 2. Box and whisker plots of throughfall rate against rainfall amount. The center line, bottom and top of the boxes represent the median, 
25th and 75th percentiles, respectively. The whiskers represent the 5th and 95th percentiles. 
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Fig. 3. Coefficient of variation of throughfall against gross rainfall.   Fig. 4. The coefficient of variation of throughfall as a function of 
rainfall intensity. 

 
mented in Figure 5, some collectors gathered significant more 
throughfall volumes than the mean, sometimes exceeded the 
gross rainfall. This could be explained by the fact that these 
collectors were located at the edge of canopy (Figure 1), the 
branches above the collectors were mostly down-facing, which 
seemed to play the role of funnelling and thus had convergence 
effects on throughfall volumes, consequently throughfall was 
concentrated at the canopy edge (Gerits et al., 2010; Fang et al., 
2016; Fathizadeh et al., 2014; Staelens et al., 2006). However, 
inconsistent views on the relationship between the distance to 
the nearest trunk and throughfall volume have also been report-
ed, Keim et al. (2005) found tree age was also a major determi-
nant in throughfall distribution, wet gauges were close to trunks 
in a young conifer stand, while they were not obviously related 
to tree boles in an old conifer stand. The branches of young 
trees are straight and upward, which would transport rainwater 
to areas near the trunk like a funnel, whereas the relatively 
horizontal branches of old trees don’t have this function. Be-
sides tree age, rainfall amount may also lead to inconformity, 
André et al. (2011) observed that throughfall volumes would be 
greater at the crown periphery than adjacent to the trunks at the  
 

early stages of rainfall events (c.a. <5 mm) and presented an 
opposite trend in large rainfall events. Free throughfall takes the 
majority of throughfall in small rainfall events, therefore areas 
under crown periphery could receive more water compared 
with those near the trunk. The funneling effect gradually in-
crease with increasing rainfall amount, more throughfall would 
be gathered to trunks as canopy drips. 

Spatial distribution of throughfall is greatly influenced by 
the spatial heterogeneity of canopy parameters. At the same 
time, we should not neglect the effect of meteorological  
parameters. Figure 3 and 4 showed that rainfall amount and 
intensity played crucial roles in modifying the spatial distribu-
tion of throughfall that reaches the forest floor. With the in-
crease in rainfall amount and intensity, throughfall CV de-
creased by means of a negative power function, which is in 
agreement with the findings of Fan et al. (2015) in an exotic 
pine plantation of subtropical coastal Australia. Kato et al. 
(2013) found that throughfall increased with increasing distance 
to the nearest trunk in windless rainfall events, however, such a 
systematic throughfall pattern was not presented during windy 
conditions. 
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Fig. 5. Time stability plot of normalized throughfall. The upper and lower error whiskers represent the 75th and 25th percentiles, respectively. 
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The location of collectors is a main determinant to obtaining 
a representative throughfall, previous studies have indicated 
that random relocation of collectors after each sampling could 
reduce the necessary collectors and not at the expense of mises-
timating throughfall (Carlyle-Moses et al., 2014; Holwerda et 
al., 2006; Kimmins, 1973; Ritter and Regalado, 2010). He et al. 
(2014) suggested that the locations of collectors should be 
placed at the sites of mean values of plant area index (PAI, the 
sum of all light-blocking elements of vegetation) due to posi-
tion relationship between interception loss and PAI. As a con-
sequence, if we want to reduce the sampling points as much as 
possible, we must identify locations where we have mean val-
ues of these canopy parameters before we arrange the sample. 
Because of the canopy may form stable “canopy drip zones” 
and “canopy shelter zones”, the measured throughfall would be 
greatly influenced by extreme values if the capture area of 
gauges is very small (Zimmermann et al., 2010), therefore, we 
have to increase the capture area of gauges to reduce the impact 
of outliers. 

 
CONCLUSION 

 
In a diverse, structurally complex forest with heterogeneous 

throughfall patterns, the inter-event variability in stand-scale 
throughfall generation was greatly driven by rainfall size and 
intensity. The throughfall CV decreased significantly with 
increasing rainfall amount and intensity, and after rainfall 
amount reached 25 mm or rainfall intensity reached 2 mm h–1, 
when the canopy had formed stable regions of “canopy drip 
zones” and “canopy shelter zones”, throughfall CV presented a 
stable trend. The spatial pattern of throughfall was highly tem-
poral stable during the study period, which may lead to “wet 
zones” and “dry zones” in the forested land.  
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