Influence of soil particle shape on saturated hydraulic conductivity

Open access

Abstract

The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0C index (Parylak, 2000), which expresses the variability of several shape properties, such as sphericity, angularity and roughness.

The analysis was performed on samples of four soils, which were characterised by the same grain size distribution and extremely different particle structure. The shape characteristics varied from ideally spherical, smooth grains (glass microbeads GM) to highly irregular and rough particles (fly ash FA).

For each soil, laboratory tests of saturated hydraulic conductivity (constant head test CHT and falling head test FHT) were performed. Additionally, an empirical analysis of effective pore diameter was conducted with use of the analytical models developed by Pavchich (Wolski, 1987) and Indraratna and Vafai (1997). The models were modified by introducing the ζ0C index.

Experiments have shown that saturated hydraulic conductivity depends on grains shape and surface roughness. This parameter decreases with the increase in the irregularity of soil particles. Moreover, it was proven that the ζ0C reflects the relationship between effective pore diameter and grain shape characteristics.

Aimrun, W., Amin, M.S.M., Eltaib, S.M., 2004. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma, 121, 197-203.

Arasan, S., Akbulut, S., Hasiloglu, S. A., 2011. The relationship between the fractal dimension and shape properties of particles. Journal of Civil Engineering, 15, 7, 1219-1225.

Bowman, E.T., Soga, K., Drummond, W., 2001. Particle shape characterisation using Fourier descriptor analysis. Geotechnique, 51, 6, 545-554.

Brooks, R., Corey, A., 1964. Hydraulic properties of porous media. Hydrology Paper, Colorado State University, 3, 1-27.

Cadergen, R., 1997. Seepage, Drainage and Flow Nets. 3rd ed. John Wiley and Sons, New York, 467 p.

Carrier, D., 2003. Goodbye, Hazen; Hello, Kozeny-Carman. Technical notes. Journal of Geotechnical and Geoenvironmental Engineering, 129, 11, 1054-1056.

Chmielewski, M., 2006. Badania nad wpływem cech kształtu cząstek gruntów niespoistych na wybrane parametry ściśliwości. [The influence of particles shape of fine-grained noncohesive soils on the selected parameters of compressibility]. PhD Thesis. Wrocław, 117 p. (In Polish.)

Cox, M., Badhu, M., 2008. A practical approach to grain shape quantification. Engineering Geology, 96, 1-16.

Cuisinier, O., Auriol, J.C., Borgne, T.L., Deneele, D., 2011. Microstructure and hydraulic conductivity of a compacted lime-treated soil. Engineering Geology, 123, 187-193.

Dawson, A., 2008. Water in Road Structures - Movement, Drainage and Effects. Springer, Dordrecht, 436 p.

Domokos, G., Sipos, A., Szabó, T., Várkonyi, P., 2011. Pebbles, shapes and equilibria. Mathematical Geosciences, 42, 29-47.

EN 1997-2, 2007. Eurocode 7 - Geotechnical design - Part 2: Ground investigation and testing.

Frosard, A., 1979. Effect of sand grain shape on interparticle friction, indirect measurements by Rowe’s stress dilatancy theory. Geotechnique, 3, 341-350.

Garboczi, E.J., Cheok, G.S., Stone, W.C., 2006. Using LADAR to characterize the 3-D shape of aggregates: Preliminary results. Cement and Concrete Research, 36, 2006, 1072-1075.

Garcia-Bengochea, I., 1978. The Relation between Permeability and Pore Size Distribution of Compacted Clayey Silts: Interim Report. Joint Transportation Research Program Technical Report Series, Purdue University, West Lafayette, Indiana, 179 p.

Gori, U., Mari, M., 2001. The correlation between the fractal dimension and internal friction angle of different granular materials. Soils and Foundations, 41, 6, 17-23.

Harr, E., 1977. Mechanics of Particulate Media - a Probabilistic Approach. McGraw-Hill, New York, 543 p.

Head, K., Epps, R., 2011. Manual of Soil Laboratory Testing, Vol. 2, Permeability, Shear Strength and Compressibility Test. 3rd ed. Whittles Publishing, Dunbeath Mill, 480 p.

Hillel, D., 2004. Introduction to Environmental Soil Physics. 1st ed. Academic Press, San Diego, 494 p.

Indraratna, B., Vafai, F., 1997. Analytical model for particle migration within base soil-filter system. Journal of Geotechnical and Geoenvironmental Engineering, 123, 2, 100-109.

Indraratna, B., Vafai, F., Dilema, E.L.G., 1996. An experimental study of the infiltration of a lateritic clay slurry by sand filters. Proceedings of the Institution of Civil Engineers. Geotechnical Engineering, 119, 2, 75-83.

Jetel, J., 1975. Hydrogeologická interpretace jednotlivých kategorií efektivní pórovitosti. [The hydrogeological interpretations of the effective porosity categories]. Ústřední Ústav Geologický, Praha, 39 p. (In Czech.)

Klípa, V., Sněhota, M., Dohnal, M., 2015. New automatic minidisc infiltrometer: design and testing. Journal of Hydrology and Hydromechanics, 63, 2, 110-116.

Lambe, W., Whitman, R., 1979. Soil Mechanics. John Wiley & Sons, New York, 553 p.

Lees, G., 1964. New method for determining the angularity of particles. Sedimentology, 3, 2-21.

Mamok, B., 2004. Wpływ zagęszczenia i nieregularności kształtu cząstek drobnoziarnistych gruntów niespoistych na wartości kąta tarcia wewnętrznego. [The influence of density and particles shape irregularities of fine-grained noncohesive soils on the internal friction angle]. PhD Thesis, Wrocław, 87 p. (In Polish.)

Masad, E., 2005. Computations of particle surface characteristics using optical and X-ray CT image. Computational Material Science, 34, 406-424.

Nimmo, J.R., 2005. Porosity and Pore Size Distribution. In: Hillel, D. (Ed.): Encyclopedia of Soils in the Environment, Vol. 3. Elsevier, London, pp. 295-303.

Parylak, K., 2000. Charakterystyka kształtu cząstek drobnoziarnistych gruntów niespoistych i jej znaczenie w ocenie wytrzymałości. [Characteristic of particles shape of finegrained cohesionless soils and its significance in strength assessment]. Zeszyty Naukowe Politechniki Śląskiej, no 90, Gliwice, 130 p. (In Polish with English abstract.)

Parylak, K., Zięba, Z., 2012. Metoda określania parametrów przestrzeni porowej gruntów niespoistych z uwzględnieniem kształtu cząstek. [The method for determining the pore space parameters of non-cohesive soils including particles shape]. Inżynieria Morska i Geotechnika, 4/2012, 361-366. (In Polish with English abstract.)

Parylak, K., Zięba, Z., Bułdys, A., Witek, K., 2013. Weryfikacja wyznaczania współczynnika filtracji gruntów niespoistych za pomocą wzorów empirycznych w ujęciu ich mikrostruktury. [The verification of determining a permeability coefficient of non-cohesive soil based on empirical formulas including its microstructure]. Acta Scientarum Polonorum Architectura, 12, 2, 43-51. (In Polish with English abstract.)

Pena, A. A., Garcia-Rojo, R., Herrmann, H. J., 2007. Influence of particle shape on shape dense granular media. Granular Matter, 9, 279-291.

Rasband, W.S., 1997-2016. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/.

Santamarina, J.C., Cho, G.C., 2004. Soil behaviour: The role of particle shape. In: Proc. Skempton Conf. Advances in Geotechnical Engineering, Vol. 1, London, pp. 604-617.

Sasal, M.C., Andriulo, A., Taboada, M.A., 2006. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas. Soil and Tillage Research, 87, 9-18.

Sheskin, D.J., 2003. Handbook of Parametric and Nonparametric Statistical Procedures. 3rd ed. Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C., 1193 p.

Sinecen, M., Makinaci, M., Topal, A., 2011. Aggregate classification by using 3D image analysis technique. Gazi University Journal of Science, 24, 4, 773-780.

Thomas, M.C., Wiltshire, R.J., Williams, A.T., 1995. The use of Fourier descriptors in the classification of particle shape. Sedimentology, 42, 635-645.

Tiab, D., Donaldson, E.C., 2016. Porosity and permeability. In: Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. 4th ed. Elsevier, Amsterdam, pp. 67-186.

Tran, T.D., Cui, Y.J., Tang A. M., Audiguier, M., Cojean, R., 2014. Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. Journal of Rock Mechanics and Geotechnical Engineering, 6, 399-404.

Utkaeva, V.F., 2007. Specific surface area and wetting heat of different soil types in European Russia. Eurasian Soil Science, 40, 11, 1193-1202.

Valentin, R., Sardini, P., Mazurier, A., Regnault, O., Descostes, M., 2016. Effective porosity measurements of poorly consolidated materials using non-destructive methods. Engineering Geology, 205, 24-29.

Vallejo, L., 1995. Fractal analysis of granular materials. Geotechnique, 45, 159-163.

Wadell, H., 1932. Volume, shape and roundness of rock particles. The Journal of Geology, 40, 443-451.

White, T.L., Williams, P.J., 1999. The influence of soil microstructure on hydraulic properties of hydrocarboncontaminated freezing ground. Polar Record, 35, 25-32.

Wolski, W., 1987. Filters, Report General. In: Proc. Int. IX European Conference on Soil Mechanics and Foundation Engineering, Vol. 3, Dublin, pp. 1351-1366.

Yagiz, S., 2001. Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures. Bulletin of Engineering Geology and Environment, 60, 321-323

Journal of Hydrology and Hydromechanics

The Journal of Institute of Hydrology SAS Bratislava and Institute of Hydrodynamics CAS Prague

Journal Information


IMPACT FACTOR 2017: 1.714
5-year IMPACT FACTOR: 1.639



CiteScore 2017: 1.91

SCImago Journal Rank (SJR) 2017: 0.599
Source Normalized Impact per Paper (SNIP) 2017: 1.084

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 365 365 30
PDF Downloads 182 182 18