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Abstract: Empirical formulae are often used in practice to quickly and cheaply determine the hydraulic conductivity of 
soil. Numerous relations based on dimensional analysis and experimental measurements have been published for the de-
termination of hydraulic conductivity since the end of 19th century. In this paper, 20 available empirical formulae are 
listed, converted and re-arranged into SI units. Experimental research was carried out concerning hydraulic conductivity 
for three glass bead size (diameters 0.2 mm, 0.5 mm and 1.0 mm) and variable porosity. The series of experiments con-
sisted of 177 separate tests conducted in order to obtain relevant statistical sets. The validity of various published porosi-
ty functions and empirical formulae was verified with the use of the experimental data obtained from the glass beads. 
The best fit was provided by the porosity function n3/(1–n)2. In the case of the estimation of the hydraulic conductivity of 
uniform glass beads, the best fit was exhibited by formulae published by Terzaghi, Kozeny, Carman, Zunker and Cha-
puis et al. 
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INTRODUCTION 

 
The determination of hydraulic conductivity via field pump-

ing tests may be very costly and time-consuming. At the same 
time, laboratory testing using permeameters may not be a feasi-
ble solution in many cases due to time and cost restrictions. For 
this reason, in many practical studies, namely in preliminary 
aquifer assessment (EPG, 2009; Šoltész and Baroková, 2014, 
etc.), empirical relations appear to be a suitable alternative. 
However, empirical relations have been derived for specific 
conditions and have their applicability limits.  

The typical form of empirical equations for the determina-
tion of hydraulic conductivity comes from dimensional analysis 
based on the Darcy-Weissbach equation (Kasenow, 2002; 
Vuković and Soro, 1992). The general problems with the pro-
posed formulae lie in determining the characteristic pore diame-
ter and expressing the effect of soil non-uniformity and the 
form of the appropriate porosity function which reflects the soil 
compaction rate.  

Probably the first relation was proposed by Hazen (1892). It 
expresses the simple linear dependence between hydraulic 
conductivity and soil porosity. In his formula, Hazen did not 
consider the effect of soil non-uniformity. This is also the case 
with formulae proposed by Slichter (1899) and Terzaghi 
(1925). Kozeny (1927) proposed a formula that was modified by 
Carman (1937, 1939) to become the Kozeny-Carman equation. 

Pavchich (VNIIG, 1991), Sauerbrey (1932), Krüger (1918), 
Kozeny (1953), Zunker (1932), Zamarin (1928), Koenders and 
Williams (1992), and Chapuis et al. (2005) derived the charac-
teristic pore diameter from the effective grain size de and poros-
ity function χ(n) based on the analysis of typical sphere config-
urations (VNIIG, 1991). Most authors (Hazen, Slichter, Ter-
zaghi, Beyer, Harleman et al., Chapuis et al., and others) con-
sidered d10 to be an effective grain diameter, though Sauerbrey 
and Pavchich preferred d17. Authors like Krüger, Kozeny, 
Zunker and others calculated the effective grain diameter from 
the grain size distribution curve. Mallet and Pacquant (1951) 
published frequently used tables expressing hydraulic conduc-
tivity as a function of d20. This dependence was expressed by 

the United States Bureau of Reclamation (USBR) engineers via 
functional dependence. 

Other generally less used formulae were proposed by Fair 
and Hatch (1933), Harleman et al. (1963), Alyamani and Sen 
(1993) and Chesnaux et al. (2011). The use of these formulae is 
restricted by their applicability limits. 

The aim of the authors was to compare and assess the ap-
plicability of selected formulae. Vuković and Soro (1992) and 
Kasenow (2002) summarized and analysed the most important 
formulae with the conclusion that even when applying suitable 
empirical relations to the same soil sample, different resulting 
hydraulic conductivity values may be obtained. Further re-
search conducted by Odong (2007) was focused on the evalua-
tion and comparison of empirical relations with measured val-
ues. Cabalar and Akbulut (2016) measured the hydraulic con-
ductivities of sands of different grain size and shape and com-
pared them with some empirical formulae. Naeej et al. (2017) 
developed a M5 model tree used to predict hydraulic conductiv-
ity based on grain size distribution. An analysis of unconsoli-
dated aquifer materials was performed by Hussain and Nabi 
(2016). Their aim was to compare seven empirical formulae 
with experimental data. Rosas et al. (2014) determined hydrau-
lic conductivity from grain size distribution for 400 samples of 
sediments. 

Some of the empirical formulae developed by different au-
thors vaguely define applicability limits via the simple descrip-
tion of material type without any grain size distribution curves 
or quantification. This often leads to improper use of these 
equations. In many cases the input parameters (namely the 
effective grain size) in the empirical formulae need to be ex-
pressed in units other than those defined by the SI (e.g. mm, 
cm), such as hydraulic conductivity in cm/day, m/day, etc. 

The objective of this paper is to summarize the most com-
monly used empirical formulae, convert them strictly into SI 
units and evaluate their applicability and reliability for glass 
beads of three different diameters. The assessment of porosity 
functions is also included in this paper. This analytical ap-
proach enables the influence of soil non-uniformity and grain 
shape to be excluded from the analysis. Moreover, the grain 
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size is relatively well-defined which is suggested to provide 
lower uncertainty in resulting hydraulic conductivities when 
compared with more complex soils. 

First, a dimensional analysis was performed, and the de-
pendence between porosity and pore size was established, after 
which the relation between hydraulic conductivity and porosity 
was analysed. Second, the determined empirical relations were 
summarized and converted into SI units. Via laboratory exper-
iments the hydraulic conductivities of glass beads of three 
different diameters were determined for variable porosity. 
Finally, the empirical formulae were verified using the results 
of experimental research.  

 
DIMENSIONAL ANALYSIS 

 
Traditionally, the system of pores was described as the sys-

tem of parallel tubes oriented in the flow direction, a concep-
tion sometimes referred to as the “Hydraulic radius model” 
(Bear, 1972).  

The head loss Δh is defined by the Darcy-Weissbach equa-
tion (Vuković and Soro, 1992): 

 
2

2

L v
h

D g
λΔ = , (1) 

 
where L is the tube length, D is the diameter of the tube, v is the 
cross sectional velocity in the tube, g is the gravitational accel-
eration, and λ is the coefficient of friction loss, which in the 
case of laminar flow can be calculated as follows: 

 

64

Re
λ = , (2) 

 
with the Reynolds number Re: 

 

Re
vD

υ
= , (3) 

 
where υ is the kinematic viscosity.  

The hydraulic gradient i along the tube: 
 

h
i

L

Δ= . (4) 

 
After substituting Eqs. (2 to 4) into the Darcy-Weisbach 

equation (1) and some manipulation, one obtains: 
 

2

32 v
i

D g

υ= . (5) 

 
The average velocity in pores may be expressed using the 

Darcy law: 
 

a

ki
v

n
= , (6) 

 
where na is the areal porosity and k is the hydraulic conductivi-
ty. Assuming areal porosity na is equal to volumetric porosity n 
(Bear, 1972), and joining Eq. (5) and (6), the hydraulic conduc-
tivity may be expressed as: 

 

21

32

g
k D n

υ
= . (7) 

The tube diameter D has to be substituted by the representa-
tive minimum pore diameter d0 = D (Vuković and Soro, 1992): 

 

0 ( ) ed f n dα= , (8) 
 

where α is a dimensionless coefficient that depends on the 
characteristics of the porous medium (structure, grain shape, 
uniformity, petrographic composition, tortuosity, etc.), f(n) is 
the porosity function and de is the effective grain diameter of 
the porous medium. Eq. (7) then transforms into: 

 

2 2 2( )
32 e

g
k nf n dα

υ
= . (9) 

 
By introducing χ(n) = nf 2(n) for the porosity function, Eq. 

(9) holds: 
 

2( ) e

g
k n dβχ

υ
= , (10) 

 
where β characterizes the properties of the porous medium and 
includes the constant from Eq. (8). For materials with relatively 
uniform grain size, such as beads, two theoretical limits to 
porosity may be identified (Fig. 1) according to the configura-
tion of the grains (Indraratna and Vafai, 1997). The minimum 
packing corresponds to the void ratio emax = 0.908 and maximal 
achievable porosity nmax = 0.476 corresponds to the ratios:  

 

0 0.414
grain

d

d
= ,       max 0.732

grain

d

d
= , (11) 

 
where dgrain is the diameter of the uniform grain and dmax is the 
maximal pore diameter.  

The maximal packing gives emin = 0.351, nmin = 0.260 and the 
ratios: 

 

0 0.155
grain

d

d
= ,      max 0.224

grain

d

d
= . (12) 

 
Other grain configurations are random and the resulting po-

rosity ranges from 0.260 to 0.476. 
For non-uniform materials, Pavchich (VNIIG, 1991) pro-

posed the following relation: 
 

6
0 170.455

1U

n
d C d

n
=

−
 (13) 

 
where CU is the coefficient of uniformity, n is porosity and d17 
is the grain diameter for 17% finer by weight. In the case of a 
spherical grain material (like glass beads) with CU ≈ 1, Eq. (13) 
can be written as follows: 

 

0

17

0.455
1

d n

d n
=

−
. (14) 

 
EMPIRICAL FORMULAE 

 
Empirical formulae for the hydraulic conductivity estimate 

k stem from Eq. (10), while the porosity function is frequently 
determined from Eq. (13). The following list was assembled via 
the comparison and critical analysis of the available literature 
sources. All formulae have been rewritten into dimensional  
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Fig. 1. Schematization of the packing of spherical grains, and 
possible pore size. 
 
form (10), while the empirical coefficients have been recalculated 
in order to ensure SI units are used, i.e. grain diameters are 
expressed in [m] and hydraulic conductivity in [m/s]. The influ-
ence of temperature is included in the kinematic viscosity 
[m2/s].  
 
Hazen (1892) 
 

2
,2 10[1 10( 0.26)]H

g
k C n d

υ
= + − , (15) 

 
where d10 is the grain diameter for 10% finer by weight and 
coefficient CH,2 = 6x10–4. Eq. (15) may be used to estimate the 
hydraulic conductivity of sand with de from 0.1 to 3 mm with 
the coefficient of uniformity CU < 5. 

Slichter’s (1899) formula can be used to estimate the hy-
draulic conductivity of soil with de from 0.01 to 5.0 mm: 

 

3.287 2
100.01

g
k n d

υ
= . (16) 

 
Terzaghi (1925) 
 

2
2

103

0.13

1
T

g n
k C d

nυ
− =  − 

, (17) 

 
where CT depends on the grain shape (CT = 10.7x10–3 for 
smooth grains and CT = 6.1x10–3 for coarse grains). Eq. (17) 
may be used for large-grained sands. 

 
Beyer (1964) 
 

2
10B

g
k C d

υ
= , (18) 

 
where CB is: 

 

500
0.0006logB

U

C
C

= . (19) 

 
This formula can be used for soils with 0.06 ≤ de ≤ 0.6 mm, 

and with CU ranging from 1 to 20. 
 

Sauerbrey (1932) 
 

3
2

172(1 )Z

g n
k C d

nυ
=

−
, (20) 

 
where CZ = 3.75x10–3. Eq. (20) can be used for soils with de up 
to 5.0 mm. 

 
Krüger (1918), Densch et al. (1930), Kasenow (2002) 

 
The Krüger (1918) formula is mentioned in several publica-

tions (Densch et al., 1930; Kasenow, 2002; Vuković and Soro, 
1992) in a different form. Vuković and Soro (1992) and also 
Kasenow (2002) mention the following dimensional form: 

 

2
2(1 )K e

g n
k C d

nυ
=

−
, (21) 

 
where CK = 4.35x10–3, n is porosity and de is effective grain 
defined as follows: 
 

1

1 2N
i

g d
ie i i

g

d d d=

Δ=
+ , (22) 

 
where Δgi is the fraction of mass that passes between sieves i 
and i+1 where i is the smaller sieve, and di

g and di
d are the 

maximum and minimum grain diameter corresponding to the i-
th fraction. Eqs. (21) and (22) can be used for sands of medium 
grain size with CU > 5, N is the number of fractions. 

However, Kasenow (2002) also mentions the form of Eq. 
(21) with a geometrically justified porosity function corre-
sponding to Eqs. (20), (23), (27) and others. This form exhibits 
much better agreement with measured values than Eq. (21); see 
the Discussion section.  
 
Kozeny (1927, 1953) 
 

3
2

2(1 )KO e

g n
k C d

nυ
=

−
, (23) 

 
where CKO = 8.3x10–3 and de is effective grain size determined 
as follows: 
 

1

21

1 3

2 2

g dN
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i g d
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g d d
g

d d d d=

Δ += + Δ , (24) 

 
with the same notation as in Eq. (22). This formula can be used 
for coarse-grained sands.  
 
Zunker (1932) 
 

2
2

1ZU e

g n
k C d

nυ
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, (25) 

 
where CZU is an empirical coefficient that depends on the po-
rous medium (Table 1), de is given by the formula: 
 

1

1
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d d
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Table 1. Empirical coefficient for the Zunker formula (Kasenow, 
2002). 
 
Characteristics of the porous medium CZU [–] 

Uniform sand with smooth, rounded grains 2.4x10–3

Uniform composition with coarse grains 1.4x10–3

Nonuniform composition 1.2x10–3

Nonuniform composition, clayey, with grains of irregular shape 0.7x10–3

 
with the notation from Eq. (22). Eq. (26) can be applied for fine 
and medium-grained sands. 
 
Zamarin (1928) 
 

3
2

2(1 )ZA n e

g n
k C C d

nυ
=

−
, (27) 

 
where CZA = 8.64x10–3 is the empirical coefficient and Cn is a 
factor that depends on the porosity: 
 

( )2
1.275 1.5nC n= − . (28) 

 
Effective grain size de is given for materials containing 

grains finer than 0.0025 mm as follows: 
 

1
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where d1 is the largest diameter of the finest fraction and Δg1 is 
the weight of the finest fraction. For materials that do not con-
tain fractions finer than 0.0025 mm, the effective grain size can 
be obtained as follows: 
 

1

ln
1

g
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i

i g d
ie i i

d

d
g

d d d=
= Δ

− . (30) 

 
Eq. (27) can be used for fine and medium-grained sands. 

 
USBR (Mallet and Pacquant, 1951) 
 

2
20US

g
k C d

υ
= , (31) 

 
where d20 is the diameter of the 20 percentile grain size of the 
material and CUS is: 
 

0.3
200.00048(1000 )USC d= . (32) 

 
The USBR formula, also tabulated by Mallet and Pacquant 

(1951), is recommended for medium-grained sands with 
CU < 5. 
 
Pavchich (VNIIG, 1991) 
 

3
23

1 172

0.04

(1 )U

n
k C d

nυ
ϕ=

−
, (33) 

 

where φ1 is the coefficient depending on the grain size (φ1 = 1 
for gravel sands, φ1 = 0.35–0.40 for gravel), Eq. (33) can be 
used for grain sizes ranging from 0.06 mm to 1.5 mm. 

Seelheim (1880) 
 

2
503570k d= , (34) 

 
where d50 is the diameter of the 50 percentile grain size. The 
formula was tested on sands, clay and elutriated chalk. 

 
Kozeny-Carman (Carrier, 2003)  
 

The following equation, which depends on the specific sur-
face area of grains, was derived by Kozeny and Carman: 
 

3

2 2
0

1

(1 )KC

g n
k C

S nν
=

−
, (35) 

 
where CKC = 480 ± 30 is the empirical coefficient, and S0 is the 
specific surface of particles (1/m). For uniform spherical grains 
Eq. (35) can be written as follows: 
 

3
2

2

6

(1 )KC e
e

g n
k C d

d nν
=

−
, (36) 

 
where de is the uniform grain diameter (dgrain). The formula is 
not appropriate for clayey soils, but it is applicable for silts, 
sands and gravel sands. 
 
Harleman et al. (1963) 
 

4 2
106.54 10x

g
k d

υ
−= . (37) 

 
Koenders and Williams (1992)  
 

This formula was derived from the Kozeny-Carman equa-
tion: 
 

2
2

50

1

1

n
k n d

n
χ

υ
 =  − 

, (38) 

 
where χ is the proportionality coefficient (χ = 0.0035 ± 0.0005) 
and d50 is the median grain diameter. It is then applicable for 
silts, sands and gravelly sands. 

The following authors used formulae that are rather different 
in form compared to Eq. (10). 
 
Alyamani and Sen (1993) 
 

( ) 2

50 1015046 0.025ok I d d = + −   (39) 

 
where Io is the intercept point [m] of the line formed by points 
d50 and d10 with the grain size axis. The formula can be used for 
well-distributed samples only. 
 
Chapuis et al. (2005) 
 

2.3475
1.565

101.565
1219.9

(1 )

n
k d

n
=

−
 (40) 

 
The formula is applicable for soils with d10 ranging from 

0.03 to 3 mm. 
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Fair and Hatch (1933)  
 

( )
3

2

1

1

1
100

N
i

i mi

g n
k

Pn m
d

υ θ
=

=
 −
 
 


, (41) 

 

where m = 5 is the empirically obtained packing factor, θ is the 
shape factor ranging from 6 to 7.7 (spherical to angular grains), 
dmi is the geometric mean of the grain fraction, and Pi is the 
percentage of sand between adjacent sieves determined by the 
following equation: 
 

100i iP wf= , (42) 
 
where wfi is the weight of the fraction retained on sieve i. For 
the geometric mean dmi it holds that: 
 

1mi i id ds ds += , (43) 

 
where dsi is the size of the sieve openings for sieve i. This for-
mula is applicable for sands. 
 
NAVFAC DM7 (Chesnaux et al., 2011) 
 

11 3.319171 1
100.2272(1.772189 10 ) [ ]x

n n

n nk d− −= . (44) 
 

The formula was derived for sands with n ranging from 0.23 
to 0.41, CU ranging from 2 to 12, d10/d5 > 1.4 and d10 ranging 
from 0.1 mm to 2 m 

 
EXPERIMENTAL RESEARCH 

 
Experiments were carried out in order to verify the porosity 

function and empirical formulae for uniform material laborato-
ry experiments on glass beads of three different diameters. This 
experimental research aimed to obtain a sufficient number (at 
least 50) of hydraulic conductivity measurements for individual 
glass beads of different diameters with various porosities. The 
numbers of performed experiments are mentioned in Table 4. 
 
Equipment 

 
The laboratory experiments were performed using a perme-

ameter (plastic cylinder) with upward vertical seepage flow. A 
permeameter consists of a cylinder containing the sample 
mounted on a frame. The lower part is connected to a water 
supply and the upper part is connected to an outlet pipe. Pie-
zometers are located below and above the sample. The seepage 
flow is generated by a vertically movable water tank that can be 
adjusted to provide different hydraulic gradients. The movable 
tank is equipped with a pump that draws water from a storage 
tank. Water flowing through the permeameter outlet is collected 
and conveyed back to the storage tank. A schematic diagram of 
the experimental apparatus is shown in Fig. 2. 
 
Preliminary measurements  

 
A detailed investigation using an electron microscope 

showed that the sizes of the glass beads did not exactly match 
the interval declared by the manufacturer. Therefore, bead 
diameter measurements were conducted using a digital Vernier 
calliper for each declared (commercial) grain size in order to set 
up the grain size distribution curves (Fig. 3). The curves pro- 
 

 
 

 
 

Fig. 2. Schematic diagram of the experimental apparatus. 

 

 
 

Fig. 3. Grain size distribution curves of the tested glass beads. 
 
vided good fits with the electron microscope and the grain size 
characteristics were set (Table 3). 
 
Experimental procedure and results 

 
In order to obtain glass bead samples with randomly different 

porosity, the samples were added to the permeameter via meth-
ods involving free fall and compaction by vibration for variable 
durations. The porosity of each sample was determined by 
weighing it and then measuring its volume in a Darcy cylinder. 

The various piezometric heads (and thus hydraulic gradients) 
were achieved by gradually raising the upper movable tank 
(Fig. 2). The seepage discharge was measured each time the 
tank was raised. In total, 177 laboratory experiments were 
performed on the glass beads (Table 4).  

The dependence of the hydraulic conductivity k on the po-
rosity n was evaluated separately for each bead diameter 
(Fig. 4). The porosity and hydraulic conductivity ranges are 
summarized in Table 4. The expected measurement accuracy 
for individual variables is summarised in Table 5. 
 
COMPARISON OF EXPERIMENTAL RESULTS WITH 
EMPIRICAL FORMULAE 
Comparison of measured porosity with empirical results 

 

 
First, the porosity functions χ(n) used in the above-described 

empirical formulae (Table 2) were analysed. In Fig. 5 the corre-
lation between porosity functions χ(n) and the ratio between 
measured hydraulic conductivity and effective grain size (k/de

2) 
is plotted. Only results with a fairly good fit are presented in 
Fig. 5, those being obtained by Terzaghi (1925), Sauerbrey 
(1932), Pavchich (VNIIG, 1991) and Chapuis et al. (2005).  
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Table 2. Summary of empirical formulae. 
 

Number of 
formula 

Author β χ(n) de Use 

1 Hazen (1892) 6x10–4 [1 10( 0.26)]n+ −  d10 
sands, 0.1 mm ≤ d10 ≤ 3 mm 
CU < 5 

2 Slichter (1899) 0.01 n3.287 d10 0.01 mm ≤ d10 ≤ 5 mm 

3 Terzaghi (1925) 

10.7x10–3 – smooth 
grains 
6.1x10–3 – coarse 
grains 

2

3

0.13

1

n

n

− 
 − 

 d10 large-grained sands 

4 Beyer (1964) 
500

0.0006log
UC

  d10 
0.06 mm ≤ d10 ≤ 0.6 mm 
1 ≤ CU ≤ 20 

5 Sauebrej (1932) 3.75x10–3 
3

2(1 )

n

n−
 d17 d17 ≤ 5 mm 

6 
Krüger (Kasenow, 
2002) 

4.35x10–3 2(1 )

n

n−
 Eq. (22) 

sands of medium grain size 
CU > 5 

7 Kozeny (1953) 8.3x10–3 
3

2(1 )

n

n−
 Eq. (24) coarse-grained sands 

8 Zunker (1932) Table 1 
2

1

n

n
 
 − 

 Eq. (26) 
fine and medium-grained 
sands 

9 Zamarin (1928) 8.64x10–3 
3

2
2

(1.275 1.5 )
(1 )

n
n

n
−

−
 

Eq. (29) 
Eq. (30) 

fine and medium-grained 
sands 

10 
USBR (Mallet and 
Pacquant, 1951) 

0.3
200.00048(1000 )d   d20 

medium-grained sands 
CU < 5; T = 15 °C 

11 
Pavchich  
(VNIIG, 1991) 0.04 3

1 UCϕ  
3

2(1 )

n

n−
 d17 0.06 mm ≤ d17 ≤ 1.5 mm 

12 Seelheim (1880) 3570  d50 
sands, clay and elutriated 
chalk 

13 
Kozeny-Carman 
(Carrier, 2003) 

480 ± 30 
3

2(1 )

n

n−
 dgrain uniform spherical grains 

14 
Harleman et al. 
(1963) 

6.54x10–4  d10  

15 
Koenders and  
Williams (1992) 

0.0035 ± 0.0005 
2

1

n
n

n
 
 − 

 d50 
silts, sands and gravelly 
sands 

16 
Alyamani and Sen 
(1993) 

15046  IO, d50, d10 well-distributed sample 

17 
Chapuis et al. 
(2005) 

1219.9 
2.3475

1.565(1 )

n

n−
 d10 0.03 mm ≤ d10 ≤ 3 mm 

18 
Fair and Hatch 
(1933) 

1 ( )
3

2
1

n

n−
 

1100

N
i

i mi

P
m

d

θ
=

 
 
 

  
sands 
m = 5 
6 ≤ θ ≤ 7.7 

19 
NAVFAC DM7  
(Chesnaux et al., 
2011) 

0.2272 11 1(1.772189·10 )
n

n−  d10 

0.23 ≤ n ≤ 0.41 
2 ≤ CU ≤ 12 
d10/d5 > 1.4 
0.1 mm ≤ d10 ≤ 2 mm 

 
Table 3. Grain size characteristics. 
 

Diameter 
dmin–dmax 

d10 d17 d20 d60 de,Krüger, Zamarin, Zunker de,Kozeny CU 

mm mm mm mm mm mm – 

0.14–0.21 0.16 0.17 0.17 0.19 0.18 0.18 1.19 

0.36–0.63 0.39 0.43 0.43 0.52 0.49 0.48 1.33 

0.84–1.06 0.85 0.87 0.88 0.97 0.94 0.92 1.14 

 
For each data set a linear relation between the hydraulic con-
ductivity and the porosity function was assumed depending on 

Eq. (10). Determination coefficients were evaluated in order to 
assess the best fit. 
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Table 4. Summary of performed experiments and the minimum and maximum values of porosity and hydraulic conductivity. 
 

Grain diameter  
Number of  

experiments 
Porosity Hydraulic conductivity 

Minimum Maximum Minimum Maximum 
[mm] [–] [–] [–] [m/s] [m/s] 

0.14–0.21 52 0.377 0.446 0.00416 0.00922 
0.36–0.63 53 0.368 0.437 0.00110 0.00220 
0.84–1.06 72 0.353 0.416 0.00013 0.00036 

 

 
 

Fig. 4. Dependence of hydraulic conductivity on porosity.  

 

 
 

Fig. 5. Correlation between χ(n) and (k/de
2). 

 
Table 5. Summary of measurement accuracy. 

 
Accuracy of directly measured variables 

Variable Accuracy 
Glass bead diameter 0.01 mm 
Weight 0.0001 kg 
Permeameter diameter 0.25 mm 
Length of sample 025 mm 
Piezometric heights 0.25 mm 
Temperature 0.25 °C 
Time 0.05 s 

The dependence between the most frequently used porosity 
function from Eq. (10) and the measured hydraulic conductivi-
ties and for de = d10 was added to the graph. This provided the 
best fit with R2 ≈ 0.956. As regards the empirical formulae, the 
closest values to the measured data were obtained from the 
Chapuis (2005) and empirical Terzaghi (1925) porosity func-
tions. A relatively good fit was also provided by the geometri-
cally based relation (14) derived by Pavchich (VNIIG, 1991) 
and Sauerbrey (1932) with R2 ≈ 0.885. 
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Comparison of the measured hydraulic conductivity with 
the empirical formulae 

 
Figs. 6 to 10 show comparisons of the measured conductivi-

ty values with the calculated values gained from the empirical 
formulas. The ratio k/de

2 used in the plots enables the joint 
comparison of results for all tested bead diameters. This com-
parison was not performed for formulae that do not meet ap-
plicability limits, such as Alyamani and Sen (1993), Fair and 
Hatch (1933) and Chesnaux et al. (2011). 

To quantify the rate of agreement numerically, the sums of 
the standardised squares of the residuals Σε were expressed in 
Table 6:  

 

( )2

2
1

N
i calculated i measured

i i measured

k k

k
ε − −

= −

−
Σ =  (45) 

 
where ki-calculated and ki-measured are hydraulic conductivities ob-
tained from empirical formulae and from measurements, re-
spectively, and N = 177 is the number of measurements. 
 
 

DISCUSSION 
 
The analysis of the porosity functions shows that the best fit 

is provided by a commonly used porosity function based on Eq. 
(13), or on (14) with the effective grain d10. A quite good fit is 
also achieved by the dependence proposed by Terzaghi (1925). 
This is especially true for the measured hydraulic conductivities 
when de = d17. 
In Figs. 6 to 10 it can be seen that there are considerable  
differences between the empirical formulae listed above. 
This is because the individual formulae were derived for specif-
ic conditions via different methods. Some are geometrically and 
physically justified, while others are pure regression dependen-
cies which are not supported by dimensional analysis. 

A visual check of Figs. 6 to 10 indicates that for uniform 
glass beads the best fit with the measured hydraulic conductivi-
ties is provided by the formulae published by Terzaghi (Fig. 6), 
Kozeny-Carman, Zunker (Fig. 8) and Chapuis et al. (Fig. 9). A 
still reasonable degree of agreement is given by the formulae by 
Hazen, Zamarin, Sauerbrey and Pavchich. 
 

 

Table 6. Sums of standardized squared deviations for empirical formulae (ascending order). 
 

Author Formula number in Table 2 Eq. number  Sum of standardized squared deviations Σε 
Kozeny-Carman (Carrier, 2003) 13 (35) 1.25 
Zunker (1932) 8 (25) 1.38 
Terzaghi (1925) 3 (17) 1.80 
Zamarin (1928) 9 (27) 6.07 
Pavchich (VNIIG, 1991) 11 (33) 7.45 
Sauerbrey (1932) 5 (20) 7.63 
USBR (Mallet and Pacquant, 1951) 10 (31) 16.36 
Chapuis et al. (2005) 17 (40) 18.80 
Kozeny (1953) 7 (23) 26.47 
Harleman et al. (1963) 14 (37) 28.25 
Beyer (1964) 4 (18) 30.91 
Hazen (1892) 1 (15) 31.60 
Seelheim (1880) 12 (34) 46.34 
Slichter (1899) 2 (16) 51.29 
Koenders and Williams (1992) 15 (38) 145.47 
Krüger (Kasenow, 2002) 6 (21) 5284.86 

 
 

 
 
Fig. 6. Comparison of calculated and measured hydraulic conductivity – part 1.  
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Fig. 7. Comparison of calculated and measured hydraulic conductivity – part 2. 
 

 
 

Fig. 8. Comparison of calculated and measured hydraulic conductivity – part 3. 
 

 
 

Fig. 9. Comparison of calculated and measured hydraulic conductivity – part 4. 
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Fig. 10. Comparison of calculated and measured hydraulic conductivity – part 5. 
 
Table 7. – Ratios of calculated and measured values. 
 

Formula number 
in Table 2 

Equation 
number 

Agreement ratio 
Min. (Amin) Max. (Amax) 

1 (15) 0.87 1.98 

2 (16) 0.35 0.63 
3 (17) 0.78 1.39 

4 (18) 0.81 2.30 

5 (20) 0.60 0.94 
6 (21) 4.85 9.93 

7 (23) 1.49 1.75 

8 (25) 0.76 1.36 
9 (27) 0.67 1.35 

10 (31) 0.29 0.60 

11 (33) 0.68 1.11 
12 (34) 0.28 0.81 

13 (35) 0.80 1.24 

14 (37) 0.34 1.10 
15 (38) 0.07 0.11 

17 (40) 0.60 1.98 

 

 
 
Fig. 11. Minimal and maximal agreement ratios. 

 
In contrast, the worst agreement is provided by the formula 

derived by Krüger and also formulae which do not take the 
porosity effect into account, specifically those by Seelheim, 
USBR, Harleman et al. and Beyer, which show practically no 
agreement. Interesting results were achieved when the porosity 
function n3/(1–n)2 was implemented into the Krüger formula. 

The originally poor fit shown in Fig. 9 was significantly im-
proved by this alteration. Other empirical formulae tend to 
overestimate or underestimate the hydraulic conductivity more 
significantly in comparison to conducted measurements. To 
gain an idea about the rate of agreement, the ratios between the 
calculated and experimentally measured hydraulic conductivity 
values were computed: 
 

emp

mea

k
A

k
= , min min( )A A= , max max( )A A=  (46) 

 
where A is the agreement ratio, kemp is the hydraulic conductivi-
ty obtained from an empirical formula, and kmea is the hydraulic 
conductivity obtained from measurements. The ratio A was 
enumerated for all measurements and formulae and its mini-
mum and maximum values were identified for each formula 
(Table 7, Fig. 11). The best fit is represented by A = 1.0. 

From the graphs in Figs. 6, 7, 9 two or three slightly differ-
ent clusters in the term k/de

2 may be identified for individual 
formulae, namely e.g. Hazen (Fig. 6), Zamarin (Fig. 7), Krüger 
and Chapuis (Fig. 9). This fact may be attributed to the increas-
ing effect of surface tension with decreasing grain size, a factor 
which is not included in the porosity function. Here, the “effec-
tive porosity” (Bear, 1972) should be used instead of “dry” 
porosity in empirical equations. 
 
CONCLUSION  

 
In the study, empirical formulae for determining hydraulic 

conductivity were presented and transformed into dimensional 
form using SI units (m, m/s, etc.). The advisability of using 
porosity functions in empirical formulae was examined along 
with their applicability for uniform spherical grains using the 
results of 177 laboratory tests on glass beads of three different 
diameters.  

The best fit was provided by the geometrically derived po-
rosity function n3/(1–n)2 based on Eq. (13) when de = d10 was 
used. For uniform glass beads the best fit was exhibited by 
formulae published by Terzaghi (Eq. (17)), Kozeny-Carman 
(Eq. (36)), Zunker (Eqs. (25, 26)) and Chapuis et al. (Eq. (40)). 
If applied porosity function n3/(1–n)2 into the Krüger formula 
Eq. (21) very good fit with measured values is also achieved. 



Assessment of empirical formulae for determining the hydraulic conductivity of glass beads 

347 

The comparison shows the increasing effect of surface ten-
sion and capillary forces with decreasing grain size. Further 
research should be focused on this effect and the use of “effec-
tive porosity” instead of standard porosity in empirical formu-
lae. 
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