Impacts of grass removal on wetting and actual water repellency in a sandy soil

Open access


Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm between 23 May and 7 October 2002. On each sampling date the soil water contents were measured and the persistence of actual water repellency was determined of field-moist samples. Considerably higher soil water contents were found in the bare versus the grass-covered plots. These alterations are caused by differences between evaporation and transpiration rates across the plots. Noteworthy are the often excessive differences in soil water content at depths of 10 to 30 cm between the bare and grass-covered plots. These differences are a consequence of water uptake by the roots in the grass-covered plots. The water storage in the upper 19 cm of the bare soil was at least two times greater than in the grass-covered soil during dry periods. A major part of the soil profile in the grass-covered plots exhibited extreme water repellency to a depth of 19 cm on all sampling dates, while the soil profile of the bare plots was completely wettable on eight of the twelve sampling dates. Significant differences in persistence of actual water repellency were found between the grass-covered and bare plots.

Aamlid, T.S., Espevig, T. Kvalbein, A., 2009. The potential of a surfactant to restore turfgrass quality on a severely waterrepellent golf green. Biologia, 64, 3, 620-623. DOI: 10.2478/s11756-009-0071-1.

Bauters, T.W.J., Steenhuis, T.S., DiCarlo, D.A., Nieber, J.L., Dekker, L.W., Ritsema, C.J., Parlange, J-Y., Haverkamp, R., 2000. Physics of water repellent soils. Journal of Hydrology, 231-232, 233-243. DOI: 10.1016/S0022-1694(00)00197-9.

Benito Rueda, E., Rodríguez-Alleres, M., Varela Teijeiro, E., 2015. Environmental factors governing soil water repellency dynamics in a Pinus pinaster plantation in NW Spain. Land Degradation & Development, 27, 3, 719-728. DOI: 10.1002/ldr.2370.

Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. DOI:10.1016/0016-7061(93)90103-R.

Dekker, L.W., Jungerius, P.D., 1990. Water repellency in the dunes with special reference to the Netherlands. Catena Supplement, 18, 173-183.

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resources. Research, 30, 9, 2507-2517. DOI:10.1029/94WR00749.

Dekker, L.W., Ritsema, C.J., Wendroth, O., Jarvis, N., Oostindie, K., Pohl, W., Larson, M., Gaudet, J.P., 1999. Moisture distributions and wetting rates of soils at experimental fields in The Netherlands, France, Sweden and Germany. Journal of Hydrology, 215, 4-22. DOI: 10.1016/S0022-1694(98)00258-3.

Dekker, L.W., Ritsema, C.J., Oostindie, K., 2000. Extent and significance of water repellency in dunes along the Dutch coast. Journal of Hydrology, 231-232, 112-125. DOI: 10.1016/S0022-1694(00)00188-8.

Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Science Society of America Journal, 65, 1667-1674. DOI: 10.2136/sssaj2001.1667.

Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Exponential increase of publications related to soil water repellency. Australian Journal of Soil Research, 43, 403-441. DOI: 10.1071/SR05007.

Dekker, L.W., Ritsema, C.J., Oostindie, K., Moore, D., Wesseling, J.G., 2009. Methods for determining soil water repellency on field-moist samples. Water Resources Research, 45, W00D33. DOI:10.1029/2008WR007070.

Doerr, S.H., Dekker, L.W., Ritsema, C.J., Shakesby, R.A., Bryant R., 2002. Water repellency of soils. The influence of ambient relative humidity. Soil Science Society of. America Journal, 66, 401-405. DOI: 10.2136/sssaj2002.0401.

Gordon, D.C., Hallett, P.D., 2014. An automated microinfiltrometer to measure small-scale soil water infiltration properties. Journal of Hydrology and Hydromechanics, 62, 3, 248-252. DOI: 10.2478/johh-2014-0023.

Greiffenhagen, A., Wessolek, G., Facklam, M., Renger, M., Stoffregen, H., 2006. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma, 132, 182-195. DOI:10.1016/j.geoderma.2005.05.006.

Heijs, A.W.J., Ritsema, C.J., Dekker, L.W., 1996. Threedimensional visualization of preferential flow patterns in two soils. Geoderma, 70, 101-116. DOI: 10.1016/0016-7061(95)00076-3.

Jaramillo, D.F., Dekker, L.W., Ritsema, C.J., Hendrickx, J.M.H., 2000. Occurrence of soil water repellency in arid and humid climates. Journal of Hydrology, 231-232, 105-111. DOI: 10.1016/S0022-1694(00)00187-6.

Keizer, J.J., Doerr, S.H., Malvar, M.C., Ferreira, A.J.D., Peirera, V.M.F.G., 2007. Temporal and spatial variations in topsoil water repellency throughout a crop-rotation cycle on sandy soil in north-central Portugal. Hydrological Processes, 21, 2317-2324. DOI: 10.1002/hyp.6756.

Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231-232, 61-65. DOI: 10.1016/S0022-1694(00)00183-9.

Lichner, L., Hallett, P.D., Orfánus, T., Czachor, H., Rajkai, K., Sir, M., Tesar, M., 2010. Vegetation impact on the hydrology of an Aeolian sandy soil in a continental climate. Ecohydrology, 3, 413-420. DOI: 10.1002/eco.153.

Lichner, L., Eldridge, D.J., Schacht, K., Zhukova, N., Holko, L., Sír, M., Pecho, J., 2011. Grass cover influences hydrophysical parameters and heterogeneity of water flow in a sandy soil. Pedosphere 21, 6, 719-729.

MacCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. 2nd ed. Chapman and Hall, London.

Mao, J., Nierop, K.G.J., Sinninghe Damsté, J.S., Dekker, S.C., 2014. Roots induce stronger soil water repellency than leaf waxes. Geoderma, 232-234, 328-340. DOI: 10.1016/j.geoderma.2014.05.024.

Mao, J., Nierop, K.G.J., Rietkerk, M., Dekker, S.C., 2015. Predicting soil water repellency using hydrophobic organic compounds and their vegetation origin. Soil, 1, 411-425.

Mataix-Solera, J,. Arcenegui, V., Guerrero, C., Mayoral, A.M., Morales, J., Conzález, J., García-Orenes, F., Gómez, I., 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrological Processes, 21, 2300-2309. DOI: 10.1002/hyp.6750.

Moore, D., Kostka, S.J., Boerth, T.J., Franklin, M., Ritsema, C.J., Dekker, L.W., Oostindie, K., Stoof, C., Wesseling, J., 2010. The effect of soil surfactants on soil hydrological behavior, the plant growth environment, irrigation efficiency and water conservation. Journal of Hydrology and Hydromechanics, 58, 3, 142-148. DOI: 10.2478/v10098-010-0013-1.

Morley, C.P., Mainwaring, K.A., Doerr, S.H., Douglas, P., Llewellyn, C.T., Dekker, L.W., 2005. Organic compounds at different depths in a sandy soil and their role in water repellency. Australian Journal of Soil Research, 43, 239-249. DOI: 10.1071/SR04094.

Oostindie, K., Dekker, L.W., Wesseling, J.G., Ritsema, C.J., 2008. Soil surfactant stops water repellency and preferential flow paths. Soil Use and Management, 24, 409-415. DOI: 10.1111/j.1475-2743.2008.00185.x.

Oostindie, K., Dekker, L.W., Wesseling, J.G., Ritsema, C.J., 2011. Improvement of water movement in an undulating sandy soil prone to water repellency. Vadose Zone Journal, 10, 262-269. DOI: 10.2136/vzj2010.0051.

Oostindie, K., Dekker, L.W., Wesseling, J.G., Ritsema, C.J., Geissen, V., 2013. Development of actual water repellency in a grass-covered dune sand during a dehydration experiment. Geoderma, 204-205, 23-30. DOI: 10.1016/j.geoderma.2013. 04.006.

Orfánus, T., Stojkovová, D., Rajkai, K., Czachor, H., Sándor, R., 2016. Spatial patterns of wetting characteristics in grassland sandy soil. Journal of Hydrology and Hydromechanics, 62, 2, 167-175. DOI: 10.1515/johh-2016-0010.

Ritsema, C.J., Dekker, L.W., 1995. Distribution flow: A general process in the top layer of water repellent soils. Water Resources Research, 31, 1187-1200. DOI: 10.1029/94WR02979.

Ritsema, C.J., Dekker, L.W., Heijs, A.W.J., 1997. Threedimensional fingered flow patterns in a water repellent sandy field soil. Soil Science, 162, 79-90. DOI: 10.1097/00010694-199702000-00001.

Rodný, M., Lichner, Ľ., Schacht, K., Holko, L., 2015. Depthdependent heterogeneity of water flow in sandy soil under grass. Biologia, 70, 11, 1462-1467. DOI: 10.1515/biolog-2015-0167.

Rodríguez-Alleres, M., Benito, E., 2011. Spatial and temporal variability of surface water repellency in sandy loam soils of NW Spain under Pinus pinaster and Eucalyptus globulus plantations. Hydrological Processes, 25, 3649-3658. DOI: 10.1002/hyp.8091.

Sándor, R., Lichner, Ľ., Filep, T., Balog, K., Lehoczky, É., Fodor, N., 2015. Spatial variability of hydrophysical properties of fallow sandy soils. Biologia, 70, 11, 1468-1473. DOI: 10.1515/biolog-2015-0182.

Soil Survey Staff, 2006. Keys to Soil Taxonomy. 10th ed. NRCS, Washington, DC.

Täumer, K., Stoffregen, H., Wessolek, G., 2005. Determination of repellency distribution using soil organic matter and water content. Geoderma, 125, 107-115. DOI: 10.1016/j.geoderma.2004.07.004.

Wallis, M.G., Horne, D.J., McAuliffe, K.W., 1989. A survey of dry patch and its management in New Zealand golf greens. 2. Soil core results and irrigation interaction. New Zealand Turf Management Journal, 3, 4, 15-17.

Wessolek, G., Schwärzel, K., Greiffenhagen, A., Stoffregen, H., 2008. Percolation characteristics of a water-repellent sandy forest soil. European Journal of Soil Science, 59, 14-23. DOI: 10.1111/j.1365-2389.2007.00980.x.

Wessolek, G., Stoffregen, H., Täumer, K., 2009. Persistency of flow patterns in a water repellent sandy soil - Conclusions of TDR readings and a time-delayed double tracer experiment. Journal of Hydrology, 375, 524-535. DOI: 10.1016/j.jhydrol.2009.07.003

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information

IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639

CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 273 33
PDF Downloads 81 81 8