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Abstract: One of the most important problems faced in hydrology is the estimation of flood magnitudes and frequencies 
in ungauged basins. Hydrological regionalisation is used to transfer information from gauged watersheds to ungauged 
watersheds. However, to obtain reliable results, the watersheds involved must have a similar hydrological behaviour. In 
this study, two different clustering approaches are used and compared to identify the hydrologically homogeneous re-
gions. Fuzzy C-Means algorithm (FCM), which is widely used for regionalisation studies, needs the calculation of cluster 
validity indices in order to determine the optimal number of clusters. Fuzzy Minimals algorithm (FM), which presents an 
advantage compared with others fuzzy clustering algorithms, does not need to know a priori the number of clusters, so 
cluster validity indices are not used. Regional homogeneity test based on L-moments approach is used to check homoge-
neity of regions identified by both cluster analysis approaches. The validation of the FM algorithm in deriving homoge-
neous regions for flood frequency analysis is illustrated through its application to data from the watersheds in Alto Genil 
(South Spain). According to the results, FM algorithm is recommended for identifying the hydrologically homogeneous 
regions for regional frequency analysis. 
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INTRODUCTION 
 

Identification of hydrologically homogeneous watersheds is 
one of the aspects that must be taken into account when we 
make the estimation of hydrological variables that are involved 
in water resources planning and management. In general, the 
networks of gauging stations are scarce, so there is not enough 
information to accurately determine the amount of water re-
sources that are available in a particular watershed or the design 
flow of a given flow control structure. These limitations of 
information are intended to be overcome through the determi-
nation of hydrologically homogeneous watersheds and regional 
flood frequency analysis (RFFA). In a hydrologically homoge-
neous region, each of the catchments have the same rescaled 
distribution function of the annual/seasonal maxima; thus, the 
samples from the individual catchments can be merged in a 
larger, regional sample, and analyse it in order to achieve more 
robust estimations of quantiles or return periods. The degree of  
 

regional homogeneity/heterogeneity is assessed by tests of 
regional homogeneity (Hosking and Wallis, 1997). The identi-
fication of hydrologically homogeneous regions is usually the 
most important and difficult step of the RFFA (Smithers and 
Schulze, 2001). The watersheds are often grouped by collecting 
the geographically close stations into the same group. However, 
it is not possible to say that the regions generated with this 
approach are hydrologically homogeneous. 

A review of the approaches generally used for regionalisa-
tion of watersheds is found in Rao and Srinivas (2008). Those 
include the region of influence (ROI) approach and its  
extensions, the method of residuals, the canonical correlation 
analysis, the hierarchical approach and its extension to ROI 
framework and the cluster analysis. Since the end of twentieth  
century, cluster analysis and fuzzy clustering (FC) procedures,  
specifically, gained recognition as a major mechanism in re-
gionalisation of watersheds for RFFA (see Table 1), as those 
procedures allow watersheds to partially resemble each other.  
 

Table 1. Previous studies on regionalization of watersheds for RFFA. 
 

Authors Study area and data Method of regionalization 
Bargaoui et al. (1998) Tunisia (39 stations) Iphigenie and ISODATA fuzzy clustering methods 
Hall and Minns (1999) United Kingdom (101 stations) Fuzzy c-means algorithm 
Jingyi and Hall (2004) China (86 stations) Fuzzy c-means algorithm 
Rao and Srinivas (2006) Indiana, USA (245 stations) Fuzzy c-means algorithm 
Isik and Singh (2008) Turkey (1410 stations) Hierarchical clustering, k-means algorithm and flow duration curve 

method 
Srinivas et al. (2008) Indiana, USA (245 stations) Self-organizing feature map 
Gaál et al. (2009) Slovakia (56 stations) Cluster analysis 
Raju and Nagesh Kumar (2011) Rajasthan, India (25 stations) K-means cluster analysis, fuzzy cluster analysis and Kohonen Neural 

Networks 
Goyal and Gupta (2014) Northeast India (68 stations) Fuzzy c-means algorithm and K-Mean algorithm 
Basu and Srinivas (2014) Ohio, USA (305 stations) Kernel based Fuzzy c-means 
Basu and Srinivas (2015) Mid-Atlantic, USA (114 stations) Defuzzification approach and threshold strategy 
Kumar et al. (2015) Godavari, India (17 stations) Artificial neural network and fuzzy inference system 
Goyal and Sharma (2016) Western India (81 stations) Fuzzy c-means algorithm 
Agarwal et al. (2016) United States of America (530 stations) Wavelet-based Multiscale Entropy 
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FC provides more information about the structure in data than 
hard clustering, so FC is a better choice for RFFA (Rao and 
Srinivas, 2006). 

One of the steps in regionalisation by cluster analysis in-
volves the selection of a clustering algorithm to partition fea-
ture vectors. Once clusters are formed, they are interpreted 
visually and by using cluster validity indices (e.g. partition 
coefficient; partition entropy; Xie-Beni; Fukuyama-Sugeno) to 
determine the optimum number of regions (see details below in 
the paper). According to Rao and Srinivas (2008) cluster validi-
ty indices must be used with extreme prudence due to the fact 
that they are developed and validated in applications other than 
regionalisation of watersheds. Hence, the identification of the 
optimal number of regions in regionalisation studies should be 
purposed in future research. 

In this work, we have checked the use of FM for the identifi-
cation of hydrologically homogeneous regions due to the fact 
that this algorithm presents an advantage compared with others 
fuzzy clustering algorithms: it does not need to know a priori 
the number of clusters, so cluster validity indices are not used. 
Therefore, the objective of this study was to apply a novel 
clustering algorithm with the ability to (1) produce a partition 
that represents a meaningful interpretation of structure in the 
data, obtained without applying cluster validity indices to the 
optimal number of clusters, and (2) test the regions for homo-
geneity by using statistical homogeneity tests. Results obtained 
with the application of this algorithm have been compared with 
those obtained with the application of the widely used Fuzzy C-
Means algorithm. 

 
METHODS 

 
In the present study, practical applicability of two fuzzy 

clustering techniques, namely, Fuzzy C-Means (FCM) and 
Fuzzy Minimals (FM) is analysed for grouping 20 watersheds 
of Alto Genil watershed (South Spain). These techniques are 
explained briefly below. 
 
Fuzzy C-Means algorithm 

 
If we want to classify a sample, but we do not know the 

classes of available clusters and even the number of the availa-
ble classes for the sample, we can use the unsupervised classifi-
cation or clustering method to find out the classes using some 
measure of similarity. Similarity can be defined as proximity of 
the points in the textures space according to a distance function.  

Usually partitioned clustering (cluster analysis), called ‘hard 
clustering’, assigns each datum to exactly one cluster; on the 
other hand, fuzzy cluster analysis allows gradual memberships. 
In this way, we can deal with data belonging to more than one 
cluster at the same time.  

The origin of fuzzy clustering emerges with the work of 
Bellman et al. (1966) and Ruspini (1969), based on the ideas of 
Zadeh (1965). Dunn (1974) formalised the FCM algorithm, 
which was later generalised by Bezdek (1981). FCM algorithm 
calculates group membership probabilities or degrees, taking 
into account distance between objects and group prototypes. 
The aim of the FCM algorithm is to find an optimal fuzzy c-
partition and corresponding prototypes, minimising the objec-
tive function: 
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where, { }1, , nX x x= …  is a data set, each data point kx  is an 

input vector, ( )1 2, , , cV v v v= …  is a matrix of unknown cluster 

centers, U  is a membership matrix, iku  is the membership 

value of kx  in cluster ( )1, ,i i c= … , and the weighting expo-

nent m  in [ ]1, ∞  is a constant that influences the membership 
values and is generally called a ‘fuzzifier’. 

In each iteration, it is necessary to amend the cluster cen-
troids using Eq. 2, and given the new centroids, it is also neces-
sary to amend membership values using Eq. 3. The stop condi-
tion of the algorithm uses the error between the previous and 
current membership values. 
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Cluster validation indices 

 
Cluster validation indices are used to determine the optimal 

number of clusters (c) in a data set. In this study, four cluster 
validation indices, namely Partition Coefficient ( )PCV , Parti-

tion Entropy ( )PEV , Fukuyama-Sugeno Index ( )FSV  and Xie-

Beni Index ( )XBV  are computed for different values of c. The 

validity indices PCV  and PEV were proposed by Bezdek (1974), 
and are defined as: 
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The range of variation of PCV  and PEV  is [ ]1/ , 1c  and 

[ ]0, log ,a c  respectively. An optimal partition corresponds to a 

maximum value of PCV , which suggests minimum overlap 
between cluster elements. On the contrary, minimum value of 

PEV  suggests a good partition, which corresponds to a harder 
partition. 

Fukuyama and Sugeno (1989) developed a new validity in-
dex specifically for the FCM method. In this measure, the min-
imum value of FSV  suggests optimal partitioning. 
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Xie and Beni (1991) proposed a validity index that focussed 

on two properties: compactness and separation. In their equa-
tion for XBV  (Eq. (7)), the numerator reveals the compactness 
of the fuzzy partition, while the denominator reveals the 
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strength of the separation between clusters. A minimum value 
of XBV  suggests optimal clustering. 
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Fuzzy Minimals algorithm 

 
While most of the analytic fuzzy clustering methods used are 

derived from Bezdek’s FCM algorithms, Bezdek showed that 
the solution obtained through the FCM algorithm may or may 
not provide the desired solution, suggesting that the method 
was not based on a completely reliable criteria. Flores-Sintas et 
al. (1998, 1999, 2000) analysed this possibility and found, 
based on local geometrical properties, the way to reformulate 
the FCM algorithm. 

In Soto et al. (2008), the computation of such membership 
probabilities was improved by a new membership function 
which also reflects the relative position of an object with re-
spect to each group. The objective function is defined as: 
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where xvd  is the Euclidean distance from the x  to prototype v , 
and μ  represents the membership functions obtained by: 
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where r is the factor which normalises the Euclidean distance, 
making the sample mean density equal to 1 (Flores-Sintas et al., 
1998). Finally, the objective function will be minimised in: 
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which will be the prototypes. 
That algorithm is not derived from FCM due to the fact that 

it does not need to consider a concrete number of prototypes, 
although it has a similar way of working (Timón et al., 2016). 
This algorithm is called Fuzzy Minimals (FM) and is complete-
ly described in Soto et al. (2008). 

 
Hosking and Wallis homogeneity test 

 
The homogeneity of an identified region was determined us-

ing a heterogeneity measure ( H ) based on L-moments. L-
moments are analogues to the traditional moments (mean, 
standard deviation, skewness, kurtosis), but they are computed 
on the basis of the linearly arranged data sample, and they show 
more favourable statistical features in comparison with the 
traditional moments (Hosking and Wallis, 1993). For heteroge-
neity testing, a four-parameter kappa distribution is fitted to the 
regional data set generated from a series of 500 simulations of 
region data by numerical simulation. The heterogeneity meas-
ure compares the dispersion between observed and simulated 
data. Hosking and Wallis (1997) suggest that a group of sites 
may be regarded as ‘acceptably homogeneous’ if 1H < , ‘pos-
sibly heterogeneous’ if 1 2H≤ < , and ‘definitely heterogene-
ous’ if 2H ≥ .  

 
STUDY AREA AND DATA  
Alto Genil Watershed 
 

The Alto Genil watershed area, located in the South of Spain 
within the Guadalquivir River watershed, is characterised by 
being surrounded by mountain systems with steep slopes, due 
to the presence of the massif of Sierra Nevada, which provides 
a relative abundance of surface water. It is a typical Mediterra-
nean landscape characterised by fragile natural ecosystems, 
insufficient rainfall for fast vegetation recovery and long-term 
human exploitation. Water resources circulate through its main 
course, the Genil river, along with its tributaries, Dilar, Mona-
chil, Aguas Blancas, Darro, Cubillas and Velillos river, drain-
ing an area next to the 3000 km2 (Fig. 1). Parts of these  
resources are regulated by Canales, Quéntar, Cubillas and Co-
lomera reservoirs, where flow rates are continuously measured.  

 

 
 

Fig. 1. Study area.  
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Most of these water resources are used for urban water sup-
ply in the city of Granada and surrounding areas (500,000 in-
habitants), reserving the surplus, the wastewater and groundwa-
ter for irrigation. In this study, the Alto Genil watershed was 
discretized into 20 subcatchments. 

 
Data used in the study 

 
Many attributes have been used for RFFA. These attributes 

can be classified according to (i) geographical location attrib-
utes such as latitude, longitude and mean basin elevation; (ii) 
physiographic watershed attributes such as stream density, 
stream length, drainage area and average basin slope; (iii) me-
teorological factors such as mean annual rainfall and precipita-
tion intensities; (iv) soil cover attributes such as runoff coeffi-
cient and infiltration potential; and (iv) at-site flood statistics. In 
order to choose what attributes could be used in fuzzy cluster-
ing analysis, we have taken into account that, according to Burn 
et al. (1997), the use of flood-related attributes in regionalisa-
tion of watersheds and the posterior evaluation of the homoge-
neity of the derived regions using the same or related flood 
statistics suggests that the obtained regions may appear homo-
geneous but may not be effective for RFFA. Besides, physio-
graphic watershed attributes are due to the activity of water in 
these watersheds, so it is logical to consider a substantial rela-
tionship between the physical and geographical attributes of the 
watershed and the variables that describe the hydrological 
nature of the watershed; though, according to Rao and Srinivas 
(2008), the formation of regions should not be based exclusive-
ly on physiographic attributes because affinity in only physio-
graphic characteristics does not necessarily imply affinity in 
watershed hydrologic response. 

Principal component analysis (PCA) was employed to exam-
ine dominant patterns of intercorrelation among the attributes 
and identify subsets of attributes that describe the major sources 
of variation while minimizing redundancy. The PCA was con-
ducted using the following attributes: mean basin elevation, 
drainage density, modified Fournier index, curve number, 24-hr 
rainfall having a recurrence interval of 2 years, average month-
ly temperature and average basin slope. The attributes are re-
duced using the PCA, which resulted that first four attributes 
explained 99.60% of the variance. Therefore, the features ex-
tracted for cluster analysis are one location attribute (mean 
basin elevation), one physiographic attribute (drainage density), 
one meteorological attribute (Modified Fournier index) and one 
attribute related to soil type (curve number). This way, every 
attribute group is represented in the fuzzy clustering analysis. 
Information related to rainfall and flow data is extracted from 
the national water information system website (MAGRAMA, 
2016). To enhance the acceptability of the research findings, 
missing data points not more than 10% were used. The block 
maxima method was used to derive annual maximum flow data. 
There is an available observation period of 70 years (between 1 
October 1940 and 30 September 2010). Topographic maps at 
different scales, Digital Elevation Model (DEM), land use and 
soil hydrologic groups were also collected from various 
sources. Mean basin elevation (Rao and Srinivas, 2006; Basu 
and Srinivas, 2015) and drainage density (Srinivasa Raju and 
Nagesh Kumar, 2011) have been used before as attributes for 
cluster analysis; however, the use of Modified Fournier Index 
(MFI) and curve number (CN) is new for cluster analysis pur-
poses. 

Fournier developed an erosivity index (FI) using monthly 
rainfall data (Fournier, 1960) for correlation with sediment 

loads in rivers. This index is universally used due to the availa-
bility of monthly rainfall. 

 
2
maxpFI
P

=     (11) 

 
where maxp  is the mean monthly rainfall of the wettest month 
of the year and P  is the mean annual rainfall. This index has 
some restrictions for the evaluation of the rainfall erosivity. As 
low amounts of rainfall also have erosive power, an increase in 
total rainfall amount should result in an increase of erosivity. If 

maxp  remains the same with P  increasing, FI  decreases, and 
this is unreasonable (Gabriels, 2006). That is why Arnoldus 
(1980) modified this index and called it ‘MFI’. It is defined by: 
 

2
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where mp  is the monthly rainfall for each month ( m  = 
1,2,...,12) and P  is the corresponding total annual precipita-
tion. The MFI indicates a degree of rainfall aggressivity. The 
MFI has erosivity classes that are: very low (MFI = 0–60), 
moderate (MFI = 90–120), high (MFI = 120–160) and very 
high (MFI > 160). 

The CN is an empirical parameter used in hydrology for cal-
culating direct runoff or infiltration from rainfall excess (Haw-
kins et al., 2009). It depends on three basic variables: soil group 
that defines the potentiality of runoff based on the hydraulic 
conductivity of the soil, soil cover and its condition. CN has a 
range from 30 to 100; lower numbers indicate low runoff poten-
tial, while larger numbers are for increasing runoff potential. 
 
RESULTS AND DISCUSSION 

 
The mean basin elevation, drainage density, MFI and CN 

were included in the feature vector to identify the regions that 
are hydrologically homogeneous. The range of each of these 
attributes is presented in Table 2.  

 
Table 2. Attributes considered in the study. 
 
Attribute Minimum Mean Maximum 
Mean basin elevation 
(m a.s.l.) 615.15 1117.54 2129.16 

Drainage density 
(km/km2) 3.50 26.43 50.91 

Modified Fournier 
Index 59.64 90.08 123.46 

Curve number 43.60 57.04 67.90 
 

Since variables with different units generally influence the 
clustering results, they have to be rescaled before entering the 
cluster analysis in order to have the final results influenced in 
an equal way (Dikbas et al., 2012). The transformation function 
used to normalise data was: 
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where ijX  is the thi  attribute of thj  watershed; ,i minX  is the 

minimum thi  attribute in all watersheds; ,i maxX  is the maxi-

mum thi  attribute in all watersheds; and N
ijX  is normalised thi  
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attribute of thj  watershed. Equal weight was assigned to all the 
attributes, implying equal importance to all the attributes. 

The cluster analysis using FCM algorithm was started by 
choosing the number of clusters as at least 2, and the optimum 
number of clusters were sought by increasing the number of 
clusters to 10. Related to FCM algorithm fuzzifier, the value of 
fuzzifier was set to 2. Pal and Bezdek (1995) mentioned that the 
FCM provides better performance for a fuzzifier in the range 
1.5–2.5. The optimal number of clusters for a data set was 
determined by applying various fuzzy cluster validation 
measures such as PCV , PEV , FSV  and XBV . The corresponding 
results of applying these measures are shown in Table 3. 

 
Table 3. Comparison of different cluster validity measures for 
varying number of clusters. 
 

Number  
of Clusters VPC VPE VXB VFS 

2 0.843 0.268 0.071 107482.40 
3 0.803 0.367 0.082 164236.28 
4 0.796 0.414 0.065 185455.45 
5 0.769 0.493 0.142 184826.76 
6 0.775 0.494 0.100 200775.14 
7 0.765 0.522 0.084 200057.68 
8 0.729 0.616 0.313 180094.50 
9 0.767 0.547 0.333 198375.76 
10 0.748 0.588 0.183 203933.44 

 

VPC: Partition Coefficient; VPE: Partition Entropy; VXB: Xie-Beni Index; VFS: 
Fukuyama-Sugeno Index. The maximum value of ௉ܸ஼  suggests optimal 
clustering. On the contrary, the minimum value of ௉ܸா , ௑ܸ஻ and ிܸௌ corre-
sponds to an optimal partition. 

 
PCV , PEV  and FSV  clearly suggest two clusters as the best 

partition, irrespective of the structure in the data being ana-
lysed. The XBV  measure weakly suggests four clusters as the 
best partition; this result is very similar for two clusters. Ac-
cording to these results, the delineation of homogeneous re-
gions using the FCM algorithm was computed for two different 
cases. In the first case, the number of predefined clusters was 
two, taking into account the results obtained from cluster validi-
ty measures PCV , PEV  and FSV . In the second case, four was 
the number of predefined clusters, according to the indications 

of XBV  index.The obtained regions in both cases are shown in 
Fig. 2 (a) and (b).  

FCM clustering results using two clusters are clearly influ-
enced by elevation attributes. One of the clusters (FCM2_2) is 
formed by headwaters, while the other cluster (FCM2_1) is 
formed by watersheds whose elevation is lower. When results 
using four clusters are analysed, we realise that cluster FCM2_2 
is divided in two groups in a logical way due to the fact that 
watersheds that formed cluster FCM4_4 are those with a higher 
amount of precipitation in the form of snow. FCM2_1 cluster is 
also divided in two different clusters (FCM4_2 and FCM4_3). 
Overall, both kinds of clustering are consistent. 

As apparent in Fig. 2 (c), FM algorithm identifies three dif-
ferent clusters from the analysis of membership values. The 
membership value in each group indicates the probability for 
the watershed to be included in that specific group (Rao and 
Srivinas, 2008). Membership values of the 20 watersheds under 
each of the 15 groups are presented in Table 4. The group 
which is having the highest membership value among the 15 
groups is the representative group for that watershed. The sum 
of the membership values per watershed should be equal to 1 
(Ross, 1995). For instance, the representative group for water-
shed 9 is group number 4 (having the maximum membership 
value of 0.5485). Similarly, all other watersheds were analysed. 
Twelve out of 15 groups are formed by only one watershed, so 
it can be interpreted that those watersheds do not present simi-
larities with other watersheds in Alto Genil. Therefore, the FM 
algorithm identifies 8 watersheds forming three different re-
gions (FM_4, FM_6 and FM_7). These regions are not geo-
graphically contiguous, but according to Nathan and McMahon 
(1990), subregions defined on the basis of similarity of hydro-
logic or physiographic characteristics may not have geograph-
ical significance.  

As can be seen in Table 5, homogeneity test proposed by 
Hosking and Wallis is applied to the clusters generated by FCM 
algorithm and FM algorithm. When FCM algorithm is applied, 
assuming that 2 is the optimal number of clusters, one of those 
regions is heterogeneous (ܪ = 3.64) and the other one is ac-
ceptably homogeneous (ܪ = 0.28). If it is considered that 4 is 
the optimal number of clusters, two of those regions (FCM4_2 
and FCM4_3) are highly heterogeneous: ܪ = 6.63 and ܪ = 
9.23, respectively. However, FCM4_1 and FCM4_4 are accept-
ably homogeneous. According to Rao and Srinivas (2006),  
 

 

 
 

Fig. 2. Spatial distribution of fuzzy clusters in Alto Genil obtained from fuzzy cluster analysis. (a) FCM clustering results using two clus-
ters; (b) FCM clustering results using four clusters; (c) Fuzzy Minimals results. 
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regions given by clustering algorithms are, in general, not sta-
tistically homogeneous. Consequently, further adjustment is 
required to form the homogeneous region. There are different 
options for adjusting the regions formed by cluster analysis 
(Hosking and Wallis, 1997), such as deleting or shifting some 
sites of any region to some other region or dividing one region 
into two or more regions. Adjustment of cluster is found to be 
very useful in improving the results found via FCM (Goyal and 
Gupta, 2014). Nevertheless, the application of the regional 
homogeneity test to the regions formed by FM algorithm shows 
that all the regions can be define as acceptably homogeneous, 
so further adjustment is not needed. 

 
Table 5. Results of regional homogeneity test. 
 

Algorithm CC NW Heterogeneity 
Measure (ܪ) Region type 

FCM           
(2 Clusters) 

FCM2_1 12 3.64 Definitely 
Heterogeneous 

FCM2_2 8 0.28 Acceptably 
Homogeneous

FCM            
(4 Clusters) 

FCM4_1 5 –0.51 Acceptably 
Homogeneous

FCM4_2 7 6.63 Definitely 
Heterogeneous 

FCM4_3 5 9.23 Definitely 
Heterogeneous 

FCM4_4 3 0.91 Acceptably 
Homogeneous 

FM 

FM_4 2 0.46 Acceptably 
Homogeneous 

FM_6 2 0.98 Acceptably 
Homogeneous

FM_7 4 –0.26 Acceptably 
Homogeneous

 

CC: Cluster Code; NW: Number of Watersheds. 
 
CONCLUSIONS 

 
In this paper, Fuzzy C-Means and Fuzzy Minimals algo-

rithms were applied to check the effectiveness of both algo-
rithms in the identification of hydrologically homogeneous 
regions for flood frequency analysis. This was illustrated 
through its application to annual maximum flow data from the 
watersheds in Alto Genil (South Spain). For Fuzzy C-Means 
Approach, optimum numbers of clusters were analysed by 
using four fuzzy cluster validity indices, namely partition coef-
ficient, partition entropy, Xie-Beni index and Fukuyama-
Sugeno on 20 stations with 4 attributes. The regional homoge-
neity of the regions identified by FCM was tested using Hosk-
ing and Wallis homogeneity test. It was found from the regional 
homogeneity test that further adjustment is required to form 
homogeneous regions. FM algorithm was also applied, and the 
homogeneity of the regions formed was also tested. Formula-
tion of FM algorithm, proposed by Flores-Sintas et al. (1998), 
uses an objective function (shown in Eq. (8)) different from the 
one that is used in the FCM algorithm (shown in Eq. (1)). In 
contrast to FCM objective function, FM objective function does 
not need to know the number of prototypes, as is evident. In 
this case, there is no need to use cluster validity indices, and 
regions formed by this algorithm were acceptably homogene-
ous. When the performances of Fuzzy C-Means and Fuzzy 
Minimals method are compared for the case study presented 
here, it was seen that the regions identified by Fuzzy Minimals 
method are more homogeneous than those identified by Fuzzy 
C-Means method. 
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