Bank erosion of the Tŕstie stream: BANCS model predictions vs. real bank erosion

Open access

Abstract

This paper focused on predicting the bank erosion through the Bank Assessment for Non-point source Consequences of Sediment (BANCS) model on the Tŕstie water stream, located in the western Slovakia. In 2014, 18 experimental sections were established on the stream. These were assessed through the Bank Erosion Hazard Index (BEHI) and the Near Bank Stress (NBS) index. Based on the data we gathered, we constructed two erosion prediction curves. One was for BEHI categories low and moderate, and one for high, very high, and extreme BEHI. Erosion predicted through the model correlated strongly with the real annual bank erosion – for low and moderate BEHI, the R2 was 0.51, and for high, very high and extreme BEHI, the R2 was 0.66. Our results confirmed that the bank erosion can be predicted with sufficient precision on said stream through the BANCS model.

Bandyopadhyay, S., Saha, S., Ghosh, K., De, S.K., 2013. Validation of BEHI model through field generated data for assessing bank erosion along the river Haora, West Tripura, India. Earth Sci. India, 6, 126–135.

Bigham, K.A., Moore, T.L., Vogel, J.R., Keane, T.D., 2018. Repeatability, Sensitivity, and Uncertainty Analyses of the BANCS Model Developed to Predict Annual Streambank Erosion Rates. JAWRA J. Am. Water Resour. Assoc., 1–17.

Bull, L.J., 1997. Magnitude and variation in the contribution of bank erosion to the suspended sediment load of the River Severn, UK. Earth Surface Processes and Landforms, 22, 12, 1109–1123.

Coryat, M., 2014. Analysis of the Bank assessment for non-point source consequences of sediment (BANCS) Approach for the prediction of streambank stability and erosion along Stony Clove Creek in the Catskills. Syracuse University, 78 p.

Dick, B.M., Hey, R., Peralta, P., Jewell, I., Simon, P., Peszlen, I., 2014. Estimating annual riverbank erosion rates – a dendrogeomorphic method. River Res. Appl., 30, 845–856.

Foucher, A., Salvador-Blanes, S., Vandromme, R., Cerdan, O., Desmet, M., 2017. Quantification of bank erosion in a drained agricultural lowland catchment. Hydrological Processes, 31, 6, 1424–1437.

Ghosh, K.G., Pal, S., Mukhopadhyay, S., 2016. Validation of bancs model for assessing stream bank erosion hazard potential (SBEHP) in Bakreshwar river of Rarh Region, Eastern India. Model. Earth Syst. Environ., 2, 1–15.

Harmel, R.D., Haan, C.T., Dutnell, R.C., 1999. Evaluation of Rosgen´s streambank erosion potential assessment in Northeast Oklahoma. JAWRA J. Am. Water Resour. Assoc., 35, 113–121.

Jakubis, M., 2014. Predikcia erózie brehu vodného toku metódou BANCS (BEHI–NBS). In: Rožňovský, J., Litschmann, T., Středa, T., Středová, H. (Eds): Extrémy oběhu vody v krajině. Mikulov, Czech Republic, 2014, 12 p. ISBN 978-80-87577-30-1.

Jakubisová, M., 2014. Modelovanie brehov erózie metódou BSTEM v súvislosti s extrémnymi prietokmi. In: Rožňovský, J., Litschmann, T., Středa, T., Středová, H. (Eds): Extrémy oběhu vody v krajině. Mikulov, Czech Republic, 2014, 17 p. ISBN 978-80-87577-30-1.

Jennings, G.D., Harman, W.A., 2001. Measurement and stabilization of streambank erosion in North Carolina. In: Proc. Int. Symp. Soil Erosion Research for the 21st Century. ASAE, Honolulu, HI, pp. 537–540.

Kwan, H., Swanson, S., 2014. Prediction of annual streambank erosion for Sequoia National Forest, California. JAWRA J. Am. Water Resour. Assoc., 50, 1439–1447.

Laubel, A., Kronvang, B., Hald, A.B., Jensen, C., 2003. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrological Processes, 17, 17, 3443–3463.

Lawler, D.M., Grove, J.R., Couperthwaite, J.S., Leeks, G.J.L., 1999. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrological Processes, 13, 7, 977–992.

Macfall, J., Robinette, P., Welch, D., 2014. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, Since European Settlement. PLoS One, 9, 12 p.

Markowitz, G., Newton, S., 2011. Using Bank Assessment for Non-Point Source Consequences of Sediment (BANCS) Model to Prioritize Potential Stream Bank Erosion on Birch Creek, Shandaken, Ashokan Watershed Stream Management Program (AWSMP). New York, 57 p.

North Carolina State University (NCSU) Stream Restoration Program, 1989. North Carolina Piedmont Region Bank Erosion Prediction Curve. Available at: http://www.bae.ncsu.edu/programs/extension/wqg/srp/. Accessed 2 January 2014.

Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO, 380 p.

Rosgen, D.L., 1998. Field Guide for Stream Classification. Wildland Hydrology, Pagosa Springs, CO, 193 p.

Rosgen, D.L., 2001a. A hierarchical river stability/Watershed-based sediment assessment methodology. In: Proc. 7th Federal Interagency Sedimentation Conference. Reno, NV, p. 13.

Rosgen, D.L., 2001b. A practical method of computing stream-bank erosion rate. In: Proc. 7th Federal Interagency Sedimentation Conference. Reno, NV, pp. 9–15.

Rosgen, D.L., 2006. Watershed assessment of river stability and sediment supply (WARSSS). Wildland Hydrology, Fort Collins, CO, 648 p.

Rosgen, D.L., 2008. River Stability: Field Guide. Wildland Hydrology, Fort Collins, CO, 214 p.

Rusnák, M., Lehotský, M., 2014. Povodne, brehová erózia a laterálne presúvanie koryta štrkonosných kľukatiacich vodných tokov (prípadová štúdia tokov Topľa a Ondava). Acta Hydrologica Slovaca, 15, 424–433.

Saha, S., Mukhopadhyay, S., 2014. A study on Kunur River, Eastern India. Int. J. Geol. Earth Environ. Sci., 4, 216–223.

Sass, C.K., 2011. Evaluation and development of predictive streambank erosion curves for Northeast Kansas using Rosgen’s “BANCS” Methodology. Kansas State University, 141 p.

Sass, C.K., Keane, T.D., 2012. Application of Rosgen’s BANCS model for NE Kansas and the development of predictive streambank erosion curves. J. Am. Water Resour. Assoc., 48, 774–787.

Scott, L.S., Collins, O.C., Diggs, M.D., 2003. Atlas of Colorado. A Teaching Resource. Downloaded 26. 02. 2018. Avaliable on http://www.unco.edu/hss/geography-gis/pdf/atlas/atlas-full-reduced.pdf, 194 p.

Stankoviansky, M., Frandofer, M., 2012. Reliéf katastrálneho územia Starej Turej a jeho recentný vývoj. Geogr. Cassoviensis, 6, 59–73.

Stankoviansky, M., Barka, I., Bella, P., Boltižiar, M., Grešková, A., Hók, J., Ištok, P., Lehotský, M., Michalková, M., Minár, J., Ondrášik, M., Ondrášik, R., Pecho, J., Pišút, P., Trizna, M., Urbánek, J., 2012. Recent landform evolution in Slovakia. In: Recent Landform Evolution: The Carpatho-Balkan-Dinaric Region. Springer, Dordrecht, Heidelberg, London, New York, pp. 141–175.

Szolgay, J., Hlavčová, K., Parajka, J., Čunderlík, J., 1997. Vplyv klimatickej zmeny na odtokový režim na Slovensku [The effect of climate change on the run-off regime in Slovakia]. Zborník NKP SR 6, 110 p.

Van Eps, M.A., Formica, S.J., Morris, T.L., Beck, J.M., Cotter, A.S., 2004. Using a Bank erosion hazard index (BEHI) to estimate annual sediment loads from streambank erosion in the West Fork White River watershed. In: Arkansas watershed advisory group conference proceedings: Self-sustaining solutions for streams, wetlands, and watersheds. pp. 125–132.

Veihe, A., Jensen, N.H., Schiøtz, I.G., Nielsen, S.L., 2011. Magnitude and processes of bank erosion at a small stream in Denmark. Hydrological Processes, 25, 10, 1597–1613.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2018: 2.07

SCImago Journal Rank (SJR) 2018: 0.713
Source Normalized Impact per Paper (SNIP) 2018: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 48
PDF Downloads 98 98 34