Assessing methods for the estimation of response times of stream discharge: the role of rainfall duration

Open access

Abstract

Lagtimes and times of concentration are frequently determined parameters in hydrological design and greatly aid in understanding natural watershed dynamics. In unmonitored catchments, they are usually calculated using empirical or semiempirical equations developed in other studies, without critically considering where those equations were obtained and what basic assumptions they entailed. In this study, we determined the lagtimes (LT) between the middle point of rainfall events and the discharge peaks in a watershed characterized by volcanic soils and swamp forests in southern Chile. Our results were compared with calculations from 24 equations found in the literature. The mean LT for 100 episodes was 20 hours (ranging between 0.6–58.5 hours). Most formulae that only included physiographic predictors severely underestimated the mean LT, while those including the rainfall intensity or stream velocity showed better agreement with the average value. The duration of the rainfall events related significantly and positively with LTs. Thus, we accounted for varying LTs within the same watershed by including the rainfall duration in the equations that showed the best results, consequently improving our predictions. Izzard and velocity methods are recommended, and we suggest that lagtimes and times of concentration must be locally determined with hyetograph-hydrograph analyses, in addition to explicitly considering precipitation patterns.

ADOT (Arizona Department of Transportation), 1993. Highway Drainage Design Manual Hydrology. Phoenix, USA, 336 p.

Amigo, J., Ramírez, C., 1998. A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol., 136, 1, 9–26.

Argente-Sanz, J.C., 2014. Estudio del comportamiento hídrico de una cuenca hidrológica en Angola. Trabajo Fin de Grado Ingeniería en Geomática y Topografía. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica, Universidad Politécnica de Valencia, Valencia, España, 61 p.

Bentancor, L., Silveira, L., García-Petillo, M., 2014. Incidencia de la intensidad de lluvia en el tiempo de concentración de microcuencas del Uruguay. Agrociencia-Uruguay, 18, 2, 106–116.

Bransby-Williams, G., 1922. Flood discharge and the dimensions of spillways in India. The Engineer (London), 121, 321–322.

CDH (California Division of Highways), 1960. California culvert practice: reprint of a series of technical abstracts from California highways and public works. 2nd printing. State of California, Department of Public Works, Division of Highways, Sacramento, USA, 119 p.

Chow, V.T., 1959. Open-Channel Hydraulics. McGraw Hill, New York, USA, 680 p.

Chow, V.T., Maidment, V.R., Mays, L.W., 1988. Applied Hydrology. McGraw-Hill, New York, USA, 572 p.

CIREN (Centro de Información de Recursos Naturales), 2001. Estudio Agrológico X Región. Tomo I. CIREN, Santiago, Chile, 480 p.

CIREN (Centro de Información de Recursos Naturales), 2003. Descripciones de Suelos, Materiales y Símbolos. Estudio Agrológico X Región, Publicación 123. CIREN, Santiago, Chile.

Cuevas, J.G., Arumí, J.L., Zúñiga-Feest, A., Little, C., 2018. An unusual kind of diurnal streamflow variation. J. Hydrol. Hydromech., 66, 1, 32–42.

de Almeida, I.K., Almeida, A.K, Ayach-Anache, J.A., Steffen, J.L., Alves-Sobrinho, T., 2014. Estimation on time of concentration of overland flow in watersheds: a review. Geociências, 33, 4, 661–671.

de Almeida, I.K., Almeida, A.K., Garcia-Gabas, S., Alves-Sobrinho, T., 2017. Performance of methods for estimating the time of concentration in a watershed of a tropical region. Hydrolog. Sci. J., 62, 14, 2406–2414. DOI: 10.1080/02626667.2017.1384549.

DGA (Dirección General de Aguas), 1995. Manual de Cálculo de Crecidas y Caudales Mínimos en Cuencas sin Información Fluviométrica. Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile, 88 p. Available at: http://documentos.dga.cl/FLU398.pdf [Accessed 04 Nov. 2017].

Dörner, J., Dec, D., Zúñiga, F., Horn, R., López, I., Leiva, C., Cuevas, J., 2013. Soil changes in the physical quality of an andosol under different management intensities in Southern Chile. In: Krümmelbein, J., Horn, R., Pagliai, M. (Eds.): Soil Degradation. Adv. Geoecol., 42, 262–281.

Dörner, J., Huertas, J., Cuevas, J.G., Leiva, C., Paulino, L., Arumí, J.L., 2015. Water content dynamics in a volcanic ash soil slope in southern Chile. J. Plant Nutr. Soil Sci., 178, 4, 693–702.

Edwards, R.T., 1998. The hyporheic zone. In: Naiman, R.J., Bilby, R.E. (Eds.): River Ecology and Management, Lessons from the Pacific Coastal Ecoregion. Springer, New York, USA, Chapter 16, pp. 399–429.

Folmar, N.D., Miller, A.C., 2008. Development of an empirical lag time equation. J. Irrig. Drain. E. ASCE, 134, 4, 501–506.

Giandotti, M., 1940. Previsione empirica delle piene in base alle precipitazioni meteoriche, alle caratteristiche fisiche e morfologiche dei bacini; Applicazione del metodo ad alcuni bacini dell’Appennino Ligure. Memorie e Studi Idrografici, 10, 5–13. Available at: http://hydrologie.org/redbooks/a025/Potam_Q2_R1 [Accessed 04 Nov. 2017].

Granato, G.E., 2012. Estimating Basin Lagtime and Hydrograph-Timing Indexes Used to Characterize Stormflows for Runoff-Quality Analysis. Scientific Investigations Report 2012–5110. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia, USA, 58 p. Available at: https://pubs.usgs.gov/sir/2012/5110/pdf/sir2012-5110_text.pdf [Accessed 04 Nov. 2017].

Gumbel, E.J., 1960. Multivariate extremal distributions. Bull. Inst. Internat. de Statistique 37, 471–475.

Izzard, C.F., 1946. Hydraulics of runoff from developed surfaces. In: Proc. 26th Annual Meeting of the Highway Research Board. Highway Research Board, Washington, USA, pp. 129–146.

Kerby, W.S., 1959. Time of concentration for overland flow. J. Civil Eng., ASCE, 26, 3, 60–68.

Kirpich, Z.P., 1940. Time of concentration of small agricultural watersheds. Civil Eng., 10, 6, 362–368.

Mata-Lima, H., Vargas, H., Carvalho, J., Gonçalves, M., Caetano, H., Marques, A., Raminhos, C., 2007. Comportamento hidrológico de bacias hidrográficas: integração de métodos e aplicação a um estudo de caso. Rem-Rev. Esc. Minas, 60, 3, 525–536.

McCuen, R.H., 2009. Uncertainty analyses of watershed time parameters. J. Hydrol. Eng., 14, 5, 490–498. DOI: 10.1061/(ASCE)HE.1943-5584.0000011#sthash.qleAhfH8.dpuf

McCuen, R.H., Spiess, J.M., 1995. Assessment of kinematic wave time of concentration. J. Hydraul. Eng. ASCE, 121, 3, 256–266.

McCuen, R.H., Wong, S.L., Rawls, W.J., 1984. Estimating urban time of concentration. J. Hydraul. Eng., 110, 7, 887–904.

Morgali, J.R., Linsley, R.K., 1965. Computer analysis of overland flow. J. Hydraul. Div., 95, 81–100.

NRCS (Natural Resource Conservation Service), 1986. Urban Hydrology for Small Watersheds. Technical Release 55. U.S. Department of Agriculture, Washington, DC, USA, 164 p. Available at: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf [Accessed 04 Nov. 2017].

Papadakis, C., Kazan, N., 1986. Time of Concentration in Small Rural Watersheds. Technical report 101/08/86/CEE. College of Engineering, University of Cincinnati, Cincinnati, USA, 18 p.

Pasini, F., 1914. Relazione sul progettodella bonifica renana, Bologna, Italy.

Sharifi, S., Hosseini, S.M., 2011. Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region. J. Irrig. Drain. E. ASCE, 137, 11, 712–719.

Sheridan, J.M., 1994. Hydrograph time parameters for flatland watersheds. Trans. of Am. Soc. Agr. Eng., 37, 1, 103–113.

Simas, M., 1996. Lag Time Characteristics in Small Watersheds in The United States. A dissertation submitted to School of Renewable Natural Resources, University of Arizona, Tucson, USA, 174 p.

Singh, N., Singh, K.K., 2017. Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Appl. Water Sci., 7, 1, 275–283. https://doi.org/10.1007/s13201-014-0243-1

Soil Survey Staff, 1999. Soil taxonomy: A Basic System of Soil Classification For Making and Interpreting Soil Surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436, Washington, DC, USA, 886 p.

Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principles and Practice of Statistics in Biological Research. Third edition. W. H. Freeman and Company, New York, USA, 885 p.

Témez, J.R., 1978. Cálculo hidrometeorológico de caudales máximos en pequeñas cuencas naturales. Ministerio de Obras Públicas y Urbanismo (MOPU), Dirección General de Carreteras, Madrid, España, 96 p.

Tucci, C., 2000. Hidrología, Ciência e aplicaçao. Coleção ABRH de Recursos Hídricos 4). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 944 p.

USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service), 2010. Chapter 15: Time of Concentration. In: USDA- NRCS (Ed.): National Engineering Handbook, Part 630 Hydrology. Washington, DC, pp. 15i–15B-3.

Vélez, J.J., Botero, A., 2011. Estimation of the time of concentration and the lag time at San Luis Creek basin, Manizales. Dyna, 78, 165, 58–71. (In Spanish.)

Wondzell, S.M., Gooseff, M.N., McGlynn, B.L., 2007. Flow velocity and the hydrologic behavior of streams during baseflow. Geophys. Res. Lett., 34, L24404. DOI: 10.1029/2007gl031256.

WRB, 2006. World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication. 2nd Edition. FAO, World Soil Resources Reports, 103, Rome, Italy, 142 p.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2018: 2,023
5-year IMPACT FACTOR: 2,048



CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 245 88
PDF Downloads 132 132 21