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Abstract: Conceptual degree-day snow models are often calibrated using runoff observations. This makes the snow 
models dependent on the rainfall-runoff model they are coupled with. Numerous studies have shown that using Snow 
Cover Area (SCA) remote sensing observation from MODIS satellites helps to better constrain parameters. The objective 
of this study was to calibrate the CemaNeige degree-day snow model with SCA and runoff observations. In order to cali-
brate the snow model with SCA observations, the original CemaNeige SCA formulation was revisited to take into ac-
count the hysteresis that exists between SCA and the snow water equivalent (SWE) during the accumulation and melt 
phases. Several parametrizations of the hysteresis between SWE and SCA were taken from land surface model literature. 
We showed that they improve the performances of SCA simulation without degrading the river runoff simulation. With 
this improvement, a new calibration method of the snow model was developed using jointly SCA and runoff observa-
tions. Further analysis showed that the CemaNeige calibrated parameter sets are more robust for simulating independent 
periods than parameter sets obtained from discharge calibration only. Calibrating the snow model using only SCA data 
gave mixed results, with similar performances as using median parameters from all watersheds calibration. 
 
Keywords: Snow model; Hysteresis parametrization; MODIS snow cover area; Rainfall-runoff model. 

 
INTRODUCTION 

 
Snow accumulation in winter as well as spring snowmelt 

gives to mountain catchments a particular hydrological re-
sponse that should be taken into account when modelling river 
runoff. Rainfall-runoff models are often coupled with snow 
models so that solid precipitation storage in snow reservoirs can 
be represented and released as river runoff when this accumu-
lated snow melts. Improving the snow dynamics modelling is a 
necessity for improving hydrological forecasting for snow-
dominated catchments. Snow-dominated areas are very sensible 
to temperature changes; therefore climate change can drastically 
impact the hydrological cycle (Beniston et al., 2017; Bernsteino-
vá et al., 2015) and the population living in these regions (one 
sixth of the world, estimated by Barnett et al., 2005). For study-
ing the impacts of climate change in mountains and other snow-
dominated region, the robustness and reliability of models have 
to be assessed (and improved) in order to ensure that the model 
structure and parameters are still valid for simulating river runoff 
in a different climate context (Thirel et al., 2015a, 2015b). 

To improve the robustness of degree-day empirical snow 
models, numbers of studies have demonstrated the advantages 
of snow cover data in addition to the runoff observations to 
calibrate and validate models (e.g. Franz and Karsten, 2013; 
Parajka and Blöschl, 2008a) or using data assimilation tech-
niques (Andreadis and Lettenmaier, 2006; Rodell and Houser, 
2004; Slater and Clark, 2006; Thirel et al., 2013). Snow models 
are traditionally calibrated only with runoff observations, mak-
ing the obtained parameter sets dependent on the rainfall-runoff 
model used. Adding snow data information to the calibration 
procedure allows the snow model to be less dependent on the 
hydrological model, and therefore allows to obtain more robust 
snow parameter sets (Franz and Karsten, 2013). In addition to 
the improvement of the robustness of the snow model, this 
procedure also helps to better identify its structure and parame-
ters (Grayson et al., 2002; He et al., 2014; Parajka and Blöschl, 

2008b, 2008a). Most of these studies used satellite Snow Cover 
Area (SCA) from the MODIS sensor (Hall et al., 2006), which 
provides a spatialized vision of the presence of snow on the 
ground at a 500m resolution. The main disadvantage of MODIS 
satellite data is that it cannot provide SCA data when there is 
cloud cover. Several methods have been developed to compen-
sate for these deficiencies, most of which are based on a spatio-
temporal filter, i.e., replacing the missing pixel value with its 
nearest neighbors, whether it be spatial or temporal (Da Ronco 
and De Michele, 2014; eg. Parajka and Blöschl, 2008b; Poggio 
et al., 2012). Another approach, which can be additionally used 
for filling lacunar MODIS data, is to determine the regional 
snowline elevation (Gafurov and Bárdossy, 2009; Krajčí et al., 
2014, 2016; Parajka et al., 2010). SCA data give only geographic 
information about presence or absence of snow without giving 
any information about the quantity of Snow Water Equivalent 
(SWE) present on the watershed. SWE would be more valuable 
than SCA for snow models, but unfortunately the accuracy of 
remote sensing SWE data is too low to be used effectively (Vuy-
ovich et al., 2014) and point scale measurements are scarce and 
difficult to interpolate (Parajka et al., 2012).  

SCA parametrization within snow models is highly depend-
ent on the resolution selected. When the model represents an 
area with a heterogeneous topography, the relation between the 
SCA and the quantity of SWE averaged over the area forms a 
hysteresis (Luce and Tarboton, 2004). During an accumulation 
period, the SCA increases very quickly and remains stable, 
whereas the SWE increases slowly. On the opposite, during a 
melting period, the decrease in the SCA is slower and more 
gradual. The relation between SWE and SCA therefore differs 
depending on whether a snowmelt period or a snow accumula-
tion period is considered. Snow accumulates heterogeneously in 
the watershed due to redistribution of snow by wind drift (Es-
sery and Pomeroy, 2004).  During the melting period, snow 
tends to melt uniformly with variations depending on the moun-
tain slope and orientation (Egli and Jonas, 2009). Snow patches 



Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses 

71 

tend to be created during the melting period, due to the combi-
nation of heterogeneous snow depths and to heterogeneous melt 
rates at watershed scale (Egli and Jonas, 2009; Helbig et al., 
2015; Magand et al., 2014). This representation of the snow 
cover area is an issue that has greatly interested the Land Sur-
face Modelling (LSM) community. As snow’s albedo has a 
strong retroaction on the earth–atmosphere coupling because of 
its influence on the energy budget, precise knowledge of the 
SCA is necessary (Zaitchik and Rodell, 2009). This is why 
LSMs often integrate a parametrization of hysteresis, linking 
SCA to SWE, whose complexity can vary (Liston, 2004; Ma-
gand et al., 2014; Nitta et al., 2014; Niu and Yang, 2007; Swen-
son and Lawrence, 2012). Parametrizations of the hysteresis 
have been introduced in a few snow models (Clark et al., 2011; 
Duethmann et al., 2014; Franz and Karsten, 2013; Kolberg and 
Gottschalk, 2006; Magnusson et al., 2014), as the hysteresis 
may be even found at small geographical scales (Luce and 
Tarboton, 2004). 

To more accurately represent river runoff in snow-covered 
catchments using lumped GR rainfall-runoff models (Le Moine 
et al., 2007; Perrin et al., 2003; Pushpalatha et al., 2011), the 
CemaNeige snow-accounting routine (Valéry et al., 2014a, 
2014b) was developed. The present study is based on this mod-
el, which is a degree-day model whose primary objective is to 
assist the hydrological model in accurately simulating mountain 
river runoff as parsimoniously as possible, i.e., with the mini-
mum of free parameters to calibrate. Once its development had 
been completed, the number of parameters necessary for the 
snow module was limited to two and required only air tempera-
ture (mean temperature or minimum and maximum daily tem-
peratures) and daily precipitation as forcing variables. The 
CemaNeige snow model has been tested on French, Swiss, 
Swedish and Canadian watersheds (Valéry et al., 2014b), and 
an intercomparison of multiple snow-accounting models cou-
pled with different rainfall-runoff models has been made (Troin 
et al., 2016, 2015). This study showed that the CemaNeige 
snow-accounting model gave good performances in the Québec 
area when coupled with any hydrological model. In other types 
of climate, the CemaNeige snow model has shown some limita-
tions. In Nepal (Pokhrel et al., 2014) the model performances 
were limited, certainly due to the fact that glacier melt and 
sublimation processes are not yet represented in CemaNeige. In 
the dry Andes, the CemaNeige model had to be adapted in 
order to take into account the sublimation process which is a 
major cause of snow ablation in arid mountain catchments 
(Hublart et al., 2016). 

The objective of the study is to improve the robustness of the 
CemaNeige snow-accounting model when used with a rainfall-
runoff model. For this, the use of MODIS SCA data for calibra-
tion was investigated and diverse weights in the objective func-
tion, between SCA and discharge, were tested. In order to make 
full use of MODIS SCA data at the catchment scale, SWE-SCA 
hysteresis were implemented in the snow model and assessed. 

 
DATA  
SAFRAN and MODIS data 

 
The forcing data used by the GR4J model with CemaNeige 

comes from SAFRAN data (Quintana-Seguí et al., 2008; Vidal 
et al., 2010). SAFRAN is an atmospheric reanalysis model: it 
assimilates surface observations to calculate the energy fluxes 
as well as temperature, precipitation, humidity, and wind on a 
regular 64-km² grid. For the needs of this study, only SAFRAN 
temperature and precipitation data were used, after they were 
aggregated by catchment on the daily time step.  

The MODIS snow cover product (Hall et al., 2006) came 
from the National Snow and Ice Data Center (NSIDC, 
http://nsidc.org). The first measurements were taken in summer 
2000 by the Terra satellite, followed 2 years later by measure-
ments from the Aqua satellite. The MODIS instruments meas-
ure visible radiance. A post-treatment deduces binary snow 
cover data on 500-m resolution grids once or twice a day.   

For this study, the MODIS data were aggregated over differ-
ent elevation zones on each catchment so that they would be 
comparable to the CemaNeige simulations. This aggregation 
makes it possible to obtain a snow fraction for each band. The 
quality of the snow fraction provided by MODIS is considered 
unsatisfactory if the proportion of pixels covered by clouds is 
greater than 40% of the total number of pixels of the elevation 
zone considered. If this threshold is not satisfied, these data are 
not taken into account for the calibration and evaluation proce-
dures.  

 
Selection of catchments 

 
The catchments for this study were selected based on sever-

al criteria: 
• data availability 
• sufficient catchment snow cover 
• low catchment’s anthropization  

 
The availability of runoff data and MODIS data is a limiting 

factor. The runoff data used came from the Hydro database 
(http://www.hydro.eaufrance.fr/); they were available at the 
daily time step and extracted up to the end of 2010. In addition 
to this, the MODIS data begins in 2000. We decided to preserve 
the catchments whose runoff data contained a maximum of 
1 year of missing data for the 2000–2005 period and the 2005–
2010 period. Moreover, only the catchments whose runoff was 
nearly natural, for example not influenced by dams, were re-
tained. This limits the number of catchments available in high-
altitude mountainous areas, which are often developed for 
hydroelectric power production.  

To ensure that the watersheds were frequently snow-
covered, we decided to retain only those whose outlet was 
located above 300 m and whose annual snow cover lasted a 
minimum 30 days on the catchment’s highest elevation zone 
(i.e. 20% of the watershed area) according to MODIS data. 
Finally, 277 catchments fulfilled these conditions and were 
used for this study (Figure 1).  
 
METHODS 
Description of the CemaNeige snow-accounting model 

 
The CemaNeige snow-accounting model (Figure 2) is a de-

gree-day snow model with two free parameters with a simple 
representation of the catchment’s SCA (Valéry et al., 2014b). 
The snowmelt generated by the snow module is considered as 
liquid precipitation in the GR4J rainfall-runoff model. To take 
into account the effects of the relief on precipitation, the 
CemaNeige snow-accounting model is distributed into eleva-
tion zones with equal surface area, usually five bands. Temper-
ature and precipitation are extrapolated for each elevation zone 
(Valéry et al., 2014a). Both the basic version of CemaNeige 
and the GR4J model come from the R airGR package (Coron et 
al., 2017a, 2017b). 

The CemaNeige model determines the fraction of solid pre-
cipitation that accumulates when temperature conditions are 
adapted. To take into account the thermal inertia of the snow-
pack, melting is delayed by a formulation taking the air tempera-  
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Fig. 1. Map of the 277 watersheds used in this study. The color of the basins represents the mean annual solid precipitation. 
 

ture of the preceding days into account (Eq. 1), modulated by 
one parameter (cT). The snowpack’s cold content (eTG) is cal-
culated based on weighting between the value of the internal 
variable eTG of the preceding time step and the air temperature 
of the day considered.  

 

( )( )1
min . 1   ,0G G m tt eant

eT cT eT cT T−= + −  (1) 

 

When the snow mantel’s temperature simulation (eTG) 
reaches a value of 0 and the mean air temperature (Tmean) is 
greater than 0°C, potential melting (Meltingpot) is calculated, 
which is dependent on the melting factor Kf (Eq. 2). 

 

 . pot meant t
Melting Kf T=  (2) 

 

This potential melting is modulated depending on the overall 
snow surface by the following formula: 

 

( )0.9 0.1  t t pot t
Melting SCA Melting= +   (3) 

 

For a 100% SCA, melting will be identical to potential melt-
ing. The more the SCA decreases, the more the melting speed 
decreases, to a minimum of 10% of the potential melting. The 
SCA is calculated in the model as follows: 

 

,

min ,1t
t

h melt

SWE
SCA

T

 
=   

 
 (4) 

 

where the SWE is the quantity of snow accumulated on the 
catchment in snow water equivalent (a state variable of the 
model, in mm) and where Th,melt is the model’s melting thresh-
old. This Th,melt melting threshold is calculated as being equal to 
90% of mean annual solid precipitation on the catchment con-
sidered (Valéry et al., 2014b).  

This melting modulation stems from the fact that preferential 
melting is usually established based on the mountain’s slope 
exposure: shaded slopes tend to melt less quickly than sunny 
slopes. The conceptual model therefore includes a state variable 
close to the SCA. However, this formulation of the SCA does 
not necessarily give values that can be directly compared to the 
MODIS observations because this melting formulation only 
takes into account that the relation between the SWE and the 
SCA is not unequivocal and differs depending on whether an  
 

 

 
 

Fig. 2. Schematic representation of the CemaNeige snow model 
(Modified from Valéry et al., 2014b). 
 
accumulation or a melting period is considered. To take this 
into account, we suggest a hysteresis that allows simulating a 
fast increase of the SCA at the accumulation period and a 
smooth decrease at the ablation period. The fast increase at the 
accumulation period is due to a homogeneous increase of the 
SCA with snowfall (although the redistribution of snow creates 
high disparities in snow depths). The heterogeneous SWE cou-
pled to heterogeneous melt rates due to the topography tends to 
create patchy snow areas (Liston, 2004; Magand et al., 2014).  

 
Hysteresis 

 
To take this melting heterogeneity into account, several hys-

tereses were implemented and tested in the CemaNeige snow-
accounting routine. The hystereses selected in the literature are 
presented in this section. 

 
Accumulation curve 

 
The snow cover curve dependent on the SWE in case of ac-

cumulation was formulated with a linear function dependent on 
an accumulation threshold Th,acc. This follows the following 
relation: 

 P Tmean 

Snow 

Snow 
Stock 

SWE 

Melt 

Max=0°C

Snow thermal 
state 

( )cTfeTG =  

Kf  

Rain 

Inputs 

Outputs 



Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses 

73 

 t sol tt
SWE P MeltingΔ = −  (5) 

 

1
,  

min  ,1 ; if    0t
t t t

h acc

SWE
SCA SCA SWE

T−
 Δ= + Δ ≥  
 

   (6) 

 

where ΔSWE represents the variation of SWE at the time step 
considered (a positive ΔSWE corresponds to a snow accumula-
tion, a negative ΔSWE to melting), SCAt–1 corresponds to the 
SCA calculated at the preceding time step and sol t

P  corre-

sponds to the quantity of snowfall at current time step (in mm). 
This simple formulation was used in the CLSM model (Magand 
et al., 2014). The slope of this relation is set by the parameter 
Th,acc, which defines the threshold of SWE (in mm) based from 
which the SCA is equal to 1. This formulation of the SCA in an 
accumulation period is used in this article for all the hysteresis 
models tested.  

 
Melting curve 

 
The different formulations tested for this study are presented 

in Figure 3; Figure 3a presents the melting curve as it is imple-
mented in the current CemaNeige snow-accounting model 
((Valéry et al., 2014b), Eq. 4). 
 
Linear hysteresis (LH) 

 
The first hysteresis tested (Fig. 3b) is a simple linear hyste-

resis that was implemented in the CLSM model (Magand et al., 
2014).  

 

,

 1 1

min ,1
 ;  if  0

  if 1

t
t

th max

t melt t t

SWE
SCA

SWET

SWE SWE SCA− −

  
=    Δ <  

 = =

 (7) 

 

,  ,
,

  ,

                 if   

           if   
h melt t melt h melt

h max
t melt t melt h melt

T SWE T
T

SWE SWE T

>=  ≤
 (8) 

 

This parametrization of the hysteresis melting curve part de-
pends on a local maximum threshold (Th,max), which defines the 
inflexion point and the slope of the melting curve (in red on 
Fig. 3b). If the accumulated snow before snowmelt exceeds a 
calibrated melt threshold (Th,melt), the local threshold (Th,max) 
takes the (Th,melt) value. On Fig. 3b, this means that when melt-
ing occurs, the SCA value decreases only if the SWE value is 
lower than 250 mm (this value has been taken as an example). 
If during the winter, the accumulated SWE never exceeds the 
Th,melt value, or in the case that there is a snow accumulation 
after the melting phase has started (represented by the yellow 
curve in Fig. 3b), the local maximal threshold (Th,max) takes the 
maximal SWE value before the beginning of the melt 
(SWEt,melt, Eq. 8).  

 
Modified linear hysteresis (LH*) 

 
A variation of the linear hysteresis is proposed in this article, 

where: 
 

,   . h melt sol spannual
T P R=  (9) 

 

sol annual
P represents the mean annual precipitation for the 

elevation zone of the catchment considered and Rsp is a parame-

ter between 0 and 1. This formulation defines a different Th,melt 
for each of the catchment’s elevation zones, which is not the 
case in Equation 7.  

 
MATSIRO hysteresis (MH) 

 
This third hysteresis tested was used within the MATSIRO 

surface model (Nitta et al., 2014). The formulation is similar to 
the linear hysteresis formulation, except that instead of follow-
ing a linear slope, the hysteresis follows a square root function 
for the melting curve. 

 

,

 1 1

 min ,1
; if 0 

  if  1

t
t

h max

t melt t t

SWE
SCA

SWET

SWE SWE SCA− −

  
  =   Δ <  


= =

    (10) 

 

,  ,
,

  ,

                if   

           if   
h melt t melt h melt

h max
t melt t melt h melt

T SWE T
T

SWE SWE T

>=  ≤
 (11) 

 

This parametrization also calls on the Th,melt parameter. As 
equation 8, the value of Th,max depends on the state of the accu-
mulated SWE at the beginning of the melting period  
(SWEt melt) and of the value of the Th,melt parameter. This curve 
shape implies that the decrease in the SCA accelerates as the 
SWE decreases. In other words, this formulation would mean 
that at the beginning of melting, a decrease in the SWE affects 
the south-exposed snow cover only slightly. As the quantity of 
snow diminishes, melting affects the entire catchment and the 
SCA drops rapidly. The shape of this hysteresis can be consult-
ed in Figure 3c. Like the linear hysteresis, Equation 10 updates 
the melting threshold with the SWE value if the SWE accumu-
lated does not go beyond the Th,melt value or in the case of a 
snow accumulation within a snow melt period. 

 
Swenson hysteresis (SH) 

 
The last parametrization tested comes from the CLM4 model 

(Swenson and Lawrence, 2012). It is very different from the 
other methods since it does not use the melting threshold to 
manage melting. Instead, a Nmelt parameter directly imposes the 
shape of the melting curve (Equations 12 and 13).  

 

 

1
1  acos 2 1

Nmelt
t

t
t melt

SWE
SCA

SWE

  
= − −   π   

; if  0SWEΔ <  (12) 

 

( )( ) 1/
1

 

cos 1 1
 

2

Nmelt
t

t melt t

SCA
SWE SWE

−
− π − +

=  
  

 (13) 

 

The higher the Nmelt value, the lower the decrease in the 
SCA will be at the beginning of melting and it will accelerate 
progressively, which makes it possible to model the threshold 
effect as it is in the hysteresis presented above. In contrast, the 
lower the Nmelt value, the more the SCA will drop rapidly at the 
beginning of melting and will be followed by a relative stabili-
zation of the slope until a second, sharper drop at the end of 
melting. Conceptually, this would mean that the SCA of the 
exposed slopes would drop very rapidly at the beginning of 
melting, whereas the SCA of the less exposed slopes would 
decrease less rapidly. The influence of the melting factor meltN  

on the SCA during the melting period is presented in Figure 3d, 
3e, and 3f.  
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Fig. 3. Schematic representation of the different types of hystereses used a) original relation in CemaNeige, b) linear hysteresis, c) 
MATSIRO hysteresis, d-e-f) Swenson hysteresis with three different Nmelt coefficients. The blue line represents the accumulation phase of 
the hysteresis while the red line represents the melting phase. The yellow curves represent an example of snow accumulation within a melt-
ing period. The Th,acc and Th,melt values have been set respectively at 20 and 250 mm to illustrate the different hystereses. 

 
Calibration and optimization criteria 

 
The four different hysteresis models implemented in the 

CemaNeige snow-accounting model were tested and calibrated 
on the 277 catchments. The calibrations were performed for 
each catchment for two different periods: 2000–2005 and 
2005–2010. The routing and rainfall-runoff transformation 
were computed using the GR4J hydrological model. 

Both the hydrological model’s and the snow model’s param-
eters were calibrated using the steepest-descent calibration 
algorithm (Edijatno et al., 1999; Perrin et al., 2001). The cali-
bration criterion used was the KGE′ (Gupta et al., 2009; Kling 
et al., 2012). This criterion (Eq. 14) takes into account the Pear-
son correlation coefficient (Eq. 15, Covso being the covariance 
between observation and simulation, σ being the standard devi-
ation), the percentage bias (Eq. 16, depending on μ the average 
of the simulation and observations), and the ratio of the coeffi-
cients of variation between the simulated and observed tem-
poral series (Eq. 17).  

 

( ) ( ) ( )2 2
1 1 1 1 ²KGE r ω γ= − − + − + −′

 
(14) 

 

so

s o

Cov
r

σ σ
=  (15) 

 

s

o

μω
μ

=  (16) 

 

/

/
s s

o o

σ μγ
σ μ

=  (17) 

 

To calibrate the model with the runoff and the MODIS data, 
the KGE′ on the runoff and the KGE′ on the MODIS data on 
five elevation zones were combined. 

 

( ) ( )
5

1

  i i
i

Crit KGE Q KGE' SCAα β
=

= +′  ,  (18) 

 

where 
5

1

1i
i

α β
=

+ =  (19) 

Thus a weighting βi can be assigned to the SCA simulation 
on each elevation zone i modeled by CemaNeige (here five 
zones were selected: SCA1, SCA2, …, SCA5). In addition, a 
single weighting β can be assigned on the SCA criterion if the 
SCA is averaged over the entire watershed (i.e., all the elevation 
zones). 

The performance presented in the Results section is calculat-
ed from the validation period complementary to each calibra-
tion period (e.g., 2000–2005 calibration, 2005–2010 valida-
tion). The performances of simulations are therefore represent-
ed twice for each catchment (one performance per validation 
period). To ensure that the performance criteria take into  
account the modifications to the snow model, the validation 
concerns only the months with snow. For each catchment, the 
months with snow correspond to the months whose upper layer 
mean SCA is greater than 5% according to MODIS for the 
whole period. 

A Friedman test (Friedman, 1937) is also applied to the cali-
bration results. This is a statistical test designed to determine 
whether the models give significantly different results. For each 
catchment, the performances of the simulations of each model 
are ranked, and then the ranks are summed for each model. The 
model with the highest ranks is considered the best according to 
this test.  

 
RESULTS 
Analysis of the different hysteresis models 

 
The GR4J–CemaNeige coupled model contains six parame-

ters to calibrate (four for GR4J, two for CemaNeige). The three 
versions of CemaNeige with hysteresis add two additional 
parameters: Th,acc and Th,melt or Nmelt. Except for the original 
CemaNeige model that serves as the reference and was cali-
brated only on runoff (α = 1), the other models tested were 
calibrated with weighting α = 0.75 and an identical weighting β 
for all elevation zones equal to 0.05. The different models used 
as well as their calibration weighting are presented in Table 1. 
The comparison of the performance of the models is available 
in Figure 4. 

 
 

 
 
 
 



Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses 

75 

Table 1. List of the models and weightings used for analyzing the 
performances of the hystereses formulations. 
 

Model Q weighting α SCA weighting β 1 …5 
CemaNeige reference (C Q) 1 0 
CemaNeige SCA (C Q SCA) 0.75 0.05 
Linear hysteresis (LH) 0.75 0.05 
Modified linear hysteresis (LH*) 0.75 0.05 
MATSIRO hysteresis (MH) 0.75 0.05 
Swenson hysteresis (SH) 0.75 0.05 

 

 
 

Fig. 4. Performances of the different hystereses used with 
CemaNeige coupled with GR4J model. The performances present-
ed are KGE’ values calculated on validation periods. Each boxplot 
contains the results from both validation periods for each catch-
ment; the whiskers indicate the 5 and 95 percentiles. The result of 
the Friedman analysis is represented by the letters near the boxplot. 
The best ranked model is indicated by letter “a” and models with 
identical letters are considered as not significantly different. 

 
It can be observed that the reference CemaNeige snow-

accounting model gave the best scores in terms of runoff, ac-
cording to the Friedman test, with a similar median to the mod-
els with hysteresis (0.81), however. In terms of SCA perfor-
mance, the original version of CemaNeige gave much lower 
scores than the versions with hysteresis (median, 0.19 versus 
0.79 for both linear hystereses). Calibration of CemaNeige with 
the MODIS data, as originally designed, showed a decrease in 
the runoff score of approximately 0.05 points on the median 
and only improved the SCA score very slightly. This shows the 
inability of the original CemaNeige model to take into account 
the calibrated SCA data without damaging the runoff score. 

The implementation of hystereses in CemaNeige significant-
ly improved the SCA score, with the best score obtained by the 
linear hysteresis: median, 0.81 and 0.82 for the modified ver-
sion. The runoff scores modeled by CemaNeige with linear 
hysteresis were very slightly inferior to the reference scores. 
They had the same median and the same quartiles; only the 
mean, not represented here, differed slightly. Both of the other 
hystereses showed similar performance in terms of runoff, but 
slightly inferior in the SCA. It can be concluded that adding a 
hysteresis significantly improves the SCA if it is used in cali-
bration while retaining a stable performance in runoff, which 
the original model did not allow. 

 
Analysis of runoff criterion and snow cover criterion 
weighting 

 
To obtain better validation criteria on the SCA without 

harming the runoff criterion, several different weighting con-
figurations were analyzed. The α weighting on runoff was 
tested for values of 0, 0.5, 0.75, 0.9, and 1. Weighting corre-
sponding to the SCA criteria was 0.2, 0.1, 0.05, 0.02, and 0 for 
each of the layers. This analysis was based on the use of the 
modified linear hysteresis, which gave highly satisfactory re-
sults in the previous section. These values are summarized in 
Table 2 and the results are available in Figure 5.  

Table 2. Weightings used for the calibrations of the snow model 
with the modified linear hysteresis (LH*). 
 

Model Q weighting α SCA weighting β 1 … 5  
LH* 0 0.2 
LH* 0.5 0.1 
LH* 0.75 0.05 
LH* 0.9 0.02 
LH* 1 0 

 

 
 

Fig. 5. Performances of the snow model with the modified linear 
hysteresis for different weightings of the optimization criteria. The 
KGE’ performances presented in the boxplots have been calculated 
on validation periods. 
 

We can observe that the runoff criterion remains stable in 
validation as the weighting performed in calibration decreased. 
The SCA criterion seems, on the other hand, to improve as the 
weighting on runoff decreases. Nevertheless, it seems that for 
weighting greater than 0.25 of SCA (i.e., less than 0.75 of run-
off) the gains are very low on the SCA. Calibration on runoff 
only (1Q) significantly deteriorates the model’s simulation of 
the SCA. Thus, a weighting of the optimization criterion with 
75% allocated to the runoff criterion and 25% allocated to the 
SCA criterion seems to be a satisfactory compromise between 
the model’s performance in terms of runoff and SCA. Figure 5 
also shows that runoff performance is slightly better with a 0.75 
weighting rather than a calibration only on the runoff criterion. 
This shows that the model potentially has higher robustness 
using the calibrated SCA. The robustness of the model will be 
more fully studied in section “APPLICATION OF THE SNOW 
MODEL TO DIFFERENT SIMULATION CONTEXTS”. 
 
Analysis of the type of snow cover weighting to use 

 
In section “Analysis of runoff criterion and snow cover crite-

rion weighting”, the SCA weightings were considered to be 
equivalent for all layers. Based on a 0.75 runoff weighting, we 
studied several ways to weight the SCA simulations for each 
elevation zone. The first reference combination used in the 
preceding sections considers an identical weighting for each 
elevation zone (here 5% for each elevation zone). Since the 
highest elevation zones have a greater snow regime than the 
lower layers, it is possible that the low-elevation zones provide 
little information to calibrate the model. Therefore, a calibration 
mode with a weighting that increases with elevation was tested, 
as was a second mode with a weighting that took only the high 
elevation zones into account. Finally, the last type of calibra-
tion, called global calibration, was directly calculated based on 
the mean SCA for the entire catchment, with no distinction 
made on the performance for each elevation zone. This global 
calibration is different to the equivalent weighting for all layers 
since there is just one hysteresis computed for all elevation 
bands, this should affect the calibration of the hysteresis param-
eters. The different weightings in this analysis are summarized 
in Table 3 and the results are presented in Figure 6.  
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Table 3. List of the SCA weighting methods used for the snow 
model calibration. 

 

Model 
Calibration 

type 
α β1 β2 β3 β4 β5 

LH* 
Equally 

Weighted 
(SCA E) 

0.75 0.05 0.05 0.05 0.05 0.05 

LH* 
Global 

(SCA G) 
0.75 

0.25, the SCA from the five-layer bands are 
averaged and compared to the mean observed 

SCA 

LH* 
Increasing 
(SCA I) 

0.75 
0.025 
(10%) 

0.025 
(10%) 

0.05 
(20%) 

0.075 
(30%) 

0.075 
(30%) 

LH* 
High 

elevation 
(SCA H) 

0.75 0 0 0 0.125 0.125 

 

 
 

Fig. 6. Performances of the snow model with the modified linear 
hysteresis for different types of SCA criteria weighting. The KGE’ 
performances presented in the boxplots have been calculated on 
validation periods. 

 
For the runoff validation, few significant differences were 

observed for the different methods taking the SCA selected into 
account. However, in terms of SCA validation, the results clear-
ly show that use of the highest elevation zones only to calibrate 
the model is not sufficiently informative and gives unsatisfactory 
results compared to the other calibration methods. The three 
other types of calibration provide similar results in SCA valida-
tion. Identically weighting each elevation zone used in the 
preceding sections therefore seems to be a viable choice to 
calibrate the snow model with hysteresis and will be retained 
for further analysis.  

 

Overall results: hydrographs and analysis of the model’s 
parameters 

 
The analyses above demonstrate that use of modified linear 

hysteresis (Eqs. 5, 6, 7, 8 and 9) with an optimization criterion 
with a 0.75 weighting on runoff and a 0.05 weighting on each 
of the elevation zones gives one of the best compromises in 
runoff and SCA performance over most of the catchments 
studied. The difference in performance between the reference 
CemaNeige routine calibrated on runoff and the model devel-
oped in this study, for each catchment, is presented in Figure 7. 

The map in Figure 7 indicates that the performance in the 
runoff simulations of the reference CemaNeige model with 
hysteresis is similar for most catchments. The majority of the 
catchments gaining in performance seem to be the small catch-
ments in the Massif Central. However, this figure does not 
show spatial coherence in the deterioration of the runoff per-
formance criterion.  

Concluding this analysis on various catchments, hydro-
graphs as well as the SCA and the SWE over time are presented 
in Figure 8. The three catchments presented are the Durance at 
Embrun (X0310010, 2283 km², the Alps) and the Arac at Sou-
lan (O0384010, 170 km², the Pyrenees). The Durance alpine 
catchment has its performance improved by the new model 
(+0.06 points in KGE′), while the performance of the simula-
tions of the Arac catchment remained stable (identical KGE′). 

These hydrographs show relatively few differences between 
the reference CemaNeige simulations and the simulation with 
CemaNeige improved by hysteresis. It can nonetheless be ob-
served that the winter flow peaks were better reproduced on the 
Durance (X0310010). A clear improvement in the SCA simula-
tion by CemaNeige with hysteresis, compared to the reference 
CemaNeige, can be observed for the two catchments. Figure 8 
also shows that SWE was modified over time by the new SCA 
formulation in the CemaNeige model. Overall, it seems that the 
improvement tends to reduce the SWE accumulated. This 
shows that this new SCA parametrization also influences melt-
ing in the model. The impact of hysteresis on the model’s pa-
rameters can be observed in Figure 9. 

 
 
 
 
 

 

 
 

Fig. 7. Improvement (or degradation) of KGE’ performances on river discharge for each studied watershed. The value indicated is the 
difference between the performances of the modified CemaNeige with the hysteresis formulation minus the performance of the original 
CemaNeige model for the 2005–2010 validation period. 16 watersheds have significant degraded runoff performance (red), 104 have slight-
ly degraded runoff (orange) and 51 watersheds have similar performances (yellow), while 75 have slightly improved performances (green) 
and 31 have seen significant improvement (dark green). 
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Fig. 8. Hydrograph, evolution of SCA and SWE for three snow-dominated watersheds. These two watersheds were calibrated on the 2000–
2005 period and the simulations presented in this figure are coming from the 2005–2010 validation period. 

 

 
 

Fig. 9. Analysis of the melt coefficient (Kf, in mm.°C–1 d–1), the cold content parameter (cT) and the hysteresis parameters (Th,acc and Rsp) 
for the reference model (C Q 1) and the snow model with the modified linear hysteresis calibrated with a weighting of the runoff and SCA 
criteria (LH* 0.75), with a calibration on the runoff criterion only (LH* 1) and with a calibration on the SCA criterion only (LH* 0). 

 
Figure 9 shows that the melting parameter changes consider-

ably between the reference model and the model with hysteresis 
calibrated by weighting the two objectives. Using the MODIS 
data and hysteresis constrains the melting parameter to much 
lower values than for calibration with runoff only. With quar-
tiles between 2 and 4.5 mm °C–1 d–1, these values seem more 
plausible than what calibration of the reference model proposes 
(quartiles 4.5 and 38 mm °C–1 d–1), as values for degree day 
coefficient varying between 0.3 and 7.6 mm °C–1 d–1 can be 
found in the literature (Martinec and Rango, 1986). As snow 
melt rate decreases with SCA in the model (due to Eq. 3), the 
implemented hysteresis directly impacts the melt rate and the 

melting parameter. Globally, the model with hysteresis has 
much higher SCA values compared to the original formulation 
(Fig. 8). This could explain the decreased value of the degree-
day melt coefficient as higher SCA values tends to increase this 
melt rate (Eq. 3).  

The cold content parameter cT seems to be less restricted by 
the model calibrated with MODIS than with the reference. The 
reference model’s cT values cluster around a very low value 
(median, 0.04), indicating that for a consequential number of 
catchments, thermal inertia is considered to be very low. Figure 9 
also shows that the parameters with Th,acc and Rsp hysteresis 
require MODIS data to be constrained. The values are indeed  
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Fig. 10. Performances for runoff and SCA simulations, calculated 
on the whole validation period and calculated on the winter month 
of the validation period only.  
 
highly dispersed with calibration based only on runoff. To limit 
the addition of a parameter to the CemaNeige SCA, it seems 
cautious to set the accumulation threshold (Th,acc). Its value varies 
little from one catchment to another (quartiles at 5.8 and 15 mm) 
and since the increase of SCA is very fast in accumulation peri-
ods, its influence on the model (whether for the SCA or runoff) 
should be less important than the melting threshold ratio (Rsp). 

Finally, to check that the improvement of the winter runoff 
performance does not occur at the expanse of runoff perfor-
mance for the rest of the year, Figure 10 allows one to verify 
the performance over the validation periods for criteria calcu-
lated only on winter runoff and criteria calculated on the whole 
year runoff. 

The performance over the whole period is close to the winter 
period performance, considering that overall, taking the whole 
period into account tends to improve both the runoff and SCA 
scores. This remains true for the snow module with hysteresis 
and the reference CemaNeige SCA, meaning that the introduc-
tion of the hysteresis has a negligible influence on non-snow 
dependent runoff modelled by GR4J. 

 
APPLICATION OF THE SNOW MODEL TO 
DIFFERENT SIMULATION CONTEXTS 
Using the calibrated model on a period from the past 
 

Following calibration of the snow model with the MODIS 
observation data, several questions come to mind. For example, 
is the model with hysteresis more robust in terms of climatic 
variability than the reference CemaNeige model? For this anal-
ysis, both models were run for three 10-year periods from the 
past using the parameters calibrated on the 2000–2005 and 
2005–2010 periods. Only the catchments with runoff measure-
ments for these three periods were used (representing approxi-
mately 50% of the sample used in this article). The three peri-
ods used were 1960–1970, 1970–1980, and 1980–1990. The 
boxplots in Figure 11 present the performances of the simula-
tions using the model with hysteresis and the reference model 
for each of the past periods. The SCA performance criteria 
could not be calculated as the MODIS data were not available 
for these periods. 

These results are encouraging because they show that the 
model calibrated on the SCA tends to keep slightly more stable 
performance for simulations far from the calibration period, as 
observed in the boxplots, which are slightly decentered toward 
a positive difference in performance. These preliminary results 
on the use of a set of parameters on a distant period should 
make the model with hysteresis more adapted than the refer-
ence model for analyses such as impact studies on climate 
change.  

 

 
 

Fig. 11. Performances of the snow model with the modified linear 
hysteresis and the original CemaNeige model for three past peri-
ods: 1960–1970 (in red), 1970–1980 (in green), 1980–1990 (in 
blue). The parameters used here come from the calibrations of the 
2000–2005 and 2005–2010 periods.  
 
Sequential calibration of the snow model and the 
hydrological model  

 
Here we wish to answer the following question: is it possible 

to calibrate the snow model completely independently of the 
rainfall-runoff model? This question seeks to determine which 
part of the information comes from MODIS SCA and whether 
it is sufficient to calibrate the snow model. Independently cali-
brating CemaNeige would facilitate the elaboration of a region-
alization strategy for these parameters. Therefore, the snow 
model was first calibrated only on the SCA and then the rain-
fall-runoff model was calibrated on runoff observations, with 
the parameters from the snow model set to the values obtained 
in the first calibration (sequential calibration). This result was 
compared to the calibration of the rainfall-runoff model coupled 
with the snow model (reference or with hysteresis) whose pa-
rameters are set to the median value of the 277 catchments for 
each period (LH* med and C Q med) as well as a joint calibra-
tion of the snow model with hysteresis and the rainfall-runoff 
model (as was done above, LH* 0.75 here LH* ref). 

The sequential calibration strategy applied is summarized in 
Table 4; the results are available in Figure 12. 

 
Table 4. List of the calibrations realized for the analysis of the 
independency of the snow model from the rainfall-runoff model. 
 

Snow model Rainfall-runoff model 

LH* ref 
Coupled model optimization on Q and SCA, with 

α = 0.75 and SCA E 
C Q ref Coupled model optimization on Q 
Sequential calibra-
tion (LH* seq) 

Optimization on 
SCA only 

Optimization on Q only 

LH* med 
Fixed parameters at 

median value 
Optimization on Q only 

C Q med 
Fixed parameters at 

median value 
Optimization on Q only 

 

 
 

Fig. 12. Performances of the model simulations used for sequential 
calibration analysis and the two references calibrated on runoff 
data presented in Table 4.  

 
The performances between the model calibrated sequentially 

and the original CemaNeige reference model are very similar 
for runoff (median performance of 0.81). Using median param-
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eters for the snow models gives results that are also very similar 
to the sequential and reference calibrations. It therefore seems 
that the hydrological model can compensate for a large part of 
the modifications resulting from change in parameters from the 
snow model to the sequential calibration. Sequential calibration 
therefore contributes little to the rainfall-runoff model com-
pared to the use of median parameters for the snow model.  

 
Application of the model to a ungauged context 

 
Many mountain catchments are not gauged, and runoff 

measurements are therefore not available to calibrate the snow 
model or the hydrological model. On the other hand, the 
MODIS SCA data are available everywhere, meaning that, as 
above, they provide a calibration of the snow model for the 
SCA even if the catchment is not instrumented. The difference 
compared to the preceding section is that the rainfall-runoff 
model cannot be calibrated; the parameters are then set to their 
median value (the median of the parameters between all the 
catchments for each calibration period). This calibration of the 
snow model on SCA only is compared to the performance of 
the simulations with the reference CemaNeige model with 
hysteresis, with their parameters set at a median value. A sum-
mary of this analysis is available in Table 5 and the results are 
presented in Figure 13. The performance data presented are the 
KGE′ deltas, the difference in performance of the catchments 
considered to be ungauged, and the same catchments calibrated 
on runoff with the reference model.  

 
Table 5. List of the simulations made for analyzing the perfor-
mance of the snow model for ungauged watersheds. 

 
Snow model Runoff model 

LH* ref 
Coupled model optimization on Q and SCA 

with α = 0.75 and SCA E 
C Q ref Coupled model optimization on Q 
Sequential calibra-
tion (LH* SCA) 

Optimization on 
SCA only 

Fixed parameters 
at median value 

LH* med 
Fixed parameters at 

median value 
Fixed parameters 
at median value 

C Q med 
Fixed parameters at 

median value 
Fixed parameters 
at median value 

 

 
 

Fig. 13. Performances of the models presented in Table 5 used in 
an ungauged watershed situation and the two reference simulations. 

 
Using the median parameters for the GR4J rainfall-runoff 

model implies a much greater loss in performance compared to 
the results shown in Figure 12 in section “Sequential calibration 
of the snow model and the hydrological model”. Setting param-
eters of the hydrological model at a median value is relatively 
harsh. However, we observe that calibrating the snow model on 
SCA with hysteresis gives slightly better results than using the 
median parameters of the reference CemaNeige model but the 
LH* model with median parameters still performs a little better 

for flow simulation. It remains difficult to calibrate the snow 
model as well as the hydrological model without flow data. 

 
CONCLUSION 

 
Many studies have shown the utility of calibrating the snow 

model with MODIS snow cover data (SCA). The objectives of 
the present study were to improve the SCA formulation of the 
CemaNeige snow-accounting model, to test several model 
calibration strategies using SCA MODIS data, and to assess 
their performance in a variety of application conditions. 

The results of this study demonstrated that the original 
CemaNeige model gives highly satisfactory runoff simulations 
when it is combined with a rainfall-runoff model, but also that 
its internal snow cover surface variable cannot capture the 
MODIS SCA data. Calibrating CemaNeige in its original ver-
sion with an optimization criterion taking runoff and SCA into 
account shows a clear reduction in performance in terms of 
runoff simulation, with only a slight improvement in perfor-
mance with SCA.   

Introducing a hysteresis in CemaNeige made it possible to 
go beyond the restrictions of the original model by improving 
the performance of the SCA simulation, without deteriorating 
the performance for runoff. Different SWE-SCA hystereses 
were tested: the modified simple linear formulation with a 
melting threshold dependent on annual solid precipitation pre-
sented the best results and was retained. Several analyses also 
determined that the most advantageous compromise for the 
model’s evaluation criterion was a 75% weighting of the flow 
criterion, and an identical weighting of each of the elevation 
zones with 5% weighting on the SCA criterion.  

These different analyses improved the CemaNeige model 
and allowed us to design an adapted calibration method taking 
the MODIS snow cover data into account. Introducing this 
hysteresis adds two parameters to the CemaNeige snow-
accounting model, which brings the total number of parameters 
to four. Even though this improvement of the model requires 
additional parameters, it is constrained by both runoff and SCA 
instead of only runoff. Further development of the model could 
also use SCA data for correcting solid precipitation inputs as 
done by Shrestha et al. (2014), as snowfall measurements are 
generally underestimated due to precipitation gages under-
catchment. 

This CemaNeige snow-accounting model improved by hys-
teresis was compared to the original CemaNeige model for 
simulating time periods far in the past. The model with hystere-
sis gives slightly better performances than the original model 
and seems more robust. This is encouraging in the study of 
climate change impacts where the model’s uncertainty is great 
in the context of climate non-stationarity. The snow model was 
also submitted to different calibration strategies, namely com-
paring a sequential calibration of its two components (ie. by 
calibrating the snow model only with SCA and the rainfall-
runoff model only with runoff) or a calibration in ungauged 
conditions (ie. by calibrating the snow model only with SCA 
and using uncalibrated parameters for the rainfall-runoff model) 
to the combined calibration of the snow model and the rainfall-
runoff model used in previous sections.  The independent cali-
bration of the snow module, i.e., performed only on the SCA, 
within a sequential calibration or the estimation of an ungauged 
catchment, gives fairly mixed results. These analyses were 
carried out using the median values of the parameters. This was 
the simplest parameter regionalization method that allowed 
testing the snow module in the most unfavorable condition 
possible. For the hydrological model, more advanced parameter 
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regionalization techniques could be tested to improve the mod-
el’s performance on ungauged catchments.  

The MODIS data used underwent a very simple treatment: 
no spatiotemporal data filtering system was applied. This could 
improve the model’s performance by improving the calibration 
data (Parajka and Blöschl, 2008b). One of the future perspec-
tives could also be the use of single SWE measurements and 
integrating them into the model calibration. It is highly proba-
ble that the conceptual model should be modified to provide a 
response that is comparable to the observation. The analysis of 
the sensitivity of the hysteresis parameters would be useful 
given that it would inform even more on their influence on 
runoff simulation. It is likely that the snow accumulation thresh-
old could be set easily: this sensitivity analysis would make it 
possible demonstrate this and find the best adapted value.  
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