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Abstract: This study examines the problem of flow resistance due to rigid vegetation in open channel flow. The reliabil-
ity of the conventional flow resistance equations (i.e. Keulegan, Manning and Chézy-Bazin) for vegetated flows at high 
submergence, i.e. h/k >5, (where h = flow depth and k = vegetation height) is assessed. Several modern flow resistance 
equations based on a two-layer approach are examined, showing that they transform into the conventional equations at 
high submergences. To compare the conventional flow resistance equations at high submergences, an experimental 
methodology is proposed and applied to the experimental data reported in the literature and collected for this study. The 
results demonstrate the reliability of the Keulegan equation in predicting the flow resistance. Based on the obtained re-
sults, a model to evaluate the Nikuradse equivalent sand-grain roughness, kN, starting from the vegetation height and den-
sity, is proposed and tested. 
 
Keywords: Open channel flows; Vegetated flows; Rigid vegetation; Flow resistance; Roughness coefficients; Nikuradse 
equivalent sand-grain roughness. 

 
INTRODUCTION 
 

In the past, vegetation on riverbeds was considered to be an 
unwanted source of flow resistance, and for this reason, it was 
commonly removed. Currently, the preservation of vegetation 
is relevant for the ecology of water systems (Arthington et al., 
2010; Poff et al., 1997) and, in this context, it is important to 
understand and characterise vegetated flows. 

The effects of vegetation on flow, primarily dependent on 
the vegetation characteristics, such as its height, stiffness and 
density, are known (Stott, 2010) to include the following: 

• decrease in water velocity and an increase in water 
levels (i.e., a reduction of the flow discharge capacity); 

• deposition of suspended sediments; an increase or de-
crease in local erosion; 

• influence on flood propagation; 
• interference with the use of the water for conveyance, 

navigation and swimming.  
Recently, the effects of vegetation on the flow resistance, 

turbulence characteristics, sediment transport and aquatic inter-
faces in open channel flows were examined in experimental and 
numerical studies (Marion et al., 2014; Nepf, 2012; Vargas-
Luna et al., 2015), also using physics-based methods, such as 
the Kolmogorov vortex cascade (Gioia and Bombardelli, 2002; 
Huthoff et al., 2007; Konings et al., 2012) and the genetic pro-
gramming (Babovic, 2000; Babovic et al., 2001; Baptist et al., 
2007). 

This study examines the problem of characterising flow re-
sistance due to fully submerged, rigid vegetation and focuses 
particularly on submergence, i.e., the ratio between the flow 
depth h (m) and the vegetation height k (m), (Nepf and Vivoni, 
2000) higher than 5. This condition, which is typical in river 
systems with extreme discharge conditions and extensive 
floodplains (Augustijn et al., 2008; Harris et al., 2003), has 
been less frequently studied. Previous studies (Augustijn et al., 
2008) found that the equations proposed and tested for medium 
submergences are not sufficiently accurate for high submerg-

ences. Some authors (Augustijn, 2008; Huthoff, 2009, 2012; 
Huthoff et al., 2007; Lopez and Garcia, 1997, 2001) have also 
suggested that conventional flow resistance equations of 
Keulegan, Manning, Chézy-Bazin, could be used for high sub-
mergences. 

Based on these considerations, the purposes of this study in-
clude the following: i) to assess the suitability of the conven-
tional flow resistance equations for highly submerged, vegetat-
ed flows; ii) to choose the best equation among the three con-
sidered conventional equations; iii) to propose a model for the 
evaluation of the roughness height starting from the geometric 
characteristics of the vegetation and then show its good agree-
ment with the experimental data. 

 
FLOW RESISTANCE IN OPEN CHANNEL FLOW 

 
For open channel flows, the Darcy-Weisbach, Manning and 

Chézy equations are the most commonly used flow resistance 
equations, which are described as follows, respectively: 

 

2/3 1/28 ; ;ng KV V R S V C RS
f n

= = =  (1) 

 
where V is the mean cross-sectional velocity (ms–1), f is the 
Darcy-Weisbach friction factor, n is the Manning roughness 
coefficient (m1/6), C is the Chézy resistance factor (m1/2s–1), R is 
the hydraulic radius of the flow cross-section (m), g is the grav-
itational acceleration (ms–2), S is the energy slope and  
Kn (m1/2s–1) is a conversion factor (Yen, 1992, 2002). Compar-
ing Equations (1) the following equivalencies are obtained: 

 

1/6
1

8 n

f n
g CK R

= =  (2)

  
Hereafter, a brief examination of each equation is presented, 

neglecting the viscosity and Reynolds number effects, due to 
the usually large Reynolds number in open channel flows. 
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Keulegan equation, the friction factor f and the Nikuradse 
equivalent sand-grain roughness kN 

 
The following expression is known as the Keulegan equation: 
 

logФ
N

RV K K RS
kρ

 
=  

 
  (3) 

 
where Kρ = 12.2, KΦ = 18.0 m1/2s–1 (Chow, 1988), and kN (m) is 
the Nikuradse equivalent sand-grain roughness. Merging the 
Darcy-Weisbach equation and the Colebrook-White equation 
(Colebrook, 1939), the following is obtained (Yen, 2002): 

 

1
2

8 log Nk
V K g RS

K R
 = −  
 

  (4) 

 
Consequently, Eqs. (3) and (4) are equivalent when  

KΦ = K1 (8g)1/2 and Kρ = K2. According to Yen (2002), K1 = 2 
and, for wide, rectangular channels K2 = 12.32, (Marchi, 1961a, 
1961b). 

 
Manning equation, the roughness coefficient n and the 
Strickler roughness height kS 

 
Strickler (1923) proposed the following relationship between 

the Manning roughness coefficient n (m1/6) and the Strickler 
roughness height kS (m) (Chow, 1988): 

 
1/6

n S Sn K kΦ=  (5) 

 
where ΦS = 0.0400 m–1/2s (Huthoff et al., 2007). Merging the 
second equation in (1) and Eq. (5), it is possible to obtain: 

 
2/3 1/2

1/6
S S

R SV
kΦ

=  (6) 

 
A theoretical derivation of the Manning equation was given 

by Gioia and Bombardelli (2002). 
 
Chézy equation, the resistance factor C, the Bazin roughness 
coefficient B and the Chézy-Bazin roughness height kB 

 
In Chézy equation the resistance factor C can be evaluated 

via Bazin’s formula (Bazin, 1865): 
 

0

1 /
BC

B R
=

+
 (7) 

 
where B0 = 87 m1/2s–1and B is a roughness coefficient. For vege-
tated beds, it could be useful to define a Chézy-Bazin rough-
ness size, kB (m) via the following equation: 

 
1/ 2

B BB kΦ=  (8) 
 

where ΦB = 4.00 m1/2s makes kB of the same order as kN and kS 
for the same channel roughness. Merging the third equation in 
(1), Eqs. (7) and (8), it is possible to obtain: 

 
1/ 2 1/ 2

0
1/ 2

1/ 21 B B

B R SV
k

R
Φ

=
+

 
(9)

 

 

Comparisons of  kN, kS and kB 
 
To compare kN, kS and kB, the following reasoning is devel-

oped. 
After replacing f with the first equation in (1) and Eq. (3), 

and C, n and B with Eqs. (7), (5) and (8), respectively, Eq. (2) 
becomes the following: 
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0
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 (10) 

 
Eq. (10) can then be rendered non-dimensional, as shown by: 
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 (11) 

 
which shows that kS/kN and kB/kN  depend only on R/kN: 
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(13) 

 
In Fig. 1, Eqs. (12) and (13) are represented. 
 

 
 
Fig. 1. Relationship among kS/kN, kB/kN and R/kN.  
 

Moreover choosing kB or kS as the scales it is possible to ob-
tain kN/kB and kS/kB, and kN/kS (Chow, 1988; Sturm, 2010) and 
kB/kS as functions of R/kN (Figs. 2, 3). 

Generally kS values are larger than the kN and kB, which are 
more similar to each other due to the different assumption for 
the velocity distribution, namely, the power law for kS (Gioia 
and Bombardelli, 2002) and the logarithmic law for kN and kB 
(Baptist et al., 2007). The values of kN, kS and kB are found to be 
different for R/kN in the range of 0.1–1 but are only marginally 
different for R/kN in the range of 1–1000. This observation is  
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Fig. 2. Relationship among kN/kB, kS/kB and R/kN. 
 

 
 
Fig. 3. Relationship among kN/kS, kB/kS and R/kN. 
 
important for the purpose of this study: for rough riverbeds 
without vegetation, R/kN remains in the range of 1–1000 
(Chow, 1988), while for vegetated beds, as will be shown, R/kN 
remains in the range of 0.35–6.02. Due to Eq. (4), the lowest 
physically acceptable value for R/kN is 1/12.32 = 0.0812. 

Hereafter, Eqs. (12) and (13) are used. The Keulegan, Man-
ning and Chézy-Bazin equations state that kN, kS and kB are 
relative to the wall roughness and are independent of the flow 
characteristics; consequently, while the left sides of Eqs. (12) 
and (13) are independent of the flow characteristics, the right 
sides are dependent on them due to R. Therefore, if in a certain 
range of flow conditions (i.e., R values) one among the Keule-
gan, Manning and Chézy-Bazin equations yields a reliable 
evaluation of the flow resistance, the other two cannot, and 
thus, only one of the three equations may be considered valid 
within that range of flow conditions. 

 
FLOW RESISTANCE IN VEGETATED FLOWS 

 
One of the effects of vegetation is an increase in flow re-

sistance, which is strongly influenced by the type of vegetation 
and the submergence. Vegetation may be modelled as either 
rigid, using wooden or metallic cylinders or stiff natural plants, 
or flexible, using plastic strips or flexible natural plants or 
grass. Vegetation may have different densities and can be whol-
ly or partially submerged. Rigid vegetation allows for simple 
physics-based modelling and can be considered as a starting 
point to study the effects of flexible vegetation. In this study, 
vegetation modelled by rigid, equally spaced and completely 
submerged cylindrical elements is considered. Following the 
common assumptions of recent studies of vegetated flows, the 
two-dimensional approach (i.e., the hypothesis of a wide, rec-
tangular channel) is assumed. 

Brief review of flow resistance in vegetated flows 
 
Conventional flow resistance equations are not valid for 

vegetated flows. One of the purposes of this study is to assess 
their use at high submergence. Firstly, a brief review of the 
flow resistance equations in vegetated flows is given. Most 
research is based on a two-layer approach (Fig. 4), which sepa-
rately describes the velocity distribution in the vegetation layer 
and in the surface layer (Klopstra et al., 1997; Tsujimoto and 
Kitamura, 1990; Tsujimoto et al., 1992). The two distributions 
are matched at the separation surface, the mean cross-sectional 
velocity is obtained, and the flow resistance is evaluated. 

 

 
 

Fig. 4. Two-layer model. 
 
For the vegetation layer, most authors consider the velocity 

to be constant, assuming a value obtained from the drag for a 
single element, as described in fluid mechanics. For the surface 
layer, some authors have assumed a logarithmic law, while 
others have used the Manning equation or another equation. 
This approach provides simple but sufficiently accurate flow 
resistance equations (Huthoff and Augustijn, 2006; Huthoff et 
al., 2007; Stone and Shen, 2002; Van Velzen et al., 2003). 
Starting from those equations, neglecting the bottom shear 
stresses (Nepf and Ghisalberti, 2008) and extracting the veloci-
ty, Galema (2009) obtained the following expressions: 

a) Stone and Shen (2002), matching at the separation 
surface by assuming the ratio between the mean velocity in the 
channel and the velocity in the vegetation layer to be equal to

h k , obtained the following expression: 
 

( ) 22 1
1 4D

g hhV S mDD mC mD kk
 = − π−  
 

 (14) 

 
where h is the flow depth (m), CD is the drag coefficient of the 
cylindrical element, D is the diameter (m), k is the height (m) 
and m is the number of elements per unit area (m–2); 

b) Van Velzen et al. (2003) assumed the logarithmic law in 
the surface layer and the resulting expression was: 

 

( ) ( )3 2
0.7

122 log
1.6D

h kg SV S K h k
C mD h kΦ

−
= + −  (15) 

 
c) Huthoff and Augustijn (2006) and Huthoff et al. (2007) 

assumed in the surface layer the Manning equation, via Gioia 
and Bombardelli's (2002) approach, obtaining the following 
expression: 

 
2 3

2
1D

g k h k h kV S
C mD h h m D

  − − = +  
 −  

 (16) 

 
d) Keijzer and Babovic (2002), Babovic (2009) and Baptist 

et al. (2007) proposed a model based on genetic programming, 
obtaining the following expression: 
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2 ln
D

gg hV hS
C mDk kκ

  = +     
  (17) 

 
where κ is the von Kármán constant. 

e) Yang and Choi (2010) obtained the following expres-
sion by assuming a logarithmic law for the surface layer: 

 

2 lnu
D

g h h kgV C hS
C mDk k hκ

  −  = + −       
 (18) 

 
where Cu is a parameter whose value is equal to 1 or 2 depend-
ing on the value of mD, which is less or more than 5, respec-
tively; 

f) Cheng (2011) defined the hydraulic radius as the ratio 
between the fluid-occupied volume and the total wetted surface 
area of the cylinders, obtaining the following expression: 

 

( )3 3/2

1 16 3 2

1
2
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C

D C

C

C

D k
C k h

V ghS
h k h k

D h

λ
λ

λ
λ

 π −   +   =  
  − − − +    

    

 (19) 

 
where λC = πmD2/4 is the fraction of the bed area occupied by 
the cylinders; 

g)  Konings et al. (2012), assumed Gioia and Bombardelli's 
(2002) approach and Huthoff et al. (2007), substituting kS for n 
and making all terms non-dimensional, and obtained the fol-
lowing expression: 

 

( ) 22 1 3 1 6

2 1 6

1 6

1 6

0.850.21

2 1 0

S S

S S

D

h k gΦ kh
kh h

gΦ k
C mDk h
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+ − =

 (20) 

 
In the work of Sturm (2010), the methods of Kouwen (1992) 

were investigated to represent the resistance due to non-bending 
(i.e., rigid) and bending vegetation; the MEI method was thus 
proposed based on kN. 

 
Application of conventional flow resistance equations to 
vegetated flows at high submergence 

 
Some authors have examined the use of conventional flow 

resistance for vegetated flows, in specific flow conditions.  
Nepf and Vivoni (2000) observed that a terrestrial canopy 

model, which is analogous to flow over a rough boundary, 
occurs in aquatic canopies deeply submerged, (i.e. /k > 5). 

Lopez and Garcia (1997, 2001) showed that the Manning 
roughness coefficient, exhibits a nearly constant value up to 
some threshold of vegetation density. Conversely, a linear 
increase is observed after this limit is exceeded. Those authors 
thus evaluated the flow resistance with the Manning equation, 
assuming constant the flow depth (i.e., the hydraulic radius) and 
the vegetation height and neglecting the submergence. Howev-
er, the authors referred to two limiting conditions: very high 
vegetation or very low vegetation. 

Another approach was proposed in (Huthoff, 2009, 2012; 
Huthoff et al., 2007) considering the Kolmogorov theory of 
turbulence (Gioia and Bombardelli, 2002). Those authors eval-

uated the flow resistance in the surface layer using the Manning 
equation, and obtained the following Strickler roughness 
height: 

 
3

6 3 20.04Sk
g s

θ≈  (21) 

 
where θ (m) is the momentum thickness of the velocity distri-
bution in the wakes of the cylinders and is evaluated by: 

 
1
2 DC Dθ =  (22) 

 
and s is the average distance between the cylinders (m). 

Augustijn et al. (2008), compared the equations of Keulegan, 
Manning, Chézy-Bazin, De Bos and Bijkerk (1963), Van 
Velzen et al. (2003), Baptist et al. (2007) and Huthoff et al. 
(2007). The results demonstrated that on average, the Keulegan 
equation showed the best agreement. The models proposed by 
Van Velzen et al. (2003), Baptist et al. (2007) and Huthoff et al. 
(2007) performed as well as those proposed by Keulegan 
(1938) and De Bos and Bijkerk (1963) without the disad-
vantage of an empirical parameter that must be calibrated. 
Increasing the submergence, the Manning coefficient decreases 
and eventually reaches a constant value, for h/k > 5. However, 
when extrapolating at high submergence, the models showed a 
large uncertainty in evaluation of the flow resistance (Augustijn 
et al., 2008), showing that it is necessary to explore a wider 
range of flow conditions to identify the most suitable equation. 

 
Modern flow resistance equations for vegetated flows at 
high submergence 

 
In this section, Eqs. (14) – (20) are examined for high sub-

mergences (i.e., increasing h/k to infinity). 
As described in (Stone and Shen, 2002), for high submerg-

ences, in Eq. (14), the minor term in the brackets under the root 
can be neglected with respect to the other term that is greater 
than 1 and increases with the submergence. Consequently, Eq. 
(14) results: 

 

( )2 1
D

g hV D m hS
C mD k

= −  (23)  

 
This expression can be considered to be the Chézy equation, 

where the resistance factor C is: 
 

( )2 1
D

g hC D m
C mD k

= −
 

(24)
 

 
Eq. (7), for high vegetation densities and therefore high  

values of B, results: 
 

0B hC
B

=  (25) 

 
A comparison of Eqs. (24) and (25) results in the following: 
 

( )0 2 1
DC mD kB B

g D m
=

−
 (26) 

 
and finally from Eq. (8): 
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( )

2
2

0

2 1
D

B
B

C mDB kk
g D mΦ

     =       −      

  (27) 

 
Therefore, kB depends only on the vegetation characteristics, 

such as CD, D, k and m. 
For high submergences, Eq. (15), neglecting the first term in 

the sum and the vegetation height with respect to the flow depth 
in the second term of the sum, results: 

 

0.7
12log

1.6
hK hS

k
V Φ=

 
(28) 

 
Considering that 12≈12.32 (i.e., a wide rectangular channel), 

this expression is comparable to Keulegan equation, as shown 
below: 

 
0.71.6Nk k=  (29) 

 
as suggested by the authors. Therefore, kN depends only on k. 
For high submergences Eq. (16), neglecting both the first term 
in the square brackets and the vegetation height with respect to 
the flow depth, results: 

 
2 3

2 32 1
1D

gV h S
C mD m D

 
=  

− 
 (30) 

 
This equation is comparable to the Manning equation, when 

Kn is substituted, as shown below: 
 

( )2 3
1

2
D

n
C mDn K m D

g
= −  (31) 

 
and finally: 

 
3 4

6

1 1
2
D

S

S

C mD D mk
g mΦ

   −=         
 (32) 

 
Therefore, kS depends only on CD, D, and m. 
For high submergences, Eq. (17) neglecting the first term of 

the sum in parentheses, results: 
 

ln 1.016 log
12.32

K hg hV hS K hS
k k

ρ
Φκ

     = =             
  (33)

  
substituting KΦ and Kρ for a wide, rectangular channel. This 
expression is also comparable to Keulegan equation, neglecting 
the factor 1.016 and considering: 
 

12.32Nk k=  (34) 
 

as suggested by the authors. In this case, kN depends only on k. 
For high submergences, Eq. (18) is the same as Eq.(17), af-

ter eliminating the term (h–k)/k with respect to ln(h/k) if the 
product mD is lower than 5 (i.e., Cu = 1), which results in Eq. 
(33). 

If the product mD is higher than 5 (i.e., Cu = 2), the follow-
ing equation holds: 

 

2ln 2.032 log
12.32

K hg hV hS K hS
k k

ρ
Φκ

       = =           
 (35) 

 
The resulting equation can no longer be compared to Keule-

gan equation, due to the impossibility of considering KΦ equal 
to unity. 

For high submergences, Eq. (19) becomes: 
 

1 16 25 1614.54 C

C

h h kV ghS
D h

λ
λ

  − −  =        
 (36) 

 
Therefore, it tends to approach neither the Nikuradse nor the 

Manning equations.  
In Eq. (20), for high submergence, where the second term is 

generally small and decreases, the first term strongly increases. 
Consequently, Eq. (20) becomes: 

 
21 3 1 6

1 6
1 1 1 0

0.21 0.85
S Sg k

k
Φ   − =       

 (37) 

 
From this equation, kS can be calculated by: 
 

2
0.199

S
S

k k
gΦ

=
 

(38)
 

 
which depends only on k. 

Therefore, for high submergences, nearly all of the previous 
equations can be approximated by one of the three classic flow 
resistance equations, and thus, kN, kS or kB are functions of the 
vegetation characteristics as k and/or CD, D or m. The different 
dependences of kN, kS and kB on the geometric parameters of the 
vegetation suggests that, in agreement with Augustijn et al. 
(2008), the modern flow resistance equations are only approxi-
mately reliable when evaluating the flow resistance of vegetat-
ed flows at high submergences. 

 
Use of conventional flow resistance equations at high 
submergence  

 
As a consequence of the conclusions of the previous two 

paragraphs, it could be interesting to investigate the possibility 
of using one of the conventional flow resistance equations (i.e., 
the Keulegan, Manning and Chézy-Bazin equations) at high 
submergence, evaluating kN, kS and kB, and verify which of 
them, remaining constant for submergences higher than 5, can 
therefore be considered to be a reliable expression of the flow 
resistance. To verify this point, a methodology described in a 
following paragraph can be applied to experimental data, found 
in the literature and collected for this study. 
 
EXPERIMENTAL MEASUREMENTS 
Experimental data found in the literature 

 
From the literature, a data set of twenty runs was selected. 

The experimental conditions of each run are summarised in 
Tables 1 and 2, where the following are reported: the flow rate 
Q, the velocity V, the uniform flow depth hu, the Froude num-
ber Fr, the geometric characteristics of the cylindrical elements 
(i.e., height k, diameter D, m number of cylinders per unit area 
and the arrangement); the maximum submergence (h/k)max,  
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Table 1. Experimental data from literature. 
 

Authors Arr. Q (m–3s–1) V(m/s) hu(m) Fr k (m) D (m) m(m–2) λ h/k h/kN(2) h/kN(5) Run 

Cheng (2011) St. 

0.004 0.097 0.130 0.086 0.10 0.007 2221 1.466 1.300 

0.17 (0.35) A1 0.006 0.131 0.150 0.108 0.10 0.007 2221 1.466 1.500 
0.008 0.155 0.170 0.120 0.10 0.007 2221 1.466 1.700 
0.010 0.158 0.200 0.113 0.10 0.007 2221 1.466 2.000 

Cheng (2011) St. 

0.003 0.077 0.130 0.068 0.10 0.008 2221 1.800 1.300 

0.19 (0.39) A2 0.005 0.102 0.150 0.084 0.10 0.008 2221 1.800 1.500 
0.007 0.141 0.170 0.109 0.10 0.008 2221 1.800 1.700 
0.011 0.190 0.200 0.136 0.10 0.008 2221 1.800 2.000 

Meijer and Van Velzen (1999) Al. 

1.04 0.175 1.98 0.040 1.50 0.008 256 3.072 1.320 

0.21 (0.43) A3 1.39 0.212 2.19 0.046 1.50 0.008 256 3.072 1.460 
1.72 0.244 2.35 0.051 1.50 0.008 256 3.072 1.567 
1.91 0.255 2.5 0.051 1.50 0.008 256 3.072 1.667 

Meijer and Van Velzen (1999) Al. 

1.12 0.247 1.51 0.064 0.90 0.008 256 1.843 1.678 

0.25 (0.52) A4 2.55 0.472 1.8 0.112 0.90 0.008 256 1.843 2.000 
3.62 0.577 2.09 0.128 0.90 0.008 256 1.843 2.322 
3.72 0.500 2.48 0.101 0.90 0.008 256 1.843 2.756 

Cheng (2011) St. 
0.008 0.169 0.150 0.139 0.10 0.003 2221 0.711 1.500 

0.26 (0.54) A5 0.011 0.216 0.170 0.167 0.10 0.003 2221 0.711 1.700 
0.015 0.253 0.200 0.181 0.10 0003 2221 0.711 2.000 

Cheng (2011) St. 

0.006 0.151 0.130 0.134 0.10 0.008 556 0.461 1.300 

0.65 (0.55) A6 0.008 0.176 0.150 0.145 0.10 0.008 556 0.461 1.500 
0.012 0.227 0.170 0.176 0.10 0.008 556 0.461 1.700 
0.015 0.257 0.200 0.183 0.10 0.008 556 0.461 2.000 

Meijer and Van Velzen (1999) Al. 

1.795 0.298 2.01 0.067 1.50 0.008 64 0.768 1.34 

0.27 (0.56) A7 2.245 0.342 2.19 0.074 1.50 0.008 64 0.768 1.460 
2.640 0.381 2.31 0.080 1.50 0.008 64 0.768 1.540 
3042 0.409 2.48 0.083 1.50 0.008 64 0.768 1.653 

Cheng (2011) St. 

0.006 0.159 0.130 0.141 0.10 0.007 556 0.367 1.300 

0.28 (0.58) A8 0.010 0.213 0.150 0.176 0.10 0.007 556 0.367 1.500 
0.012 0.241 0.170 0.187 0.10 0.007 556 0.367 1.700 
0.016 0.268 0.200 0.192 0.10 0.007 556 0.367 2.000 

Yan (2008) Al. 

0.014 0.286 0.120 0.263 0.06 0.006 2000 0.720 2.000 

0.40 0.63 A9 0.023 0.307 0.180 0.231 0.06 0.006 2000 0.720 3.000 
0.031 0.308 0.240 0.200 0.06 0.006 2000 0.720 4.000 
0.038 0.300 0.300 0.175 0.06 0.006 2000 0.720 5.000 

Meijer and Van Velzen (1999) Al. 

1.75 0.384 1.51 0.100 0.90 0.008 64 0.461 1.678 

0.37 (0.76) A10 3.53 0.498 1.78 0.158 0.90 0.008 64 0.461 1.978 
4.72 0.613 2.06 0.170 0.90 0.008 64 0.461 2.289 
4.77 0.760 2.47 0.131 0.90 0.008 64 0.461 2.74 

 

 
 
Fig. 5. Experimental flume. 
 
which reaches or exceeds 5 in only five cases. The number of 
flow depths, which varies from 4 to 8, except one case of 3; and 
the non-dimensional vegetation density λ, which ranges from 
0.1306 to 3.072 and is evaluated as the product of k, D and m. 
Due to the relevance of the parameter h/kN, as shown in Eqs. 
(12) and (13), h/kN = 2 and h/kN = 5, which are denoted respectively 

 
 

Fig. 6. Model of vegetation. 
 
as h/kN(2) and h/kN(5), were evaluated and reported in Ta-
bles 1 and 2. In particular, each h/kN(5) value in brackets was 
obtained based on methodology that involves the experimental 
data collected for this study, which is described at the end of 
the following paragraph. The obtained h/kN(5) values range 
from 0.35 to 1.59. 
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Experimental data collected for this study 
 
Experimental measurements were performed in a flume in 

the laboratory of the Department of Civil, Architectural and 
Environmental Engineering of the University of Naples Federi-
co II, to extend the experimental conditions with respect to the 
data found in the literature. A channel with a variable slope was 
8-m long and had a cross-section of 0.40 × 0.40 m2 (Fig. 5).  

Vegetation covered the entire channel bed and consisted of 
rigid cylinders with heights of k = 1.5 cm and diameters D = 
0.4 cm that were set in two arrangements (i.e., aligned and 
staggered) with three non-dimensional densities λ (e.g., 0.024, 
0.048 and 0.096) (Fig. 6). 

Ten runs were performed, each with 5 to 10 different flow 
depths. To extend the experimental conditions with respect to  
 

the data found in the literature, vegetation densities were low-
er, varying from 0.096 to 0.024, and the submergences were 
higher, varying from 5 to 8.78. Information relative to the 
experimental data set is summarised in Table 3. 

In Table 3, the values of h/kN(2) and h/kN(5) are reported, where 
the values of h/kN(5) are shown to vary from 1.60 to 6.02, thus 
extending the range of the data found in the literature.  

To obtain the values of h/kN(5) shown in brackets in Tables 
1 and 2, the following methodology was applied: 15 runs (i.e., 
5 from the literature and 10 from this study) were selected, 
where it was possible to evaluate h/kN(5) directly from the 
experimental data. A mean value of 2.06 of the ratios between 
h/kN(5) and h/kN(2) was calculated and was used to extrapolate 
the values of h/kN(5) in brackets in Tables 1 and 2, starting 
from the corresponding h/kN(2) values. 

 
 

Table 2. Experimental data from literature. 
 

Authors Arr. Q (m–3s–1) V(m/s) hu(m) Fr k (m) D (m) m(m–2) λ h/k h/kN(2) h/kN(5) Run 

Tsujimoto et al. (1992) Al. 

0.002 0.065 0.064 0.083 0.041 0.001 10000 0.410 1.551 

0.39 (0.80) A11 

0.005 0.140 0.066 0.174 0.041 0.001 10000 0.410 1.607 
0.007 0.163 0.084 0.179 0.041 0.001 10000 0.410 2.054 
0.009 0.201 0.085 0.220 0.041 0.001 10000 0.410 2.066 
0.005 0.108 0.088 0.116 0.041 0.001 10000 0.410 2.154 
0.009 0.182 0.094 0.189 0.041 0.001 10000 0.410 2.295 
0.008 0.147 0.105 0.144 0.041 0.001 10000 0.410 2.571 
0.011 0.199 0.106 0.195 0.041 0.001 10000 0.410 2.588 

Cheng (2011) St. 

0.010 0.254 0.130 0.225 0.10 0.003 556 0.178 1.300 

0.395 (0.81) A12 0.013 0.284 0.150 0.234 0.10 0.003 556 0.178 1.500 
0.016 0.316 0.170 0.244 0.10 0.003 556 0.178 1.700 
0.021 0.342 0.200 0.244 0.10 0.003 556 0.178 2.000 

Tsujimoto et al. (1992) Al. 

0.003 0.124 0.057 0.165 0.046 0.002 2500 0.173 1.235 

0.40 (0.82) A13 

0.008 0.267 0.073 0.316 0.046 0.002 2500 0.173 1.580 
0.005 0.179 0.074 0.211 0.046 0.002 2500 0.173 1.598 
0.004 0.117 0.075 0.137 0.046 0.002 2500 0.173 1.628 
0.012 0.331 0.090 0.353 0.046 0.002 2500 0.173 1.946 
0.007 0.198 0.094 0.207 0.046 0.002 2500 0.173 2.035 
0.005 0.133 0.095 0.137 0.046 0.002 2500 0.173 2.065 

Yan (2008) Al. 

0.015 0.290 0.120 0.267 0.06 0.006 1000 0.360 2.000 

0.50 0.85 A14 0.023 0.300 0.180 0.226 0.06 0.006 1000 0.360 3.000 
0.030 0.300 0.240 0.195 0.06 0.006 1000 0.360 4.000 
0.037 0.292 0.300 0.170 0.06 0.006 1000 0.360 5.000 

Meijer and Van Velzen (1999) Al. 

1.31 0.441 0.99 0.142 0.45 0.008 256 0.922 2.200 

0.28 0.97 A15 3.06 0.680 1.50 0.177 0.45 0.008 256 0.922 3.330 
3.74 0.630 1.98 0.143 0.45 0.008 256 0.922 4.400 
5.92 0.836 2.46 0.174 0.45 0.008 256 0.922 5.467 

Dunn et al. (1996) St. 

0.179 0.587 0.35 0.324 0.1175 0.006 172 0.128 2.851 

0.55 (1.13) A16 
0.088 0.422 0.229 0.282 0.1175 0.006 172 0.128 1.949 
0.046 0.308 0.164 0.243 0.1175 0.006 172 0.128 1.396 
0.178 0.709 0.276 0.431 0.1175 0.006 172 0.128 2.349 
0.098 0.531 0.203 0.376 0.1175 0.006 172 0.128 1.728 

Lopez and Garcia (2001) St. 

0.046 0.308 0.164 0.243 0.12 0.006 170 0.131 1.367 

0.56 (1.15) A17 
0.098 0.531 0.203 0.376 0.12 0.006 170 0.131 1.692 
0.088 0.422 0.229 0.282 0.12 0.006 170 0.131 1.908 
0.178 0.709 0.276 0.431 0.12 0.006 170 0.131 2.300 
0.179 0.587 0.335 0.324 0.12 0.006 170 0.131 2.792 

Yan (2008) Al. 

0.015 0.300 0.120 0.276 0.06 0.006 500 0.180 2.000 

0.78 1.22 A18 0.023 0.300 0.180 0.226 0.06 0.006 500 0.180 3.000 
0.030 0.300 0.240 0.195 0.06 0.006 500 0.180 4.000 
0.037 0.292 0.300 0.170 0.06 0.006 500 0.180 5.000 

Meijer and Van Velzen (1999) Al. 

1.983 0.661 1.00 0.211 0.45 0.008 64 0.230 2.222 

0.64 1.37 A19 2.808 0.624 1.50 0.163 0.45 0.008 64 0.230 3.333 
5.73 0.955 2.00 0.216 0.45 0.008 64 0.230 4.444 
6.57 0.883 2.48 0.179 0.45 0.008 64 0.230 5.511 

Nezu and Sanjou (2008) Al. 

0.0025 0.100 0.063 0.128 0.05 0.008 947 0.390 1.250 

0.77 (1.59) A20 

0.0030 0.100 0.075 0.117 0.05 0.008 947 0.390 1.500 
0.0040 0.100 0.100 0.101 0.05 0.008 947 0.390 2.000 
0.0050 0.100 0.125 0.090 0.05 0.008 947 0.390 2.500 
0.0060 0.100 0.150 0.082 0.05 0.008 947 0.390 3.000 
0.0080 0.100 0.200 0.071 0.05 0.008 947 0.390 4.000 
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Table 3. Experimental data collected for this study. 
 

Authors Arr. Q (m–3s–1) V(m/s) hu(m) Fr k (m) D (m) m(m–2) λ h/k h/kN(2) h/kN(5) Run 

This Study Al. 

0.003 0.268 0026 0.534 0.015 0.004 1600 0.096 1.720 

0.69 1.60 B1 

0.004 0.301 0.035 0.514 0.015 0.004 1600 0.096 2.333 
0.005 0.343 0.039 0.553 0.015 0.004 1600 0.096 2.613 
0.009 0.442 0.049 0.640 0.015 0.004 1600 0.096 3.233 
0.014 0.555 0.064 0.702 0.015 0.004 1600 0.096 4.247 
0.023 0.680 0.083 0.753 0.015 0.004 1600 0.096 5.540 
0.027 0.751 0.091 0.795 0.015 0.004 1600 0.096 6.060 
0.033 0.808 0.102 0.807 0.015 0.004 1600 0.096 6.807 
0.045 0.924 0.122 0.846 0.015 0.004 1600 0.096 8.113 
0.052 0.995 0.132 0.876 0.015 0.004 1600 0.096 8.780 

This Study Al. 

0.004 0.416 0.023 0.876 0.015 0.004 1600 0.096 1.533 

0.72 1.77 B2 

0.008 0.550 0.034 0.950 0.015 0.004 1600 0.096 2.280 
0.013 0.707 0.045 1.065 0.015 0.004 1600 0.096 2.993 
0.019 0.854 0.055 1.159 0.015 0.004 1600 0.096 3.687 
0.032 1.085 0.075 1.267 0.015 0.004 1600 0.096 4.980 
0.052 1.342 0.098 1.372 0.015 0.004 1600 0.096 6.500 

This Study St. 

0.006 0.555 0.027 1.082 0.015 0.004 800 0.048 1.787 

1.13 1.26 B3 

0.009 0.658 0.033 1.158 0.015 0.004 800 0.048 2.193 
0.012 0.772 0.040 1.240 0.015 0.004 800 0.048 2.633 
0.016 0.870 0.046 1.303 0.015 0.004 800 0.048 3.033 
0.026 1.075 0.060 1.405 0.015 0.004 800 0.048 3.980 
0.039 1.274 0.077 1.470 0.015 0.004 800 0.048 5.100 
0.043 1.327 0.081 1.489 0.015 0.004 800 0.048 5.400 
0.045 1.351 0.083 1.495 0.015 0.004 800 0.048 5.553 
0.047 1.374 0.086 1.499 0.015 0.004 800 0.048 5.707 
0.047 1.375 0.086 1.498 0.015 0.004 800 0.048 5.720 

This Study Al. 

0.005 0.389 0.030 0.715 0.015 0.004 800 0.048 2.013 

1.480 2.270 B4 

0.007 0.462 0.040 0.742 0.015 0.004 800 0.048 2.633 
0.010 0.511 0.048 0.748 0.015 0.004 800 0.048 3.167 
0.019 0.677 0.069 0.825 0.015 0.004 800 0.048 4.570 
0.030 0.824 0.090 0.879 0.015 0.004 800 0.048 5.973 
0.043 0.961 0.111 0.921 0.015 0.004 800 0.048 7.397 
0.052 1.046 0.124 0.949 0.015 0.004 800 0.048 8.267 

This Study St. 

0.006 0.510 0.030 0.943 0.015 0.004 800 0.048 1.987 

1.22 1.60 B5 

0.008 0.572 0.035 0.979 0.015 0.004 800 0.048 2.320 
0.010 0.640 0.041 1.015 0.015 0.004 800 0.048 2.700 
0.013 0.715 0.047 1.058 0.015 0.004 800 0.048 3.100 
0.021 0.878 0.060 1.142 0.015 0.004 800 0.048 4.013 
0.023 0.915 0.064 1.156 0.015 0.004 800 0.048 4.260 
0.034 1.083 0.080 1.226 0.015 0.004 800 0.048 5.307 

This Study St. 

0.005 0.397 0.033 0.698 0.015 0.004 800 0.048 2.193 

1.09 2.83 B6 

0.008 0.467 0.040 0.743 0.015 0.004 800 0.048 2.687 
0.011 0.551 0.050 0.788 0.015 0.004 800 0.048 3.327 
0.017 0.674 0.064 0.852 0.015 0.004 800 0.048 4.253 
0.025 0.775 0.079 0.880 0.015 0.004 800 0.048 5.273 
0.025 0.783 0.079 0.887 0.015 0.004 800 0.048 5.293 
0.028 0.823 0.085 0.900 0.015 0.004 800 0.048 5.687 
0.029 0.830 0.086 0.903 0.015 0.004 800 0.048 5.747 
0.039 0.947 0.103 0.942 0.015 0.004 800 0.048 6.880 

This Study Al. 

0.009 0.747 0.029 1.400 0.015 0.004 400 0.024 1.933 

2.47 4.24 B7 

0.011 0.835 0.033 1.474 0.015 0.004 400 0.024 2.183 
0.016 0.966 0.041 1.527 0.015 0.004 400 0.024 2.717 
0.023 1.105 0.051 1.559 0.015 0.004 400 0.024 3.417 
0.030 1.245 0.060 1.618 0.015 0.004 400 0.024 4.020 
0.033 1.296 0.064 1.641 0.015 0.004 400 0.024 4.240 
0.035 1.306 0.067 1.615 0.015 0.004 400 0.024 4.440 
0.041 1.407 0.072 1.669 0.015 0.004 400 0.024 4.830 
0.045 1.469 0.077 1.695 0.015 0.004 400 0.024 5.103 
0.049 1.502 0.081 1.686 0.015 0.004 400 0.024 5.397 

This Study St. 

0.013 0.894 0.037 1.488 0.015 0.004 400 0.024 2.453 

2.90 4.25 B8 

0.018 1.014 0.045 1.526 0.015 0.004 400 0.024 3.000 
0.027 1.208 0.055 1.640 0.015 0.004 400 0.024 3.687 
0.037 1.363 0.067 1.680 0.015 0.004 400 0.024 4.473 
0.033 1.307 0.063 1.661 0.015 0.004 400 0.024 4.207 
0.052 1.552 0.085 1.705 0.015 0.004 400 0.024 5.633 

This Study Al. 

0.007 0.502 0.033 0.883 0.015 0.004 400 0.024 2.193 

2.66 5.93 B9 

0.010 0.596 0.041 0.939 0.015 0.004 400 0.024 2.733 
0.014 0.704 0.051 0.992 0.015 0.004 400 0.024 3.420 
0.022 0.826 0.065 1.033 0.015 0.004 400 0.024 4.347 
0.033 0.978 0.084 1.076 0.015 0.004 400 0.024 5.620 
0.033 0.964 0.084 1.059 0.015 0.004 400 0.024 5.627 
0.045 1.103 0.102 1.103 0.015 0.004 400 0.024 6.793 

This Study St. 

0.007 0.502 0.033 0.883 0.015 0.004 400 0.024 2.193 

2.5 6.02 B10 
0.010 0.594 0.041 0.936 0.015 0.004 400 0.024 2.740 
0.015 0.703 0.052 0.987 0.015 0.004 400 0.024 3.440 
0.022 0.825 0.065 1.030 0.015 0.004 400 0.024 4.353 
0.033 0.977 0.083 1.081 0.015 0.004 400 0.024 5.553 
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Fig. 7. Relationship among kN, kS and kB with h/k using the experimental data found in the literature. 
 

RESULTS AND DISCUSSION 
Methodology for verifying the use of conventional flow 
resistance equations at high submergence 

 
From Eqs. (3), (6) and (9), kN, kS and kB were evaluated for 

experimental data in Tables 1, 2, 3. The results for each run are 
represented, respectively, in Figs. 7, 8, and 9. Each diagram is 
relative to a run: on the x-axis, which is shown in a log scale for 
better visualisation, the flow depth is scaled with the height of 
the cylinders; and on the y-axis, which is shown in a log scale 
due to the many decades involved, the roughness is represented. 
The results show that Eqs. (3), (6) and (9) tested for vegetated 
flows at low and medium submergences are not sufficiently 
accurate showing, in some cases, values of kS, kB and kN without 
physical meaning, and this is all the more true the greater the 
density is. The values of kN and kB are similar, while the values 
of kS are higher according to the comparison shown in Figs. 1, 2 
and 3. 
 
Comparison of the conventional flow resistance equations 

 
In each diagram in Figs. 7, 8 and 9, kN, kS and kB differ; how-

ever, especially at higher submergences (i.e., h/k ≥ 5), the val-

ues show a general horizontal trend. The meaning of this trend 
is that the conventional flow resistance equations work better at 
higher submergence. It is thus necessary to determine which of 
the three roughnesses can be considered more reliable to evalu-
ate the flow resistance in a vegetated flow. 

To compare kN, kS and kB, the following methodology was 
applied. In each diagram, for each series of experimental data, 
the mean gradient was evaluated through a regression line; in 
Fig. 10, the three mean gradients are +0.0012, –0.0124 and 
+0.0016. These mean gradients were then made non-
dimensional using the mean values of the ordinate (i.e., rough-
ness) of the points of the series; in Fig. 10, these mean values 
are 0.0271, 0.0688 and 0.0215, implying that the non-dimensional 
mean gradients are +0.0443, –0.1802 and +0.0746. 

For each series, the non-dimensional mean gradients were 
attributed to the mean value of the abscissae (i.e., submergenc-
es) of the points of the series; in Fig. 10, the mean value for 
each of the three series was 3.38. 

To compare the results of the diagrams, each non-
dimensional mean gradient was normalised with the value it 
would attain at the submergence h/k = 5. These values were 
obtained by assuming that the non-dimensional mean gradient 
varies with the inverse of the submergence in each diagram;  
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Fig. 8. Relationship among kN, kS and kB with h/k using the experimental data found in the literature. 
 

this is the simplest assumption that leads to a horizontal trend 
with increasing values of submergence. Consequently, for each 
series, the normalising factor is the ratio between the mean 
submergence and 5; in Fig. 10, this ratio is 3.38/5 = 0.677, 
which implies that the three non-dimensional normalised mean 
gradients are +0.0300, –0.1202 and 0.0505. 

In Fig. 11, the obtained non-dimensional normalised mean 
gradients, which are hereafter called gradients, of each run in 
Tables 1, 2 and 3 are reported versus the corresponding value of 
h/kN(5). It is evident that: 1) as the value of h/kN(5) increases, 
the gradients relative to kN, kS and kB tend to approach zero, 
indicating good reliability of the corresponding equations, 
increasing the submergence; and 2) the gradients relative to kN 
show the best trend. 

The reliability of using the conventional flow resistance 
equations for vegetated flows with h/k = 5 is demonstrated by 
the curves that approach 0. To better show the trends of the data 
removing random variations, 5-point moving averages were 
calculated (Fig. 12). 

A band ±0.05 was fixed so that a point inside it correspond-
ed to a roughness varying by no more than 5% for a submerg-
ence varying by one unit. 

Comparing the curves with the band, it is shown that the 
gradients relative to kN are always inside the band, irrespective 
of the value of h/kN(5), while the gradients relative to kB are 
within the band only when h/kN(5) > 1, and the gradients rela-
tive to kS are within the band only when h/kN(5) > 3. Conse-
quently, remembering that h/kN(5) varies from 0.35 to 6.02, the 
previous results show that for h/k ≥ 5, it is better to use the 
Keulegan equation rather than the Manning or Chézy-Bazin 
equations. 
 
Model for the evaluation of the Nikuradse equivalent  
sand-grain roughness kN 

 
Starting from the conclusion of the previous paragraph, it is 

possible to select two groups of experimental runs from the 
literature and collected for this study, when h/k ≥ 5. The first  
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Fig. 9. Relationship of kN, kS and kB with h/k for this study’s experimental conditions. 

 
group are 3 runs out of a total of 75 runs from the literature and 
the second group are 27 runs out of a total 90 runs collected for 
this study. In Fig. 13, the first group of 3 runs is represented by 
squares, and the second group of 27 runs is represented by 
rhombuses. In Fig. 13, the density is shown on the x-axis in a 
logarithmic scale, and the corresponding value of kN/k when  
h/k > 5 is shown on the y-axis for each run. 

Interpolating the points with a logarithmic curve, the graph 
shows a strong correlation (R2 = 0.93) between these two quan-
tities; thus, it is possible to state that: 

 

2.0116ln 8.1916Nk
k

λ= +  or [ ]2.0116ln 8.1916Nk k λ= +  (39) 

 
Runs from the literature have densities greater than 0.1, 

while the runs collected for this study have densities lower than 
0.1. The first group shows a spread larger than the second 
group, with respect to the regression line. This diversity does 
not depend on the parameter D/k, as suggested by the dimensional  

 
 
Fig. 10. Example of the regression lines for the experimental data. 
 
considerations. Although the first group exhibits values of this 
parameter that are lower than the constant value of the second 
group, the members of the first group lie on both sides of the  
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Fig. 11. Relationship of the gradients relative to kN, kS and kB and 
h/kN(5). 

 

 
 
Fig. 12. Moving averages of the gradients relative to of kN, kS and kB. 
 
logarithmic regression line, which does not depend on the pa-
rameter D/k. It is necessary to consider that the Nikuradse 
equivalent sand-grain roughness kN, (as kS and kB,) is a sensitive 
parameter and that its influence on evaluating the flow rate is 
attenuated by the log in the Keulegan equation. 

In the literature, comparisons are generally performed 
among the measured flow rates Qm (m3s–1) and the calculated 
flow rates Qc (m3s–1). The proposed model has been tested using 
new experimental data from literature and experimental meas-
urements performed for the test (Table 4). The results are 
shown in Fig. 14. The range of flow rates that is generally  
 

 
 
Fig. 13. Ratio of kN/k versus the non-dimensional vegetation 
density λ. 
 

 
 
Fig. 14. Comparisons of measured (Qm) and calculated (Qc) flow rates. 
 
present in the literature is represented. The flow rates consid-
ered in Fig. 14 range across three decades (i.e., 0.01–0.1 m3/s, 
0.1–1 m3/s and 1–10 m3/s). In Cheng (2011), there are four 
decades (i.e., 0.001–0.01 m3/s, 0.01–0.1 m3/s, 0.1–1 m3/s and 
1–10 m3/s) and it is clear the lack of literature data in the third 
decade, which corresponds to the second in Fig. 14. 

Measured and experimental data are in good agreement, 
considering the simplicity of the model, which allows for the 
evaluation of the Nikuradse equivalent sand-grain roughness kN 
for high submergences, starting only from the non-dimensional 
vegetation density.   

Table 4. Data to test the model. 
 

Authors Arr. Q (m–3s–1) V(m/s) hu(m) Fr k (m) D (m) m(m–2) λ h/k 

Poggi (2004) Al. 0.162 0.300 0.6 0.124 0.12 0.004 536 0.257 5.000 
0.162 0.300 0.6 0.124 0.12 0.004 1072 0.515 5.000 

Meijer and Van Velzen 
(1999) Al. 5.92 

6. 57 
0.836 
0.883 

2.46 
2.48 

0.174 
0.179 

0.45 
0.45 

0.008 
0.008 

256 
64 

0.922 
0.230 

5.467 
5.511 

Current work 

Al. 

0.022 0.648 0.085 0.710 0.015 0.004 1600 0.096 5.660 
0.033 0.803 0.103 0.799 0.015 0.004 1600 0.096 6.853 
0.045 0.915 0.123 0.834 0.015 0.004 1600 0.096 8.193 
0.033 0.956 0.086 1.039 0.015 0.004 1600 0.096 5.753 
0.045 1.096 0.103 1.093 0.015 0.004 1600 0.096 6.840 
0.033 1.070 0.077 1.230 0.015 0.004 1600 0.096 5.140 
0.045 1.230 0.092 1.298 0.015 0.004 1600 0.096 6.100 
0.045 1.442 0.078 1.649 0.015 0.004 400 0.024 5.200 
0.033 0.967 0.085 1.057 0.015 0.004 400 0.024 5.687 
0.024 0.583 0.103 0.580 0.015 0.004 400 0.024 6.867 

Stag. 

0.033 0.959 0.086 1.044 0.015 0.004 400 0.024 5.733 
0.045 1.082 0.104 1.071 0.015 0.004 400 0.024 6.933 
0.025 0.791 0.079 0.899 0.015 0.004 800 0.048 5.267 
0.028 0.824 0.085 0.902 0.015 0.004 800 0.048 5.667 
0.024 0.769 0.078 0.879 0.015 0.004 800 0.048 5.200 
0.047 1.366 0.086 1.487 0.015 0.004 800 0.048 5.733 
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Link between h/kN(5) and the non-dimensional vegetation 
density 
 

Starting from Eq. (39), it is possible to directly link h/kN(5) 
with the non-dimensional vegetation density using the follow-
ing equation: 

 

[ ] [ ] 5(5) (5) 5
2.0116ln 8.1916N

N N

k kh k h k
k k λ

= = =
+

 (40) 

 
Eq. (40) shows that as the non-dimensional density increas-

es, the value of h/kN(5) decreases and vice versa. 
Consequently, the results reported in the literature were con-

firmed: lower values of h/kN(5) (i.e., less than unity) correspond 
to higher vegetation densities, and higher values of h/kN(5) (i.e., 
more than unity) correspond to lower vegetation densities. 

 
Limit and observations of previous results  

 
A limitation of the previous results is described in this sec-

tion. The above analysis was performed for values of h/kN(5) 
that did not exceed 6.02; in Fig. 12, due to the moving average, 
the maximum value is 4.48. Clearly, it is not possible to extrap-
olate these results for the highest values of h/kN(5), or, consider-
ing Eq. (18), for densities below 0.024. 

This factor is not a significant limitation. Values of non-
dimensional vegetation density lower than 0.024 (and conse-
quently values of h/kN(5) higher than approximately 4–6) more 
typically correspond to rough beds than to vegetated beds 
(Nepf, 2012). 
 
CONCLUSIONS 

 
The flow resistance of vegetated flows cannot be described 

by conventional flow resistance equations such as the Keule-
gan, Manning or Chézy-Bazin equations. However, within 
some limitations, particularly in cases with high submergence 
(i.e., equal to 5 or more), these equations fit experimental data 
sufficiently well. These results are possible because bulk flow 
does not distinguish between a rough bed and a vegetated bed 
in high-submergence scenarios. 

An analysis of the experimental data reported in the litera-
ture and collected for this study shows that the best equation to 
evaluate the flow resistance in vegetated flows for submergenc-
es of h/k = 5 or more is the Keulegan equation. For submerg-
ences equal or above 5, the Nikuradse equivalent sand-grain 
roughness kN in the Keulegan equation can be determined using 
the logarithmic model proposed and tested in this study. These 
results support the reliability of using conventional flow re-
sistance equations for vegetated flows at high submergence, as 
already explored in the literature, and, in addition, demonstrate 
the conventional equations that best fit different flow conditions 
(i.e., the Keulegan equation) and offer a model to simply evalu-
ate the Nikuradse equivalent sand-grain roughness kN when 
starting from the non-dimensional vegetation density. 
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NOMENCLATURE 
 
B Bazin roughness coefficient [m1/2] 
B0     Correction factor [m1/2s–1] 
C      Chezy resistance factor [m1/2s–1] 
CD     Drag coefficient 
Cu    Dimensionless factor 
D      Vegetation diameter [m] 
f        Darcy-Weisbach friction factor 
Fr  Froude number 
g   Acceleration of gravity [m/s2] 
h  Flow depth [m] 
hu   Uniform flow depth [m] 
k    Vegetation height [m] 
kB   Chezy-Bazin roughness height [m] 
kN   Nikuradse equivalent sand-grain roughness [m] 
kS  Strickler roughness height [m] 
Kn     Conversion factor [m1/2s–1] 
Kρ   Dimensionless factor 
KΦ  Correction factor [m1/2s–1] 
K1   Dimensionless factor 
K2  Dimensionless factor 
h/k   Submergence ratio 
m    Vegetation elements per unit area [m–2] 
n  Manning roughness coefficient [m1/6] 
Q    Flow rate [m3s–1] 
Qc   Calculated flow rate [m3s–1] 
Qm   Measured flow rate [m3s–1] 
R    Hydraulic radius [m] 
s     Vegetation elements spacing [m] 
S     Channel slope 
SH Total head slope 
λ Non dimensional vegetation density 
λC Fraction of the bed area occupied by vegetation elements 
ΦB Correction factor [m1/2s] 
ΦS Correction factor [m–1/2s] 
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