Comparison of alternative soil particle-size distribution models and their correlation with soil physical attributes

Open access


Complete descriptions of the particle-size distribution (PSD) curve should provide more information about various soil properties as opposed to only the textural composition (sand, silt and clay (SSC) fractions). We evaluated the performance of 19 models describing PSD data of soils using a range of efficiency criteria. While different criteria produced different rankings of the models, six of the 19 models consistently performed the best. Mean errors of the six models were found to depend on the particle diameter, with larger error percentages occurring in the smaller size range. Neither SSC nor the geometric mean diameter and its standard deviation correlated significantly with the saturated hydraulic conductivity (Kfs); however, the parameters of several PSD models showed significant correlation with Kfs. Porosity, mean weight diameter of the aggregates, and bulk density also showed significant correlations with PSD model parameters. Results of this study are promising for developing more accurate pedotransfer functions.

Andersson, S., 1990. Markfysikaliska undersokningar I odlad jord, XXVI. Om mineraljordens och mullens rumsutfyllande egenskaper. En Teoretisk Studie. Swedish University of Agricultural Sciences, Uppsala, Sweden. (In Swedish.)

Arya, L.M., Paris, J.F., 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am., J., 45, 6, 1023–1030.

Assouline, S., Tessier, D., Bruand, A., 1998. A conceptual model of the soil water retention curve. Water Resour. Res., 34, 223–231.

Bagarello, V., Provenzano, G., Sgroi, A., 2009. Fitting particle size distribution models to data from Burundian soils for the BEST procedure and other purposes. Biosyst Eng., 104, 435–441.

Bah, AR., Kravchuk, O., Kirchhof, G., 2009. Fitting performance of particle-size distribution models on data derived by conventional and laser diffraction techniques. Soil Sci. Soc. Am. J., 73, 1101–1107.

Banaei, M.H., 1998. Soil moisture and temperature regime map of Iran. Soil and Water Research Institute, Ministry of Agriculture, Iran.

Bayat, H., Rastho, M., Zadeh, M.M., Vereecken, H., 2015. Particle size distribution models, their characteristics and fitting capability. J. Hydrol., 529, 872–889.

Beke, G., Lindwall, C., Entz, T., Channappa, T., 1989. Sediment and runoff watercharacteristics as influenced by cropping and tillage practices. Can. J. Soil Sci., 69, 3, 639–647.

Bird, N.R.A., Perrier, E., Rieu, M., 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci., 51, 55–63.

Bittelli, M., Campbell, G.S., Flury, M., 1999. Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J., 63, 782–788.

Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. 2nd Ed. Agron. Monogr. 9. ASA. Madison. WI. 375 p.

Bolster, C.H., Hornberger, G.M., 2007. On the use of linearized Langmuir equations. Soil Sci. Soc. Am. J., 71, 1796–1806.

Botula, Y.D., Cornelis, W.M., Baert, G., Mafuka, P., Van Ranst, E., 2013. Particle size distribution models for soils of the humid tropics. J. Soils Sed., 13, 686–698.

Buchan, G.D., 1989. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Sci., 147, 155–161.

Buchan, G.D., Grewal, K.S., Robson, A.B., 1993. Improved models of particle- size distribution: An illustration of model comparison techniques. Soil Sci. Soc. Am. J., 57, 901–908.

Carsel, R.F., Parrish, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 24, 755–769.

Chapuis, R.P., 2012. Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ., 71, 401–434.

Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S., 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle size distribution. Geoderma, 136, 3, 588–597.

Fredlund, M.D., Fredlund, D.G., Wilson, G.W., 2000. An equation to represent grain-size distribution. Can. Geotech. J., 37, 817–827.

Gee, G.W., Or, D., 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. pp. 255–293.

Ghorbani Dashtaki, S., Homaee, M., Khodaverdiloo, H., 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use Manage., 26, 68–74.

Ghorbani-Dashtaki, S., Homaee, M., Loiskandl, W., 2016. Towards using pedotransfer functions for estimating infiltration parameters. Hydrol. Sci. J., 61, 1477–1488. DOI: 10.1080/02626667.2015.1031763.

Gimenez, D., Rawls, W.J., Pachepsky, Y., Watt, J.P.C., 2001. Prediction of a pore distribution factor from soil textural and mechanical parameters. Soil Sci., 166, 79–88.

Haverkamp, R., Parlange, J.Y., 1986. Predicting the water retention curve from a particle size distribution: 1. Sandy soils without organic matter. Soil Sci., 142, 325–339.

Hwang, S.I., 2004. Effect of texture on the performance of soil particle size distribution models. Geoderma, 123, 363–371.

Hwang, S.I., Powers, S.E., 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci. Soc. Am. J., 67, 1103–1112.

Hwang, S.I., Lee, K.P., Lee, D.S., Powers, S.E., 2002. Models for estimating soil particle-size distributions. Soil Sci. Soc. Am. J., 66, 1143–1150.

Jabro, J.D., 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Am. Soc. Agric. Eng., 35, 557–560.

Jaky, J., 1944. Soil Mechanics. Egyetemi Nyomada, Budapest, Hungary.

Khodaverdiloo, H., Samadi, A., 2011. Batch equilibrium study on sorption, desorption, and immobilization of cadmium in some semiarid-zone soils as affected by soil properties. Soil Res., 49, 5, 444–454.

Khodaverdiloo, H., Homaee, M., Van Genuchten, M.T., Ghorbani Dashtaki, S., 2011. Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol., 399, 93–99.

Kolev, B., Rousseva, S., Dimitrov, D., 1996. Derivation of soil water capacity parameters from standard soil texture information for Bulgarian soils. Ecol. Model., 84, 315–319.

Krause, P., Boyle, D.P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci., 5, 89–97.

Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J.M, Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments – BEST. Soil Sci. Soc. Am. J., 70, 521–532.

Liao, K., Xu, S., Zhu, Q., 2015. Development of ensemble pedotransfer functions for cation exchange capacity of soils of Qingdao in China. Soil Use Manag., 31, 483–490.

Liu, J., Xu, S., Liu, H., 2003. Investigation of different models to describe soil particle- size distribution data. Adv. Water Sci., 14, 588–592.

Liu, J., Xu, S., Liu, H., Guo, F., 2004. Application of parametric models to description of particle-size distribution in loamy soils. Acta Pedologica Sinica, 41, 375–379.

Manrique, L.A., Jones, C.A., Dyke, P.T., 1991. Predicting cation exchange capacity from soil physical and chemical properties. Soil Sci. Soc. Am. J., 55, 787–794.

Mbonimpa, M., Aubertin, M., Chapuis, R.P., Bussiere, B., 2002. Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech. Geol. Eng., 20, 235–259.

Nemes, A., Wosten, J.H.M., Lilly, A., Voshaar, J.H.O., 1999. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma, 90, 187–202.

Nemes, A., Schaap, M.G., Wösten, J.H.M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. Am. J., 67, 1093–1102.

Parchami-Araghi, F., Mirlatifi, S.M., GhorbaniDashtaki, S., Mahdian, M.H., 2013. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. J. Hydrol., 481, 35–47.

Patil, N.G., Singh, S.K., 2016. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere, 26, 4, 417–430.

Razzaghi, S., Khodaverdiloo, H., Dashtaki, S.G., 2016. Effects of long-term wastewater irrigation on soil physical properties and performance of selected infiltration models in a semi-arid region. Hydrol. Sci. J., 61, 10, 1778–1790.

Saxton, K.E., Rawls, W.J., Romberger, J.S., Pependick, R.I., 1986. Estimating generalized soil water characteristics from soil texture. Soil Sci. Soc. Am. J., 55, 1231–1238.

Shangguan, W., Yongjiu, D., Gutierrez, C.G., Yuan, H., 2014. Particle-size distribution models for the conversion of Chinese data to FAO/USDA system. Sci. World J. DOI: 10.1155/2014/109310.

Shiozawa, S., Campbell, G.S., 1991. On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil Sci., 152, 427–431.

Shirazi, M.A., Boersma, L., 1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J., 48, 142–147.

Shirazi, M.A., Hart, J.W., Boersma, L., 1988. A unifying quantitative analysis of soil texture: improvement of precision and extension of scale. Soil Sci. Soc. Am. J., 52, 1, 181–190.

Skaggs, T.H., Arya, L.M., Shouse, P.J., Mohanty, B.P., 2001. Estimating particle size distribution from limited soil texture data. Soil Sci. Soc. Am. J., 65, 1038–1044.

Tyler, S.W., Wheatcraft, S.W, 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J., 56, 362–369.

Vipulanandan, C., Ozgurel, H.G., 2009. Simplified relationships for particle-size distribution and permeation groutability limits for soils. J. Geotech. Geoenviron. Eng., 135, 1190–1197.

Willmott, C.J., 1981. On the validation of models. Phys. Geogr. 2, 184–194.

Xu, G., Li, Z., Li, P., 2013. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena, 101, 17–23.

Zhao, P., Shao, M., Horton, R., 2011. Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China loess plateau. Acta Geophysica, 59, 124–138.

Zhuang, J., Jin, Y., Miyazaki, T., 2001. Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept. Soil Sci., 166, 308–321.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information

IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639

CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 204 204 74
PDF Downloads 203 203 84