Extent and persistence of soil water repellency induced by pines in different geographic regions

Open access

Abstract

The extent (determined by the repellency indices RI and RIc) and persistence (determined by the water drop penetration time, WDPT) of soil water repellency (SWR) induced by pines were assessed in vastly different geographic regions. The actual SWR characteristics were estimated in situ in clay loam soil at Ciavolo, Italy (CiF), sandy soil at Culbin, United Kingdom (CuF), silty clay soil at Javea, Spain (JaF), and sandy soil at Sekule, Slovakia (SeF). For Culbin soil, the potential SWR characteristics were also determined after oven-drying at 60°C (CuD). For two of the three pine species considered, strong (Pinus pinaster at CiF) and severe (Pinus sylvestris at CuD and SeF) SWR conditions were observed. Pinus halepensis trees induced slight SWR at JaF site. RI and RIc increased in the order: JaF < CuF < CiF < CuD < SeF, reflecting nearly the same order of WDPT increase. A lognormal distribution fitted well to histograms of RIc data from CuF and JaF, whereas CiF, CuD and SeF had multimodal distributions. RI correlated closely with WDPT, which was used to develop a classification of RI that showed a robust statistical agreement with WDPT classification according to three different versions of Kappa coefficient.

Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. J. Hydrol. Hydromech., 65, 254–363.

Beatty, S.M., Smith, J.E., 2010. Fractional wettability and contact angle dynamics in burned water repellent soils. J. Hydrol., 391, 97–108.

Beatty, S.M., Smith, J.E., 2013. Dynamic soil water repellency and infiltration in post-wildfire soils. Geoderma, 192, 160–172.

Bens, O., Buczko, U., Sieber, S., Hüttl, R.F., 2006. Spatial variability of O layer thickness and humus forms under different pine beech-forest transformation stages in NE Germany. J. Plant Nutr. Soil Sci., 169, 5–15.

Bens, O., Wahl, N.A., Fischer, H., Hüttl, R.F., 2007. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. Eur. J. Forest Res., 126, 101–109.

Blanco-Canqui, H., Lal, R., 2009. Extent of soil water repellency under long-term no-till soils. Geoderma, 149, 171–180.

Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–18.

Buczko, U., Bens, O., Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma, 126, 317–336.

Buczko, U., Bens, O., Hüttl, R.F., 2006. Water infiltration and hydrophobicity in forest soils of a pine–beech transformation chronosequence. J. Hydrol., 331, 383–395.

CAB International, 2002. Pines of Silvicultural Importance. CABI Publishing, Wallingford.

Decagon, 2012. Mini Disk Infiltrometer User’s Manual, Version 10. Decagon Devices, Inc., Pullman, 18 p.

Diehl, D., 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects, 432, 8–18.

de Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J., 63, 437–442.

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resources Research, 30, 2507–2517.

Dekker, L.W., Ritsema, C.J., Oostindie, K., 2000. Extent and significance of water repellency in dunes along the Dutch coast. J. Hydrol., 231–232, 112–125.

Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 1667–1674.

Doerr, S.H., 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surf. Process. Landforms, 23, 663–668.

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev., 51, 33–65.

Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 57–66.

Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings. J. Hydrol. Hydromech., 64, 111–120.

Flores-Mangual, M.L., Lowery, B., Bockheim, J.G., Pagliari, P.H., Scharenbroch, B., 2013. Hydrophobicity of Sparta sand under different vegetation types in the Lower Wisconsin River Valley. Soil Sci. Soc. Am. J., 77, 1506–1516.

Friendly, M., Meyer, D., 2015. Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data. Chapman & Hall. ISBN 9781498725835. Web site for book: ddar.datavis.ca

Garcia, F.J.M., Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Water repellency under natural conditions in sandy soils of southern Spain. Aust. J. Soil Res., 43, 291–296.

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Agron. Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI, pp. 383–411.

Gerke, H.H., Hangen, E., Schaaf, W., Hűttl, R.F., 2001. Spatial variability of potential water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma, 102, 255–274.

Haas, C., Gerke, H.H., Ellerbrock, R.H., Hallett, P.D., Horn, R., 2018. Relating soil organic matter composition to soil water repellency for soil biopore surfaces different in history from two Bt horizons of a Haplic Luvisol. Ecohydrology, 11, Article Number: e1949. https://doi.org/10.1002/eco.1949

Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.

Hallett, P.D., Nunan, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity: scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 352–358.

Islam, K.K., Patricia, S., Rinchen, Y., 2011. Broadleaved regeneration dynamics in the Pine plantation. Journal of Forest Science, 57, 432–438.

Janusauskaite, D., Baliuckas, V., Dabkevicius, Z., 2013. Needle litter decomposition of native Pinus sylvestris L. and alien Pinus mugo at different ages affecting enzyme activities and soil properties on dune sands. Baltic Forestry, 19, 50–60.

Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Henningsen, P., 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. J. Hydrol. Hydromech., 64, 133–140.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.

Krueger, J., Heitkötter, J., Leue, M., Schlüter, S., Vogel, H.-J., Marschner, B., Bachmann, J., 2018. Coupling of interfacial soil properties and bio-hydrological processes: The Flow Cell Concept. Ecohydrology, 11, Article Number: e2024. https://doi.org/10.1002/eco.2024

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. URL: http://www.jstor.org/stable/2529310

Lichner, Ľ., Hallett, P.D., Feeney, D., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of the impact of hydrophobicity on soil water transport under different vegetation over time. Biologia, 62, 537–541.

Lichner, L., Hallett, P.D., Orfánus, T., Czachor, H., Rajkai, K., Šír, M., Tesař, M., 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology, 3, 413–420.

Lichner, Ľ., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 309–318.

Lichner, Ľ., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 1104–1108.

Lichner, Ľ., Rodný, M., Schacht, K., Marschner, B., Chen, Y., Nadav, Y., Tarchitzky, J., 2017. Comparison of various techniques to estimate the extent and persistence of soil water repellency. Biologia, 72, 982–987.

Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ellerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, Article Number: e1991. https://doi.org/10.1002/eco.1991

Lowry, R., 2017. VassarStats - Website for Statistical Computation. http://vassarstats.net/index.html

Orfánus, T., Hallett, P.D., Bedrna, Z., Lichner, Ľ., Kňava, K., Sebíň, M., 2008. Small-scale variation of hydraulic properties in pine forest soil near Sekule, southwestern Slovakia. Soil Water Res., 3, S123–S129.

Ovington, J.D., 1950. The afforestation of Culbin Sands. Journal of Ecology, 38, 303–319.

Papierowska, E., Matysiak, W., Szatyłowicz, J., Debaene, G., Urbanek, E., Kalisz, B., Łachacz, A., 2018. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma, 314, 221–231.

Pekárová, P., Pekár, J., Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia, 70, 1450–1455.

Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83, 345–358.

Rodriguez-Alleres, M., Benito, E., 2011. Spatial and temporal variability of surface water repellency in sandy loam soils of NW Spain under Pinus pinaster and Eucalyptus globulus plantations. Hydrol. Process., 25, 3649–3658.

Rumpel, C., Knicker, H., Kögel-Knabner, I., Skjemstad, J.O., Hüttl, R.F., 1998. Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma, 86, 123–142.

Siteur, K., Mao, J., Nierop, K.G.J., Rietkerk, M., Dekker, S.C., Eppinga, M.B., 2016. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems, 19, 1210–1224.

Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. NRCS, Washington, DC.

Statgraphics, 2014. STATGRAPHICS Centurion XVII User Manual, 311pp. Statpoint Technologies, Inc., The Plains, Virginia, USA. www.STATGRAPHICS.com

Ward, P.R., Roper, M.M., Jongepier, R., Micin, S.F., 2015. Impact of crop residue retention and tillage on water infiltration into a water-repellent soil. Biologia, 70, 1480–1484.

Will, G.M., Raliard, P., 1976. Radiata pine - soil degrader or improver? N.Z. Journal of Forestry, 21, 248–252.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 211 22
PDF Downloads 133 133 12