
J. Hydrol. Hydromech., 65, 2017, 4, 426–432 
DOI: 10.1515/johh-2017-0040 

426 

 
 
 

Explicit finite-difference solution of two-dimensional solute transport with 
periodic flow in homogenous porous media 
 
Alexandar Djordjevich1, Svetislav Savović1, 2*, Aco Janićijević3 

 
1 City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. 
2 University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia. 
3 Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia. 
* Corresponding author. Fax: +381-34-335040. E-mail: savovic@kg.ac.rs 
 

Abstract: The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finite-
difference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. 
Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are 
permitted. The transport is from a pulse-type point source (that ceases after a period of activity). Included are the first-
order decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions 
at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature 
for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. 
Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are 
obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite 
difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, 
which is especially important when arbitrary initial and boundary conditions are required. 
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INTRODUCTION 
 

Environmental concerns have inspired much research inter-
est in solute transport through porous media. Factors affecting 
this transport include the solvent and solute properties, fluid 
velocity field within the porous medium, and micro-geometry 
such as the shape, size, and location of the solid part of the 
medium or the layout of the voids. Advective-dispersive phe-
nomena often dominate the process (Dehghan, 2004; Dhawan 
et al., 2012). Thus for example, contaminants of groundwater 
permeate through pores in the ground and adsorption attenuates 
the pollution concentration as the pollutants adhere to the solid 
surface.  

The partial differential advection–diffusion equation (ADE) 
describes water transfer in soils (Parlange, 1980), dispersion of 
tracers in porous media (Fattah and Hoopes, 1985), the spread 
of pollutants in rivers and streams (Chatwin and Allen, 1985), 
the dispersion of dissolved material in estuaries and coastal seas 
(Holly and Usseglio-Polatera, 1984), contaminant dispersion in 
shallow lakes (Salmon et al., 1980), the absorption of chemicals 
into beds (Lapidus and Amundston, 1952), long-range transport 
of pollutants in the atmosphere (Zlatev et al., 1984), forced 
cooling by fluids of solid material such as windings in turbo 
generators (Gane and Stephenson, 1979), thermal pollution in 
river systems (Chaudhry et al., 1983), flow in porous media 
(Kumar, 1988) and dispersion of dissolved salts in groundwater 
(Guvanasen and Volker, 1983).  

Logan and Zlotnik (1995) proposed analytical solutions with 
a decay term for periodic input conditions through a semi-
infinite domain to address fluctuations of the groundwater table 
and flow patterns caused by the periodicity of the sea level. 
Townley (1995) obtained analytical solutions based on the use 
of complex algebra for a periodic aquifer flow. Analytical 
solutions for one-dimensional ADE with temporally and spa-
tially dependent dispersion problems are obtained by Jaiswal et 
al. (2009), Jaiswal et al. (2011), Kumar et al. (2010) and Yadav 

et al. (2011) using a Laplace transform technique. Chen and Liu 
(2011) reported a generalized analytical solution using a La-
place transform technique for advection-dispersion equation in 
finite spatial domain with arbitrary time-dependent inlet bound-
ary conditions. A computer software package STANMOD 
which consists of a collection of analytical solutions of the 
advection-dispersion equation for transport problems has also 
been developed (Šimunek et al., 1999; van Genuchten et al., 
2012). 

Numerical solutions of the ADE have been reported for 
problems not covered by analytical solutions. For example, 
Zhao and Valliappan (1994) used a finite/infinite element tech-
nique, Dehghan (2004) used weighted finite difference tech-
nique, Karahan (2006) employed implicit finite difference 
techniques, Huang et al. (2008) used a finite element method, 
Ciftci et al. (2012) employed a meshless method, Nazir et al. 
(2016) used a new cubic trigonometric B-splines approach, 
Gharehbaghi (2017) employed a third- and fifth-order finite 
volume schemes and Kaya and Gharehbaghi (2014) used a 
various numerical methods. Notable numerical techniques are 
finite difference methods (FDM), finite element methods (FEM) 
and finite volume methods (FVM) – naturally, all three discre-
tize governing equations and initial and boundary conditions. 

For ADE with both constant and variable coefficients, Ah-
med (2012) proposed an FDM discretization scheme that com-
bined the Siemieniuch-Gradwell’s approximation (Siemieniuch 
and Gladwell, 1978) for time and Dehghan's approximation 
(Dehghan, 2004) for the spatial variable. Savović and 
Djordjevich (2012) solved the ADE with variable coefficients 
in semi-infinite domain by an explicit formulation of the finite 
difference method (EFDM). Appadu (2013) applied three 
schemes (i.e., the Lax-Wendroff scheme, the Crank-Nicolson 
scheme, and the nonstandard finite difference scheme) to solve 
the ADE with constant coefficients in one-dimensional space. 
Gharehbaghi (2016) assessed the explicit and implicit forms of 
the differential quadrature method for time-dependent ADE 
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with variable coefficients in one-dimensional semi-infinite 
domain. 

A significant transverse solute transport has been noted even 
for very low longitudinal velocity and dispersivity relative to 
the respective values in the longitudinal direction (Yadav et al., 
2012). Because one-dimensional models cannot capture such 
transverse transport, a two-dimensional model is required. 
Moreover, for different combinations of unsteadiness of the 
coefficients in the ADE, solutions can be obtained as particular 
cases of the one obtained in the present study. 

Analytical solutions of the ADE have been reported for spe-
cific initial and boundary conditions. This lack of generality 
limits their applicability. Moreover, such solutions tend to be 
complex. Thus, analytical solutions of the ADE are usually 
lengthy and contain infinite series (Yadav et al., 2012). In con-
trast, numerical methods are generally flexible to accommodate 
arbitrary initial distribution and boundary conditions 
(Djordjevich and Savović, 2013; Savović and Caldwell, 2003; 
Savović and Caldwell, 2009). Being often unconditionally 
stable, implicit finite difference method (IFDM) allows larger 
step lengths than EFDM. Nevertheless, this does not translate 
into IFDM’s higher computational efficiency because extreme-
ly large matrices must be manipulated at each calculation step. 
The EFDM algorithm is also simpler in addition to being more 
efficient computationally. We demonstrated earlier 
(Djordjevich and Savović, 2013; Savović and Djordjevich, 
2012; Savović and Djordjevich, 2013) that the EFDM is effec-
tive and accurate in solving one-dimensional ADE with varia-
ble coefficients, as well as in solving two-dimensional ADE for 
solute transport from a pulse-type source. We propose in this 
paper (to the best of our knowledge for the first time) an effec-
tive, accurate and most simple explicit finite difference scheme 
for solving time-dependent ADEs in two-dimensional space. 
This allows us to derive a numerical solution for transport of 
solutes from a point source through a finite homogeneous and 
porous two-dimensional domain with the mixed-type boundary 
condition at the origin of the domain and with a periodic 
boundary condition at the end of the domain. The solution 
permits (i) a periodic seepage velocity and (ii) a dispersion 
coefficient that is proportional to the seepage velocity. The 
retardation process that occurs in the porous medium due to 
adsorption is also taken into account and the solute movement 
and dispersion are assumed in opposite directions (Al-Niami 
and Rushton, 1977; Marino, 1978). The illustrations of results 
obtained with the solution demonstrate solute transport in both 
longitudinal and transverse directions.  

 
ADVECTION-DIFFUSION EQUATION   

 
Let -the polluting solute particles enter a porous medium at a 

fixed location, continuously and at a constant rate up to a cer-
tain moment when the flow ceases (pulse-type source). The 
ADE in two-dimensional horizontal plane medium may be 
written as (Yadav et al., 2012): 

 
( , , ) ( , , )( , ) ( , ) ( , , )

( , , )( , ) ( , ) ( , , )

( , , ) ( , , )

f x
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where C(x,y,t) is the dispersing solute concentration at a posi-
tion (x,y) at time t; Dx(x,t) and Dy(y,t) are dispersion coeffi-

cients in directions x and y, respectively; u(x,t) and v(y,t) are 
velocity coefficients in directions x and y, respectively; γ  is the 
first-order decay coefficient and μ  is the zero-order production 

coefficient. The retardation factor 1
1

1 p
f

p

n
R K

n
 −

= +  
 

  

accounts for the equilibrium linear adsorption process, where np 
is the porosity of the medium and K1 is an empirical constant 
(Cherry et al., 1984; Lapidus and Amundson, 1952). 

The expressions for velocity components are assumed as 
(Yadav et al., 2012):  

 

0 0( , ) sin( ) ; ( , ) sin( )u x t u mt v y t v mt= =  (2) 
 

where u0 and v0 are uniform longitudinal and transverse veloci-
ty components, respectively, each of dimension (LT–1). The 
coefficient m represents the unsteadiness parameter; it is in T–1. 
The inclusion of transverse diffusion makes the dispersion 
problem two-dimensional. Hence, we consider dispersion coef-
ficients as: 

 

0 0
( , ) sin( ) , ( , ) sin( )x yD x t D mt D y t D mt= =      (3) 
 

where 
0xD and 

0yD  are the initial longitudinal and transverse 
dispersion coefficients, respectively, each of dimension (L2T–1). 
Furthermore, first-order decay and zero-order production are 
considered directly proportional to the seepage velocity and, 
thus, it is:  

 

0 0sin( ) , sin( )mt mtγ γ μ μ= =      (4) 
 

where 0γ  and 0μ are constants of dimension T–1  and ML–3T–1, 
respectively. Hence, (1) can now be rewritten as: 
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 (5)
 

 
For the plane and horizontal porous medium, the initial so-

lute concentration is set to vary with position according to (6) 
whereby x-axis is longitudinal and y-axis is transverse to the 
flow. The solute transport is in finite space 

1x xL x L≤ ≤ and 

1y yL y L≤ ≤ in the x>0 and y>0 directions. The source of the 
pollution is considered a uniform pulse at point (Lx, Ly). Let the 
time of elimination of the point source be t0. The initial and 
boundary conditions are (Yadav et al., 2012): 

 

1
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where C0 is the reference concentration representing the input concentration that is released uniformly by the source and α  is  
a constant whose dimension is the inverse of length.  
 
ANALYTICAL SOLUTION OF ADVECTION-DIFFUSION EQUATION 

 
Analytical solution of the ADE (1), subject to initial condition (6) and boundary conditions (7) and (8), is (Yadav et al., 2012): 
 

( ) ( ) ( ) ( ) ( )0
1 2 0 3 0 4 0

0
, , , 2 , , ; 0inC T F T C F T C F T C F T T T

μη η η η η
γ

 
= + + − + < ≤ 

 
 (9)  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 0 3 0 3 0 0 4 4 0 0, , , 2 , 2 , , , ;in fC T F T C F T C F T mR T F T T C F T F T T T Tη η η η η η η   = + + − − − + − − >    (10) 
 
where 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

20 0 0
1 0 0 0 1 2

00 0 0 1

0 20
1 1 0 2

00 1 1

0

0

cosh
, exp exp exp 2 exp

cosh

exp sinh
exp 2 exp 1 sin 1/ 2

cosh

exp

n

n

n

L
F T T L T D T E E

L L

T L L
L L L D T n E

L L L L

η βμ μ μη γ β βη γ δ
γ γ γ β

γ η β ημ β β βη δ
γ β β

μ β β
γ

∞

=

∞
−

=

 − 
= − − + − + − − π − − 

  − − − − − + − − − − + π  − −      

+ −





( ) ( ) ( ) ( ) ( ) ( )
( )

2
1 3 1 0 4

0 1
2 exp 1 sin 1/ 2n

n

L
L E L L D T n E

L L
η

βη δ
∞

−

=

  − + × − − − − + π  −    


 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 02 2
2 0 1 5

01 0

02
1 1 1 0 5

0 10 1 0

cosh /
, exp exp exp 2

cosh /

sinhexp
exp 2 1 sin 1 2

cosh

n

n

n

L b D
F T b T L L T bT D E E

L L b D

L b DbT L
L L T L L D n E

L Lb D L L b D

η
η αη δ α β βη δ

η η
α β α β βη δ

∞

=

∞
−

=

 −   = + − − − + − × − π    −  
  − −  − − − + − × − − − + π    −−     




 

 

( ) ( ) ( ) 2
3 6 0 1 4

0
, exp 2 exp

n
F T L E D L T E Eη β βη β βη δ

∞

=

 = − + − π − + −   
 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

2
11

4 1 6 32
00

2
1 1 42

0 2 22 21 0 1

1, exp tanh
2 2

2 exp
1 2

f
f

f

n

mR LL L
F T L L L mR T E E

DD

mR L L E E
D L T

n D L L

ηδη β βη
δ

β βη δ
δ

∞

=

    −−   = − + − − −       

−
 − π − + −   + π + − 


 

 

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( )
( )

( )
( )

( ) ( )

( )
( )

2 2
0

2 2
1 01

1 2 3 22 22 2 2
1 00 1 1 0

2 22 2
0 0

2 2
1 1

4 52 22 2
0 1

1 2
exp

sinh11 1 2 cos 1 2 , , ,
1 2 cosh

1 2 1 2
exp exp

,
1 2

n

n D
T

L L L DL
E n n E E

L L Dn D L L L L D

n D n D
T T

L L L L
E E

n D L L

η δη
δω δ

δ

−

 + π
− 

−   −−  = − + + π = = −    + π + − −   
   + π + π
 − −
 − −   = =

 + π + −  ( ) ( )
( )
( )

2
1 0

62 22 2
0 1 1 0

cosh
, ,

1 2 cosh

L D
E

n D b L L L L D

η δ

δ


 −

=
 + π + − − 

   

 

( ) 0 0

2
2 2 2 20 0

0 0 0
0 0

, , , , ,
2 4 x y
U U

b D D D D
D D

α β δ γ ω β ω= − = + = = = +  
 

( )1 10 0 0 1
1, , , , 1 cosx y x y

f

U u v L L L L L L x y T mt
mR

η= + = + = + = + = −   . 

(11)



Explicit finite-difference solution of two-dimensional solute transport with periodic flow in homogenous porous media 

429 

 

NUMERICAL METHOD 
  
In order to employ the EFDM to solve Equation (5), this 

equation is first rewritten in the following form: 
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The central difference scheme is used to represent the terms 
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( )( , ) /C y t y∂ ∂  and a forward difference scheme is used for the 

derivative term ( )( , ) /C x t t∂ ∂  (Anderson, 1995). With these 
substitutions, Equation (12) transforms into: 
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where indexes i, j and k refer to the discrete step lengths Δ x, 
Δ y, and Δ t  for the coordinate x, coordinate y, and time t, 
respectively, and where: 
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The truncation error for the difference Equation (13) is  

O( Δ t, Δ x2, Δ y2). Using a small-enough value of Δ x, Δ y, 
and Δ t, the truncation error can be reduced until the accuracy 
achieved is within the error tolerance. 

The initial condition (6) for Equation (13) is expressed in the 
finite difference form as:                                               
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Boundary conditions (7) and (8), rewritten in the finite dif-

ference form, are: 
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where N=
1

( )x xL L− /Δx and R=
1

( )y yL L− /Δy  are the grid 
dimensions in the x and y directions, respectively.  
 
NUMERICAL AND ANALYTICAL RESULTS 

 
Numerical solution of Eq. (13) is obtained by EFDM over a 

finite domain bounded by 0 ≤ x ≤ 1 km in the longitudinal and  
0 ≤ y ≤ 1 km in the transverse direction. To enable the compari-
son of results, this was done for the same set of input data pre-
viously used by Yadav et al. (2012). The input parameters are 

0xD = 1.77 km2/day, 
0yD = 0.177 km2/day, u0 = 0.70 km/day,  

v0 = 0.070 km/day, α = 0.025 km–1, 0γ = 0.01 day–1, 0μ = 0.01, 
C0 = 1.0, Cin = 0.1 and m = 0.1 day–1. The elimination time of 
the source of the pollutant (the pulse width) is t0 = 120 days. In 
the numerical calculations, the step lengths Δx = Δy = 0.1 km 
and Δt = 0.0005 days have been used to achieve the stability of 
the finite difference scheme.  

With the pollution source active (t ≤ t0) and for a fixed retar-
dation factor of Rf  = 1.08, Figure 1 shows the concentration 
profiles at various moments in time. These profiles are not in 
chronological order and the uppermost surface is for the middle 
value of time (90 days). The lower and middle surfaces are for 
the times of 70 and 110 days, respectively. This is due to the 
periodic nature of the input concentration. Near the source point 
(x = 1 km, y = 1 km), the distributions of the solute in the trans-
verse and longitudinal directions are of similar order of magni-
tude (in terms of relative concentrations) despite the transverse 
component of the velocity and dispersion coefficient being 
merely one-tenth of the corresponding values for the longitudi-
nal direction. One can observe at the far-end boundaries x = 0 
and y = 0 that surfaces in Fig. 1 are flat. The concentration 
gradient with respect to time decreases.  

For a parametric retardation factor of Rf  = 1.08, 1.38 and 
1.68, Figure 2 shows the concentration profiles at time t = 90 
days. Larger retardation factors indicate higher adsorption of 
the solute by the solid matrix of the porous medium. One can 
thus observe in Fig. 2 that the concentration decreases at a 
higher rate for higher values of this factor Rf.   
Figures 3 and 4 show concentration profiles for time t > t0. As 
the pollution source is then inactive (starting from t0 = 120 
days), the concentration at the source point (x = 1 km and y = 1 
km) becomes zero – after it had peaked in Fig. 1. For t = 140, 
160 and 180 days and for the retardation factor Rf   = 1.08 one 
can observe in Figure 3 that the peak concentration value  
decreases with time and drifts away from the point-source. 
Consequently, the peak concentration and its rate of change at a 
point can be on the rise after the pollution source is extin-
guished. The transverse transport speeds up the rehabilitation 
process. The trend of contaminant concentration with time and 
distance travelled is almost the same as for t ≤ t0. The concen-
tration values are changing periodically with time and position. 
The upper surface represents solute concentration at t = 160 
days, while the middle and lower surfaces indicate lower and 
higher time at the same position.  

Figure 4 shows the concentration profiles at time t = 160 
days, which is after the pollution source turned inactive (t > t0).  

Results are shown for three values of the retardation factor:  
Rf = 1.08, 1.38 and 1.68. The solute concentration decreases 
with the increasing retardation factor.  
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Fig. 1. Solute concentration in 2D space at time t = 70, 90 and 110 
days (which is within the 120 days of the source activity), for a 
fixed retardation factor of Rf  = 1.08. 
 

 
 
Fig. 2. Solute concentration in 2D space at time t = 90 days (the 
source is active for 120 days) for a varied value of the retardation 
factor of Rf  = 1.08, 1.38 and 1.68. 
                

While the numerical and analytical results match closely, a 
measure of this match is evaluated by the mean square error 
defined as: 
 

( )2
,

1 1

1 N R
num analyt
i j

i j
error C C

N R = =
= −

⋅   (18) 

 
where N⋅R is the total number of observation points. Values 
calculated by (18) are shown in Table 1 at t = 180 days (the 
longest time analyzed), where it is assumed that the source was 
active for the first 120 days, and for a fixed retardation factor of 
Rf   = 1.08. The error values increase with time so the maximum 
deviation between the results obtained with analytical and 
numerical solutions over a 180-day period is ≈ 0.001%. 

The second accuracy test was the time step value sensitivity. 
Due to the accuracy requirements of the EFDM, we used value 
Δt = 0.0005 days for all EFDM runs. In contrast, as can be seen 
from Table 2, the EFDM method remains stable and accurate, 
even with a ten-times higher time step value. 

Finally, the EFDM used in this work for solving ADE, besides 
it is the simplest among other FDMs (Dehghan, 2004), FEMs 
(Huang et al., (2008)) and FVMs (Gharehbaghi, (2017)), it is 
effective and accurate for solving time-dependent ADEs in two-
dimensional space. Stability of the explicit finite difference 
scheme proposed in this work and high accuracy of the obtained 
numerical results have easily been achieved by using a sufficient-
ly small discrete time step length of Δt = 0.0005 days. 

 

 
 
Fig. 3. Solute concentration in 2D space at time t = 140, 160 and 
180 days (the source was active for the first 120 days), for a fixed 
retardation factor of Rf  = 1.08. 
 

 
 
Fig. 4. Solute concentration in 2D space at time t = 160 days (the 
source was active for the first 120 days), for a varied value of the 
retardation factor of Rf  = 1.08, 1.38 and 1.68. 
 
Table 1. Errors in solute concentration shown in Fig. 3 at t = 20 to 
t = 180 days (the longest time analyzed); it is assumed that the 
source was active for the first 120 days and that the retardation 
factor was Rf  = 1.08. 
 

t (day) error 
20 0.00000237 
40 0.00000359 
60 0.00000475 
80 0.00000509 
100 0.00000641 
120 0.00000778 
140 0.00000905 
160 0.00001035 
180 0.00001159 

 
Table 2. Errors in solute concentration shown in Fig. 3 at t = 180 
days for various time steps Δt; it is assumed that the source was 
active for the first 120 days and that the retardation factor was  
Rf  = 1.08. 
 

Δt (day) error 
0.005 0.00001433 
0.002 0.00001332 
0.001 0.00001251 
0.0005 0.00001159 
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CONCLUSIONS 
 

A solution for the unsteady dispersion of pollution through a 
horizontal porous medium that is homogeneous using the  
explicit finite difference method is presented. Periodicity of 
velocity and boundary conditions simulate the transient advec-
tion–dispersion response of ground water systems to water level 
changes. Accounted for is the retardation of a solute that occurs 
in the porous media due to adsorption. 

High accuracy of the method is apparent from the compari-
son of numerical results with those obtained with analytical 
solutions that are available for special cases. It has been 
achieved by setting sufficiently small discrete time step length 
of Δt = 0.0005 days. The numerical solution was able to calcu-
late the same solute transport scenario as expected and corre-
sponded with the analytical solution. Furthermore, the EFDM 
presented in this work for solving ADE is the simplest among 
other FDMs, FEMs and FVMs. The method showed how the 
peak concentration changed with time and drifted away from 
the point source once this source became inactive. The signifi-
cance of the transverse transport is apparent in speeding up the 
rehabilitation process. It was also found that the solute concen-
tration reflects strongly the input periodicity of the seepage 
velocity.  
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