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Abstract: Optimal operation of reservoir systems is the most important issue in water resources management. It presents 
a large variety of multi-objective problems that require powerful optimization tools in order to fully characterize the ex-
isting trade-offs. Many optimization methods have been applied based on mathematical programming and evolutionary 
computation (especially heuristic methods) with various degrees of success more recently. This paper presents an im-
plementation and comparison of multi-objective particle swarm optimization (MOPSO) and non-dominated sorting ge-
netic algorithm II (NSGA-II) for the optimal operation of two reservoirs constructed on Ozan River catchment in order to 
maximize income from power generation and flood control capacity using MATLAB software. The alternative solutions 
were based on Pareto dominance. The results demonstrated superior capacity of the NSGA-II to optimize the operation 
of the reservoir system, and it provides better coverage of the true Pareto front than MOPSO. 
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INTRODUCTION 

 
Numerous engineering optimization problems are so com-

plex and troublesome; therefore they cannot be solved by tradi-
tional optimization techniques. The operation of reservoir sys-
tem is a multi-objective problem and a difficult task to estimate 
reservoir operation policies that maximize all the benefits sup-
plied by these reservoirs and also minimize their invisible im-
pacts. The curse of dimensionality is a common problem for 
classical methods, especially for four reservoir systems and 
more. Complexity of the optimization model of multi-objective 
operation systems is the main cause of more interest in the use 
of heuristic methods among researchers, because these methods 
are able to find appropriate responses even when functions are 
non-linear, discontinuous and non-derivable. 

Over the past years, several optimization techniques and 
multi-objective evolutionary algorithms have been developed 
and applied to optimize reservoir operation. These include 
Linear Programming (LP add 1 reference); Nonlinear Pro-
gramming (NLP add 1 reference); Dynamic Programming (DP 
add 1 reference); Stochastic Dynamic Programming (SDP add 1 
reference); Multi-objective differential evolution algorithm 
(MDEA); and Heuristic Programming such as Genetic Algo-
rithm (GA) and Particle Swarm Optimization (PSO) analyze 
multi-objective optimization problems and provide useful in-
sight about solutions that are generated using an population-
based approach. Schaffer (1985) proposed an extension of the 
simple GA (SGA) to accommodate vector-valued fitness 
measures, which he called the Vector Evaluated Genetic Algo-
rithm (VEGA). After him, several researchers have been study-
ing in this field and different methods with different capabilities 
were developing that many of them were presented in an over-
view and tutorial by Konak et al. (2006). NSGA-II was devel-
oped by Kalyanmoy et al. (2002) and till date several variants 
and applications for NSGA II have been developed (Chang and 
Chang, 2009; Ishibuchi et al., 2008; Malekmohammadi et al., 
2011). Kalyanmoy and Jain (2012) proposed and applied MO-
NSGA-II to a number of many-objective test problems with 

three to 10 objectives (constrained and unconstrained) and 
compared with a recently EMO algorithm (MOEA/D, add 
reference). The results reveal difficulties of MOEA/D in solv-
ing large-sized and differently-scaled problems, whereas MO-
NSGA-II was reported to show a desirable performance on all 
used test-problems. An improved MO-NSGA-II with enhanced 
mating selection was used for many-objective optimization by 
Chen and Chiang (2014). Rio et al. (2010) applied an improved 
NSGA-II based on a novel ranking scheme to the problem of 
classifying types of leukemia based on microarray data. Results 
of comparative tests showed that the improved algorithm per-
forms well on large populations. 

MOPSO was proposed by Moor and Chapman (1999) to op-
timize more than one objective functions and till now many 
variants and applications for MOPSO have been developed. 
Baltar and Fontane (2006a, 2006b) have been used MOPSO 
variant to minimize deviations from outflow water quality 
(targets of: temperature, dissolved oxygen, total dissolved sol-
ids and pH).  They also presented an application of an evolu-
tionary optimization algorithm for multi-objective analysis for 
reservoir operations and planning. Reddy and Kumar (2007, 
2009) presented and applied Elitist-Mutation operator with 
MOPSO (EM-MOPSO) to find minimization of the sum of 
squared deviations for irrigation, maximization of hydropower 
production and satisfaction level of downstream river water 
quality requirements. Also, they used an Elitist-Mutated MOP-
SO (EM-MOPSO) to maximize hydropower production and 
minimize annual sum of squared of irrigation release from 
demands. Shuai et al. (2012) applied modified MOPSO to 
minimize highest water level, releasing peak discharge, differ-
ence of water level after flood season and flood control level. 
Eberhart and Kennedy (1995) introduced a new form of particle 
swarm optimizer. Ostadrahimi et al. (2011) improved the per-
formance of the standard particle swarm optimization algorithm 
and incorporated a new strategic mechanism called multi-
swarm algorithm and used for multi-objective reservoir opera-
tion rules. Fallah-Mehdipour et al. (2011) presented three multi-
objective optimization methods based on multi-objective parti-
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cle swarm optimization (MOPSO) algorithm. To evaluate these 
methods, they considered bi-objective mathematical benchmark 
problems. Results show that all proposed methods are success-
ful in finding near-optimal Pareto fronts. Yang (2012) proposed 
a new particle swarm optimization algorithm solving hierarchy 
multi-objective problems and applied it to optimize the opera-
tion of hydropower stations. However, some other extensive 
reviews of different available techniques can be found else-
where (Adeyemo, 2011; Ajibola and Adewumi, 2014; Bianchi 
et al., 2009). Kumar and Minz (2014) provided a proper con-
cept of particle swarm optimization and the multi-objective 
optimization problem in order to build a basic background with 
which to conduct multi-objective particle swarm optimization. 
Patil and Dangewar (2014) presented a comprehensive review 
of a multi-objective particle swarm optimization (MOPSO) 
reported in the specialized literature. Yusoff et al. (2011) pro-
posed an overview on NSGA-II optimization techniques of 
machining process parameters. Based on the above techniques, 
in this paper, application of NSGA-II and MOPSO algorithms 
in operation of two-reservoir systems to maximize incomes due 
to the hydropower sale and flood control is proposed.  

 
MATERIALS AND METHODS 

 
Multi-objective optimization is an important part of multiple 

criteria decision making. It has been applied in many fields of 
science, including engineering, economics and logistics, where 
optimal decisions need to be taken in the presence of trade-
offs between two or more conflicting objectives. In the optimi-
zation problems with incomplete data and information or  
restricted calculation capacity meta-heuristic is a robust proce-
dure (Blum and Roli, 2003). Meta-heuristics sample a set of 
solutions which is excessively enormous to be entirely demon-
strated. In comparison with another optimization algorithms 
and iterative methods, meta-heuristics do not guarantee 
a globally optimal solution  on some class of problems (Kenne-
dy and Eberhart, 1995). Many meta-heuristics carry out some 
forms of stochastic optimization, therefore the solution found is 
conditional on the set of random variables generated. Meta-
heuristics can frequently find excellent solutions with less 
calculative attempt than optimization algorithms, iterative 
methods, or simple heuristics by searching over a large set 
of feasible solutions. So, meta-heuristics are applicable meth-
ods for optimization problems. Several books and survey pa-
pers have been published on the subject. NSGA-II and MOPSO 
are the well-known meta-heuristic optimization methods for 
multi-objective optimization in water resource management.  
For a nontrivial multi-objective optimization problem, there is 
not a single solution that simultaneously optimizes each objec-
tive. Therefore, the objective functions are mentioned to be 
contradictory, and there are a number of Pareto optimal solu-
tions. If none of the objective functions can be enhanced in 
value without humiliating some of the other objective values 
the solution is called non-dominated Pareto optimal. Without 
extra subjective precedence information, all Pareto optimal 
solutions are taken into account equally well. The aim is to find 
a typical set of Pareto optimal solutions, and/or determine the 
trade-offs in gratifying the distinctive objectives, and/or finding 
a single solution that satiates the subjective priorities of a deci-
sion maker (DM). 
 
Multi-objective particle swarm optimization 

 
Swarm Intelligence (SI) is mainly defined as the behavior of 

natural or artificial self-organized, decentralized systems. 

Swarms interact locally with each other or with external agents, 
i.e. environment, and can be in the form of bird flocks, ants, 
bees etc. Introduced by Srinivas and Kalyanmoy (1994) for 
optimizing continuous nonlinear functions, Particle Swarm 
Optimization (PSO) defined a new era in SI. PSO is a popula-
tion based method for optimization. The population of the 
potential solution is called as swarm and each individual in the 
swarm is defined as particle. The particles in the swarm search 
their best solution based on own experience and the other parti-
cles of the same swarm. PSO started to hold the grip amongst 
many researchers and became the most popular SI technique 
soon after getting introduced, but due to its limitation of opti-
mization only of single objective, a new concept Multi-
Objective PSO (MOPSO) was introduced, by which optimiza-
tion can be performed for more than one conflicting objectives 
simultaneously. As mentioned, MOPSO was proposed by Moor 
and Chapman (1999) to optimize more than one objective func-
tions. In MOPSO instead of a single solution a set of solutions 
are determined, also called Pareto optimal set. The framework 
of MOPSO is shown in Figure 1.  
 
Non-dominated sorting genetic algorithm-II  

 
NSGA-II is the latter version of the popular “Non-dominated 

sorting genetic algorithm” developed in 2002 by Srinivas and 
Kalyanmoy (1994) to solve non-convex and non-smooth single 
and multi-objective optimization problems. Compared to 
NSGA it is a useful algorithm which has an improved mating 
mechanism dependent upon the crowding distance and per-
forms constraints using an adapted explanation of dominance 
without the use of penalty functions. The population initializa-
tion is done as before. At the beginning, a zero level is allocated 
to all non-dominated individuals. During elimination of the 
individuals from the population, the lately non-dominated solu-
tions are allocated level one. This procedure goes on up to the 
time which all solutions have been allocated a non-domination 
level. Parents selecting process is carried out using binary tour-
nament selection on the basis of the lesser rank and greater 
crowding distance. The next step includes off-springs generat-
ing from the selected population using crossover and mutation 
operators, which will be discussed in the following. Finally, the 
present off-springs and population are sorted another time 
dependent upon the non-domination and just the best individu-
als with the number of the population size (P). The flowchart of 
the NSGA-II is shown in Figure 2. 
 
Case study 

 
The two proposed techniques are applied to find non-

dominated solutions for the operation of two reservoirs system 
in the Ozan catchment. Ostoor and Pirtaqi dams are located in 
the Ozan catchment with longitude coordinate 48o 53′ 0.59′′ and 
41o 13′ 51.6′′ eastern and latitude coordinate 37o 30′ 24.7′′ and 
37o 28′ 4.4′′ northern, respectively. Their locations are shown in 
Figure 3. 

The case study includes two consecutive reservoirs with a 
hydroelectric power plant in the downstream of each dam. The 
inflow of Pirtaqi dam is equal to the total discharge from the 
Senghor Chay River, output water from the turbines and over-
flow from Ostoor dam. A schematic of the optimization prob-
lem is shown in Figure 4.  

According to the electricity consumption in different sea-
sons, the selling price of electricity in each season is different. 
So that, in spring and summer due to greater demand, electricity 
costs will be higher than autumn and winter. On the other hand, 
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Fig. 1. Flowchart of multi-objective particle swarm optimization. 
 

 

 
 
Fig. 2. Flowchart of NSGA-II. 
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Fig. 3. The position of two reservoirs system. 
 
in February, March, April and May the river inflows into the 
reservoir have highest discharge so these four months are con-
sidered as the flood months. Therefore, because flood control 
the normal water level should be kept on the lowest level. The 
objective functions used in the model are as below. 
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Equations (1) and (2) are for maximization of hydroelectric 
energy production and flood storage volume, respectively, 
where T is the time horizon (12 months) of Exploitation model, 
PWP is proceeds from the sale of a unit of the produced energy 
in month t in Rial/MWh, Ct is constant coefficient of flood in 
month t that in the flood months is equal to 1 and in the other 
months is zero, ௜ܵ௡ is reservoir volume i at normal level in terms 
of cubic meters, ௜ܵ௧ is reservoir volume i in terms of cubic me-
ters in the beginning of the month t, ܲܧ௜௧ is energy generated in 
the reservoir i in month t in Watts and n is the number of the 
under investigation reservoirs. 

Constraints used in the model include the following three 
parts: 

 
a. Water balance in the reservoir 
 

1
1 1 1 1 1 1 1
t t t t t t tS S I P E R Spill+ = + + − − −    (3) 

 
1

2 2 2 3 2 2 2 2
t+ t t t t t t tS = S + I + I + P E R Spill− − −          (4) 

 

maxdead tS S S≤ ≤                         (5) 
 

where St and St+1 are storage of each reservoir at the beginning 
and end of the time period t, respectively, ܫଵ௧ and ܫଶ௧ are inflow 
discharges to the reservoirs, ଵܲ௧ and 	 ଶܲ௧ are the rainfall over the 
reservoirs, ܧଵ௧ and ܧଶ௧ are the evaporation from the reservoirs, ܴଵ௧ and ܴଶ௧are the output water of the power plant, ݈݈ܵ݅݌ଵ௧  and ݈݈ܵ݅݌ଶ௧  are the overflow water from the reservoirs in month t, in 
reservoir 1 and 2 respectively. Also, ܫଷ௧ is the inflow discharge 
of the SenghorChay River into the reservoir 2 in month t. Equa-
tion (5) shows that the storage of the reservoir (St) in each time 
period is limited to the maximum storage (Smax) and dead stor-
age (Sdead). 
 
b.  Water Release Restrictions  
 

min maxR R Rt≤ ≤                                                    (6) 

 

Equation (6) indicates the restriction on the water releases to 
the power plants which at Rmin it is equal to zero and at Rmax it is 
equal to 50 m3/s and 40 m3/s for Pirtaqi and Ostoor dams, re-
spectively. In this equation, R is water release in m3/s. 

 
c.  Minimum downstream flow to protect the environment 
 

R Spill MRD+ ≥  (7) 
 

Equation (7) indicates the minimum downstream flow to 
protect the environment where MRD is the minimum require-
ment of downstream that for each of the reservoir this amount 
is equal to the highest amount of monthly discharge in the 
month, that during 42 statistical years, has the lowest average 
discharge and for Ostoor and Pirtaqi reservoirs are 42.85 and 
66.96 million cubic meters (MCM), respectively. In this equa-
tions (6) and (7) R is water release in m3/s. 
 
Penalty functions  

 
In the restriction of the reservoir balance, the storage of the 

reservoir (St) should not be less than the dead storage of the 
reservoir (Sdead). Also in the restriction of the water releases Rt 
should be less than Rmin and in the restriction of the minimum 
requirements of downstream for environmental issues, the 
amount should not be less than the minimum flow required for 
the purpose. If the above conditions are not satisfied the follow-
ing equations for these restrictions will apply as penalty func-
tions, respectively. 

The penalty functions of the storage of water in the reser-
voirs, water releases to the power plants and the minimum 
requirements of downstream are as follows.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Schematic of the optimization problem. 
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where Ps is the penalty function for storage and PR is the penal-
ty function for release and coefficient K is penalty coefficient 
and has a large scalar value as 1×e10 which in case of noncon-
formity of the constraints of the model, and considering that the 
algorithm is seeking to minimize the objective functions, is 
added to the objective functions. This amount is large enough 
that the probability of the member presence in the next genera-
tions come down certainly and eliminated practically. All of the 
variables are explained before. 

 
RESULTS AND DISCUSSION 
Non-dominated sorting genetic algorithm II (NSGA-II) 

 
The objective functions for NSGA-II are as equations (11) 

and (12). 
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To optimize the objective functions, each chromosome is 
made of 24 genes, one month time period and planning of the 
reservoir operation for a year are considered and the population 
size is equal to 20. At the first, the initial population is simulat-
ed and their fitness function determined which is called parent 
population. Then the parents are placed in case of pair in 15 
mating pools. Selection of being pair or the number of mating 
pools that are often equal to half of the initial population, can 
be different. In this study tournament selection, with size 2 is 
used. Then, based on the superiority of rank and fitness be-
tween both parents who placed in the pool, crossover and muta-
tion operators are applied on the pair of them. In the NSGA-II a 
crossover operator called SBC, which is a search engine similar 
to dual single point crossover, has been used. According to the 
mentioned crossover and mutation operators, we considered 
Pmutation = 0.1, Pcrossover = 0.9, mutation distribution parame-
ter = 50 and crossover parameter = 3. After trial and error, the 
number of generations produced in the model, which is also 
considered as stop condition, is equal to 400 generations. 
 
Multi-objective particle swarm optimization (MOPSO) 

 
In this study, maximum number of iteration was considered 

as stop condition for the MOPSO algorithm. Before setting the 
parameters of the algorithm, determination of the initial popula-
tion size is very important to start the algorithm. Therefore, at 
the first step five different population sizes of 20, 50, 100, 150 
and 200 were considered and population size of 200 showed the 
greatest benefit for objective functions. The input parameters 
taken for determination of the size of the population are as 
follows: C1 = C2 = 2, wdamp = 0.99, w = 0.8, γ = 2 and β = 2. 
Then considering the population size of 200, the inertia coeffi-
cient in the range of 0.4 to 0.9 was evaluated, which w = 0.5 

has been earned the most benefit in the objective functions. 
With regard to the optimal size of the population and inertia 
coefficient (w), optimal amount of individual learning coeffi-
cient C1 and global learning coefficient C2 are equal to 1.5 and 
2, respectively. And the other parameters such as inertia weight 
damping ratio (wdamp) and selection pressures (γ and β) were 
constant according to the past experiences and after applying 
many changes in the population and parameters and run the 
algorithm for many times, the best answer was obtained. The 
appropriate distribution at Pareto front and the maximum value 
of the objective function are considered as the criteria to deter-
mine the optimum solution.  

Finally, MOPSO and NSGA-II have been applied with 400 
iterations and 400 generations as stop conditions, respectively. 
The Pareto fronts of both models are shown in Figures 5 and 6 
and the solutions for both models are extended as well as in a 
narrow range of values of the objective functions. In these 
Figures the reason of the difference between Pareto curves from 
the two methods is because of the minimization of the objective 
function multiplied by the negative sign in the NSGA-II model, 
and as it can be seen from Figure 5 the values are negative.  

 
 

 
 

Fig. 5. Pareto optimal points obtained by NSGA-II model. 
 
 

 
 

Fig. 6. Pareto optimal points obtained by MOPSO model. 
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In the NSGA-II model and in power plant of Ostoor (Pirtaqi) 
reservoir, the highest income and the lowest income are ob-
tained in August and March February), respectively. In the 
MOPSO model in Ostoor (Pirtaqi) reservoir, the highest and 
lowest incomes are obtained in July–August and February–
March, respectively. There is more demand for electricity in 
summer than in winter, thus there is more need to produce 
energy in summer than in winter. So, the obtained income in 
both methods in summer is more than in winter. The price of 
each unit of energy and the total income in each month is pro- 
 

vided in Tables 1 and 2, respectively. 
Considering the second objective function that maximizes 

storage of the reservoir in the flood months, it should be noted 
that in February to May and in each of Ostoor and Pirtaqi reser-
voirs, the volume of the reservoir is kept empty in order to 
control the likely floods (Tables 3 and 4 for both models). 

The results of the two algorithms are presented and com-
pared in Table 5, which demonstrated the superior capacity of 
the NSGA-II for optimizing the operation of the reservoir sys-
tem than MOPSO algorithm.  
 

Table 1. The price of each unit of energy and the total income of each month in the NSGA-II model. 
 

Total income in Pirtaqi  
reservoir (MRial) 

Total income in Ostoor  
reservoir (MRial) 

Selling price of each MWh of 
energy (MRial) 

Month shift this column to the very 
right 

298.65 105.96 0.046 October 
299.86 99.88 0.046 November 
370.92 144.26 0.046 December 
361.34 103.78 0.044 January 
287.30 105.95 0.044 February 
268.87 96.99 0.044 March 
372.25 130.20 0.049 April 
555.29 189.02 0.049 May 
594.59 213.45 0.049 June 
638.15 248.99 0.057 July 
593.51 261.43 0.057 August 
519.94 228.86 0.057 September 

 
Table 2. The price of each unit of energy and the total income of each month in the MOPSO model. 
 

Total income in Pirtaqi 
reservoir (MRial) 

Total income in Ostoor  
reservoir (MRial) 

Selling price of each MWh of 
energy (MRial) 

Month same as Table 4 

288.67 123.77 0.046 October 
269.96 89.14 0.046 November 
340.86 174.27 0.046 December 
324.34 113.53 0.044 January 
267.80 115.33 0.044 February 
268.77 97.46 0.044 March 
372.55 160.25 0.049 April 
535.68 199.36 0.049 May 
534.27 213.96 0.049 June 
628.44 248.91 0.057 July 
563.72 251.22 0.057 August 
529.11 248.39 0.057 September 

 
Table 3. Storage of the reservoir for flood control in the NSGA-II method. 
 

Total storage 
(Mm3) 

Piraqi reservoir 
(Mm3) 

Ostoor reservoir 
(Mm3) 

Month shift to the very right 

3168.13 550.68 2617.45 February 
3178.57 481.32 2697.25 March 
2742.36 373.69 2368.67 April 
1872.88 32.58 1840.30 May 

 
Table 4. Storage of the reservoir to flood control in the MOPSO method. 
 

Total storage 
(Mm3) 

Piraqi reservoir 
(Mm3) 

Ostoor reservoir  
(Mm3) 

Month as above 

2978.13 560.68 2417.45 February 
3058.57 461.32 2597.25 March 
2912.36 343.69 2568.67 April 
1675.88 35.58 1640.30 May 

 
Table 5. The results of the two presented algorithms. 
 

MOPSO NSGA-II  
6.9 8.9 Income from electricity (MRial) 

10.62 10.96 
Storage of flood control 
(Gm3) 
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CONCLUSION 
 
In this paper we applied and compared NSGA-II and MOP-

SO algorithms for optimization of a system operation with two 
reservoirs. According to the results, it can be concluded that 
according to the stop conditions, which is the same for the two 
algorithms, the NSGA-II is performed better than the MOPSO 
algorithm. And according to Table 5 it can be see that the in-
come from electricity and storage of flood control increased by: 
22% and 3%, respectively, using NSGA-II. 

Some of the most important factors involved in this superior-
ity are mutation operator and appropriate distribution of the 
population that prevented entrapment of the algorithm in local 
optimum points. The crowding distance operator for NSGA-II 
during the selection had a very good performance and the popu-
lation diversity in different generations was well preserved. It is 
suggested that the proposed NSGA-II be used to optimize mul-
ti-objective system operation with more reservoirs.  
 
REFERENCES 
 
Adeyemo, J.A., 2011. Reservoir operation using multi-

objective evolutionary algorithm – A review. Asian Journal 
of Scientific Research, 4, 1, 16–27. DOI: 10.3923/ajsr.2011. 

Ajibola, A.S., Adewumi, A.O., 2014. Review of population 
based meta-heuristics in multi-objective optimization 
problems. International Journal of Computing, 
Communications & Instrumentation Engineering (IJCCIE), 
1, 1, 126–128.  

Baltar, A.M., Fontane, D.G., 2006a. A Multi-objective Particle 
Swarm Optimization Model for Reservoir Operations and 
Planning. In: Proceedings of Joint International Conference 
on Computing and Decision Making in Civil and Building 
Engineering, 14–16 June 2006, Montréal-Canada. 

Baltar, A.M., Fontane, D.G., 2006b. A generalized multi-
objective particle swarm optimization solver for spreadsheet 
models: application to water quality. In: Proceedings of 
Hydrology Days, March 2006, Fort Collins, Colorado, USA, 
1–12. 

Bianchi, L. Dorigo, M., Gambardella, L.M., Gutjahr, W.J., 
2009. A survey on meta-heuristics for stochastic 
combinatorial optimization. Natural Computing: An 
International Journal, 8, 2, 239–287.  

Blum, C., Roli, A., 2003. Meta-heuristics in combinatorial 
optimization: Overview and conceptual comparison.  ACM 
Computing Surveys, 35, 3, 268–308. 

Chang, L.C., Chang, F.J., 2009. Multi-objective evolutionary 
algorithm for operating parallel reservoir system. Journal of 
Hydrology, 377, 12–20.  

Chen, S.W., Chiang, T.C., 2014. Evolutionary many-objective 
optimization by MO-NSGA-II with enhanced mating 
selection. In: Proceedings of IEEE World Congress on 
Computational Intelligence (WCCI), pp. 1397–1404. 

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle 
swarm theory. In: Proceedings of IEEE Sixth 
International Symposium on Micro Machine and Human 
Science, 4–6 October 1995, Japan. 

Fallah-Mehdipour, E., Bozorghaddad, O., Marino, M.A., 2011. 
MOPSO algorithm and its application in multipurpose 
multireservoir operations. Journal of Hydroinformatics, 13, 
4, 794–811.  

Ishibuchi, H., Tsukamoto, N., Nojima, Y., 2008. Evolutionary 
many-objective optimization: A short review. In: 
Proceedings of IEEE Congress on Evolutionary 
Computation, 1–6 June 2008, Hong Kong. 

Kalyanmoy, D., Jain, H., 2012. Handling many-objective 
problems using an improved NSGA-II procedure. In: 
Proceedings of IEEE Congress on Evolutionary 
Computation (CEC) 2012. 

Kalyanmoy, D., Agrawal, S., Pratap, A., Meyarivan, T., 2002. 
A fast and elitist multi-objective genetic algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation, 6, 2, 
182–197.  

Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. 
In: Proceedings of IEEE International Conference on Neural 
Network, 27 November to 1 December 1995, Perth, WA. 

Konak, A., Coit, D., Smith, E., 2006. Multi-objective 
optimization using genetic algorithms, a tutorial. Reliability 
Engineering and System Safety, 91, 9, 92–107. 

Kumar, V., Minz, S., 2014. Multi-objective particle swarm 
optimization: an introduction. Smart Computing Review, 4, 
5, 335–353. 

Malekmohammadi, B., Zahraie, B., Kerachian, R., 2011. 
Ranking solution of multi-objective reservoir operation 
optimization models using multi-criteria decision analysis. 
Expert Systems with Applications, 38, 7851–7863.  

Moore, J., Chapman, R., 1999. Application of particle swarm to 
multi-objective optimization. Technical report. Department 
of Computer Science and Software Engineering, Auburn 
University, Auburn, Alabama, USA. 

Ostadrahimi, L., Mariño, M.A., Afshar, A., 2011. Multi-
reservoir operation rules: Multi-swarm PSO-based 
optimization approach. Water Resource Management, 26, 
407–427.  

Patil, D.D., Dangewar, B.D., 2014. Multi-objective particle 
swarm optimization (MOPSO) based on Pareto dominance 
approach. International Journal of Computer Applications. 
107, 4, 13–15. 

Reddy, M.J., Kumar, D.N., 2007. Multi-objective particle swarm 
optimization for generating optimal trade-offs in reservoir 
operation. Hydrological Processes, 21, 21, 2897–2909.  

Reddy, M.J., Kumar, D.N., 2009. Performance evaluation of 
elitist-mutated multi-objective particle swarm optimization 
for integrated water resources management. Journal of 
Hydroinformatics, 11, 1, 79–88.  

Rio, G.L., D’Souza, K., Sekaran, C.H., Kandasamy, A., 2010. 
Improved NSGA-II based on a novel ranking scheme. 
Journal of Computing, 2, 2, 91–95. 

Schaffer, J.D., 1985. Multiple objective optimization with 
vector evaluated genetic algorithms. In: Proceedings of the 
1st International Conference on Genetic Algorithm and their 
applications, 2 April 1985, Hillsdale, NJ, USA. 

Shuai, W., Xiaohui, L., Xiaomin, H., 2012. Multi-objective 
optimization of reservoir ood dispatch based on MOPSO 
algorithm, In: Proceedings of 8th International Conference 
on Natural Computation, 29–31 May 2012, China. 

Srinivas, N., Kalyanmoy, D., 1994. Multi-objective 
optimization using non-dominated sorting in genetic 
algorithms. Evolutionary Computation, 2, 3, 221–248. 

Yang, J., 2012. A new particle swarm optimization Aalgorithm 
to hierarchy multi-objective optimization problems and its 
application in optimal operation of hydropower stations. 
Journal of Computers, 7, 8, 2039–2046.  

Yusoff, Y., Ngadiman, M.S., Zain, A.M., 2011. Overview of 
NSGA-II for optimizing machining process parameters. 
Journal of Procedia Engineering, 15, 3978–3983. 

 
Received 28 December 2016 

 Accepted 19 September 2017 


