Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

Open access


Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France). A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated), revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

Al-Muttair, F.F., Al-Turbak, A.S., 1991. Modeling of infiltration from an artificial recharge basin with a decreasing ponded depth. J. King Saud Univ. Eng. Sci., 3, 89–100.

Bouwer, H., 1999. Artificial recharge of groundwater: systems, design, and management. In: Hydraulic Design Handbook. Larry W. Mays, New York.

Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J., 10, 121–142. DOI: 10.1007/s10040-001-0182-4.

Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol., 166, 213–250.

Constantz, J., 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Sci. Soc. Am. J., 46, 466–470.

Constantz, J., Thomas, C.L., Zellweger, G., 1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour. Res., 30, 3253–3264.

Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. http://dx.doi.org/10.1016/j.geoderma.2015.08.006

Dohnal, M., Jelinkova, V., Snehota, M., Dusek, J., Brezina, J., 2013. Tree-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone J., 12. DOI: 10.2136/vzj2012.0078.

Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour. Res., 31, 2421–2435. DOI: 10.1029/95WR01654.

Gette-Bouvarot, M., Mermillod-Blondin, F., Angulo-Jaramillo, R., Delolme, C., Lemoine, D., Lassabatere, L., Loizeau, S., Volatier, L., 2014. Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance. Ecohydrology, 7, 950–964.

Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J.S., Angulo-Jaramillo, R., 2013. Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. Eng. Geol., 166, 127–139. http://dx.doi.org/10.1016/j.enggeo.2013.09.006

Greskowiak, J., Prommer, H., Massmann, G., Johnston, C.D., Nützmann, G., Pekdeger, A., 2005. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Geochem., 20, 1409–1426. DOI: 10.1016/j.apgeochem.2005.03.002.

Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. 3-Dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935.

Heilweil, V.M., Solomon, D.K., Ortiz, G., 2009. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A. Boletin Geologico y Minero, 120, 185–196.

Hillel, D., 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, San Diego, USA, 771 p.

Jaynes, D.B., 1990. Temperature variations effect on field-measured infiltration. Soil Sci. Soc. Am. J., 54, 305–312.

Joekar-Niasar, V., Doster, F., Armstrong, R.T., Wildenschild, D., Celia, M.A., 2013. Trapping and hysteresis in two-phase flow in porous media: A pore-network study. Water Resour. Res., 49, 4244–4256. DOI:10.1002/wrcr.20313.

Kildsgaard, J., Engesgaard, P., 2001. Numerical analysis of biological clogging in two-dimensional sand box experiments. J. Contam. Hydrol., 50, 261–285. DOI: 10.1016/S0169-7722(01)00109-7.

Köhne, J.M., Köhne, S., Šimůnek, J., 2009a. A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol., 104, 4–35.

Köhne, J.M., Köhne, S., Šimůnek, J., 2009b. A review of model applications for structured soils: b) Pesticide transport. J. Contam. Hydrol., 104, 36–60.

Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments- BEST. Soil Sci. Soc. Am. J., 70, 521–532.

Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Simunek, J., Haverkamp, R., 2009. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res., 45.

Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T., Delolme, C., 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156, 316–325. http://dx.doi.org/10.1016/j.geoderma.2010.02.031

Lin, C., Greenwald, D., Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J., 67, 487–493.

Loizeau, S., 2013. Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy. [Improvement of the understanding of hydrodynamic functioning of the Crépeiux-Chamy well field]. Université de Grenoble, Grenoble, 220 p.

Marinas, M., Smith, J., Roy, J., 2009. The effects of disconnect entrapped air on hydraulic conductivity in the presence of water table fluctuations. In: AGU Spring Meeting Abstracts.

Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res., 39, 1138. DOI:10.1029/2002WR001581.

Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.

Muskat, M., 1937. The Flow of Homogeneous Fluids Through Porous Media. Mac Graw Hill, New York.

Nasta, P., Lassabatere, L., Kandelous, M.M., Simunek, J., Angulo-Jaramillo, R., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Sci. Soc. Am. J., 76, 1999–2005.

Okubo, T., Matsumoto, J., 1979. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge. Water Resour. Res., 15, 1536–1542. DOI: 10.1029/WR015i006p01536.

Rai, S.N., Singh, R.N., 1985. Water table fluctuations in response to time varying recharge. (Proceedings of the Jerusalem Symposium Scientific Basis for Water Resources Management). IAHS Publ. no. 153. IAHS Press, Wallingford, pp. 287–294.

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys., 1, 318–333. DOI: 10.1063/1.1745010.

Schuh, W.M., 1988. In-situ method for monitoring layered hydraulic impedance development during artificial recharge with turbid water. J. Hydrol., 101, 173–189. DOI: 10.1016/0022-1694(88)90034-0.

Schuh, W.M., 1990. Seasonal variation of clogging of an artificial recharge basin in a northern climate. J. Hydrol., 121, 193–215. DOI: 10.1016/0022-1694(90)90232-M.

Seymour, R.M., 2000. Air entrapment and consolidation occurring with saturated hydraulic conductivity changes with intermittent wetting. Irrig. Sci., 20, 9–14.

Šimůnek, J., Jarvis, N.J., van Genuchten, M.T., Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14–35.

Sněhota, M., Císlerová, M., Gao Amin, M.H., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 373–384. DOI: 10.2136/vzj2009.0103.

Stephens, D.B., Hsu, K.-C., Prieksat, M.A., Ankeny, M.D., Blandford, N., Roth, T.L., Kelsey, J.A., Whitworth, J.R., 1998. A comparison of estimated and calculated effective porosity. Hydrogeol. J., 6, 156–165.

Tu, Y.-C., Ting, C.-S., Tsai, H.-T., Chen, J.-W., Lee, C.-H., 2011. Dynamic analysis of the infiltration rate of artificial recharge of groundwater: A case study of Wanglong Lake, Pingtung, Taiwan. Environ. Earth Sci., 63, 77–85. DOI: 10.1007/s12665-010-0670-8.

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.

Vandenbohede, A., Van Houtte, E., 2012. Heat transport and temperature distribution during managed artificial recharge with surface ponds. J. Hydrol., 472–473, 77–89. DOI: 10.1016/j.jhydrol.2012.09.028.

Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. J. Hydrol., 402, 367–376. DOI: 10.1016/j.jhydrol.2011.03.030.

Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7, 125–137.

Wangemann, S.G., Kohl, R.A., Molumeli, P.A., 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. Am. Soc. Agric. Eng., 43, 1517–1523.

Winiarski, T., Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., 2013. Characterization of the heterogeneous flow and pollutant transfer in the unsaturated zone in the fluvio-glacial deposit. Procedia Environ. Sci., 19, 955–964. http://dx.doi.org/10.1016/j.proenv.2013.06.105

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107–116.

Yilmaz, D., Lassabatere, L., Deneele, D., Angulo-Jaramillo, R., Legret, M., 2013. Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J., 12, 2.

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information

IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639

CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 263 17
PDF Downloads 117 117 11