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Abstract: Substantial evidence shows that the frequency of hydrological extremes has been changing and is likely to 
continue to change in the near future. Non-stationary models for flood frequency analyses are one method of accounting 
for these changes in estimating design values. The objective of the present study is to compare four models in terms of 
goodness of fit, their uncertainties, the parameter estimation methods and the implications for estimating flood quantiles. 
Stationary and non-stationary models using the GEV distribution were considered, with parameters dependent on time 
and on annual precipitation. Furthermore, in order to study the influence of the parameter estimation approach on the re-
sults, the maximum likelihood (MLE) and Bayesian Monte Carlo Markov chain (MCMC) methods were compared. The 
methods were tested for two gauging stations in Slovenia that exhibit significantly increasing trends in annual maximum 
(AM) discharge series. The comparison of the models suggests that the stationary model tends to underestimate flood 
quantiles relative to the non-stationary models in recent years. The model with annual precipitation as a covariate exhib-
its the best goodness-of-fit performance. For a 10% increase in annual precipitation, the 10-year flood increases by 8%. 
Use of the model for design purposes requires scenarios of future annual precipitation. It is argued that these may be ob-
tained more reliably than scenarios of extreme event precipitation which makes the proposed model more practically use-
ful than alternative models. 
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INTRODUCTION 

 
Air temperatures around the world have increased signifi-

cantly in the past decades (Jones et al., 1999; Pachauri et al., 
2014), which may be reflected by a more intense processes of 
the water cycle and an increase in the frequency and magnitude 
of extreme precipitation (Groisman et al., 2005; Wobus et al., 
2014). However, the magnitudes of the surface air temperature 
changes differ between regions. For example, Blöschl and 
Montanari (2010) reported that recent anomalies of the temper-
ature in the European Alps have been about twice those of the 
global mean over the world. Similarly, researchers found signif-
icant changes in precipitation that differ between regions. Mean 
annual precipitation has increased in the North of Europe, but 
decreased in the South of Europe (Pachauri et al., 2014).  

However, increasing or decreasing precipitation trends are 
not necessarily associated with the corresponding upward or 
downward trends of high flows, as discharges do not only de-
pend on climatic conditions but also on other variables, such as 
antecedent soil moisture. Consequently, no uniform patterns of 
streamflow changes have been found around the globe (Bezak 
et al., 2015b; Cunderlik and Ouarda, 2009; Douglas et al., 
2000; Kundzewicz et al., 2005; Robson et al., 1998; Stahl et al., 
2010; Zhang et al., 2001). Significant positive discharge trends 
were detected in some continents (South and North America, 
Asia), whereas a negative trend was identified for others (e.g. 
Africa) (Labat et al., 2004). Although no significant (increasing 
or decreasing) discharge trends were identified for Europe 
(Bormann et al., 2011; Labat et al., 2004; Mediero et al., 2015; 
Robson et al., 1998), Stahl et al. (2010) found some regional 
patterns indicating decreasing annual discharge trends in south-
ern and eastern regions of Europe and generally positive trends 

elsewhere; furthermore, upward trends were identified in the 
winter months in most of the considered catchments in Europe. 
Likewise, based on a literature review Hall et al. (2014) noted 
that, over the past decades, there were generally decreasing 
trends of floods in the western part of the Mediterranean and 
the Northern and Eastern Europe, and increasing trends else-
where. 

Flood frequency analysis or risk analysis for flood hazards is 
an important part of the engineering practice whose aim is to 
obtain relationships between design variables corresponding to 
a chosen hydrologic risk (Khaliq et al., 2006; Salas and Obey-
sekera, 2014). Statistical methods employed in traditional flood 
frequency analysis are based on the assumption of independen-
cy and stationarity of extreme events. As numerous studies 
have identified significant trends in annual floods, the assump-
tion of stationarity may be questioned (Blöschl et al., 2015; 
Douglas et al., 2000; Milly et al., 2008; Montanari and Kout-
soyiannis, 2014; Robson et al., 1998; Strupczewski et al., 2001; 
Vogel et al., 2011; Zhang et al., 2001). 

Therefore, alternative approaches incorporating the effects 
of non-independence and non-stationarity have been explored 
(Khaliq et al., 2006). Non-stationarity may be attributed to 
climate variability or different human influences (e.g. urbanisa-
tion, regulation of rivers, construction of dikes, deforestation, 
etc.) (Coles, 2001; Lopez and Frances, 2013; Merz et al., 2012; 
Prosdocimi et al., 2015; Salas and Obeysekera, 2014; Strup-
czewski et al., 2001; Villarini et al., 2009; Vogel et al., 2011). 
Recently, more attention has been paid to non-stationary fre-
quency estimation of flood extremes. A relatively large number 
of studies have already performed non-stationary flood fre-
quency analyses. However, the way of incorporating changing 
climate and anthropogenic influences in hydrologic practice has 
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still not been exactly defined (Singh et al., 2013) and this is 
clearly an area which should be considered with much more 
effort in the future (Kjeldsen et al., 2014).  

Most of the non-stationary flood frequency analysis methods 
proposed in the literature involve parameters of a chosen distri-
bution that are dependent on time (see Khaliq et al. (2006) for a 
review). Strupczewski et al. (2001) implemented time trend 
components into the first two statistical parameters of the 
Gamma and lognormal probability distribution functions. Del-
gado et al. (2010) tested the GEV model, with the location and 
scale parameter varying with time, for the Mekong River. They 
found that the increase in the probability of extreme floods was 
driven by an increase in the scale parameter. Vogel et al. (2011) 
derived a decadal flood magnification factor which only de-
pends on the slope of the log-linear trend of the annual maxi-
mum streamflow series and the time interval using the non-
stationary lognormal distribution. They computed recurrence 
reduction factors for streamflow data across the US and report-
ed that today’s 100-year flood may become more frequent in 
the future in many watersheds. Singh et al. (2013) applied non-
stationary flood frequency analysis based on generalized ex-
treme value (GEV) and lognormal distributions and reported 
significant variation in return periods, and Gül et al. (2014) 
conducted an analysis with a GEV-CDN (GEV conditional 
density estimation network) where the GEV parameters were 
allowed to vary with time.  

The problem with time varying distribution parameters is 
that it is difficult to justify why they would continue to change 
in the future exactly in the same way they did in the past. As an 
alternative, models have therefore been developed that correlate 
the distribution parameters to hydrological variables such as 
land use or climatological variables, for example El Niño 
Southern Oscillation (ENSO), Pacific Decadal Oscillation 
(PDO) and other circulation indices (e.g. Wilby and Quinn, 
2013). Delgado et al. (2014) modelled the scale parameter of a 
log-normal distribution as a function of the non-stationary 
standard deviation of an atmospheric circulation index repre-
senting Western Pacific monsoon activity. By evaluating a 
deviance statistic based on the log-likelihood of the parameter 
fit they found the non-stationary model to be a significant im-
provement over the stationary model for their case of the lower 
Mekong flood series. Some authors allowed the distribution 
parameters to vary both with hydrological variables and with 
time. Villarini et al. (2009) conducted a covariate analysis using 
time, population density and daily maximum rainfall for a flood 
frequency analysis based on the Generalized Additive Models 
for Location, Scale and Shape parameters (GAMLSS) for a 
number of basins in the US, suggesting that the return period 
for a given flood discharge has varied substantially during the 
time of record. Similarly, Prosdocimi et al. (2014) allowed the 
location parameter of a lognormal distribution to vary with time 
and with the 99th percentile of daily rainfall, indicating different 
patterns of changes in peak flow series across the UK. Gilroy 
and McCuen (2012) adjusted flood frequencies based on maxi-
mum annual 24 hour precipitation estimated from GCM scenar-
ios, and on urbanisation estimates.  

 

As an increase in the number of extreme flood events has 
been observed over recent decades in Slovenia (Kobold et al., 
2012), the accuracy of existing flood estimation methods has 
likely diminished. Therefore the need for a non-stationary ap-
proach of flood frequency analyses has arisen. The main objec-
tive of this paper is to compare stationary and non-stationary 
flood frequency methods for selected gauging stations in Slo-
venia that exhibit clear non-stationarity in the flood data series. 
The methods use GEV distribution considering non-stationarity 
for one or two parameters in different combinations. This paper 
extends the work of previous authors by testing the GEV distri-
bution with two parameter estimation techniques, the maximum 
likelihood method (MLE) and a Bayesian method through 
Markov chain Monte Carlo (MCMC) simulations. The parame-
ters depend either on time or on annual precipitation to ascer-
tain whether the change in annual precipitation is connected 
with the change of extreme flood events, which could be used 
for non-stationary flood frequency estimation in a meaningful 
way.  

 
DATA AND METHODS 

 
Previous studies have shown that some gauging stations in 

Slovenia exhibit statistically significant trends in annual 
maximum (AM) flood series (Bezak et al., 2015a, b; Kobold et 
al., 2012; Menih et al., 2015). Two gauging stations with 
statistically significant upward trends in AM series were 
selected for analysis in this study. Discharge data were 
measured by the Slovenian Environment Agency (ARSO, 
2015a). Some basic characteristics of the analysed stations are 
presented in Table 1. Both catchments are natural and mostly 
undisturbed by anthropogenic influences. Three typical 
climates prevail in Slovenia, namely the sub-Mediterranean, 
temperate continental and mountain climates. The annual 
precipitation in Slovenia amounts from less than 900 mm/yr in 
the eastern part to as much as 3200 mm/yr in the western part 
of the country. The average elevation of the country is 557 m. 
With the exception of the coast, snow cover is a regular 
phenomenon (Frantar et al., 2008). The selected gauging 
stations are located in different parts of the country and have 
therefore different water regimes. Skocjan at the Radulja River 
has a Dinaric pluvial-nival regime which is characteristic of the 
Dinaric area rivers with two fairly similar peaks in spring and 
autumn; Kobarid at the Soca River has an Alpine nival-pluvial 
regime which is the characteristic of the rivers with catchments 
that extend to the high mountains where the effect of snow melt 
is pronounced (Frantar and Hrvatin, 2005). The first peak in 
this regime typically occurs in late spring when the snow starts 
to melt and the second one in autumn due to a precipitation 
maximum.  

Time trend analysis should be a major consideration prior to 
dealing with non-stationary flood frequency analysis (Singh et 
al., 2013; Strupczewski et al., 2001). Detection of trend is a 
critical issue as it has a considerable effect on the non-
stationary analysis results (Douglas et al., 2000; Strupczewski 
et al., 2001). The existence and statistical significance of 

 
Table 1. Basic characteristics of the considered gauging stations and AM series. 

 

No. of the 
station 

Gauging station - 
stream 

Drainage area 
[km2] 

Elevation 
[m a.s.l.] 

Mean annual 
precipitation 

[mm/yr] 

Considered 
period 

AM series length 
[years] 

7380 Skocjan - Radulja 108 160 1144 1961–2013 53 

8080 Kobarid - Soca 437 195 2452 1949–2013 65 
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the time trend in hydro-meteorological variables can be detect-
ed by parametric and nonparametric tests. Parametric tests 
usually require normality, linearity and independency of the 
time series (Bates et al., 2010) but these assumptions are often 
not fulfilled by hydrological and meteorological time series. 
Among nonparametric tests, the Mann-Kendall (MK) test 
(Kendall, 1975) is one of the most widely accepted as it does 
not require normality and is more robust against tied and miss-
ing values (Douglas et al., 2000; Singh et al., 2013). The null 
hypothesis H0 of the MK test is that there is no (monotonic) 
trend in the series. The resultant Mann-Kendall test statistic 
(tau) indicates how strong the trend is and whether it is increas-
ing or decreasing. In this study, MK test using a significance 
level of 0.05 was applied in order to evaluate the possible pres-
ence of a time trend in the AM flood series. The test was per-
formed using the R-package Kendall (McLeod, 2011). Howev-
er, at the same time the presence of serial correlation in data 
series should be considered as it may lead to a higher probabil-
ity of incorrectly rejecting the null hypothesis of no trend in the 
time series (Douglas et al., 2000; Yue et al., 2002). In fact, a 
trend in the variance or in the autocorrelation function is rarely 
analysed, therefore numerous studies incorrectly reported sig-
nificant trends of the mean in time series (Vogel et al., 2011). 
The autocorrelation function (ACF) plot and the Ljung–Box 
test (Ljung and Box, 1978) were used to examine the presence 
of serial correlation, i.e. the null hypothesis of independence in 
a given time series. Again, a significance level of 0.05 was 
applied. The significance of the linear correlation between AM 
flood series and annual precipitation was tested using a t-test. 
The significance indicator of the t-test is the p-value with the 
chosen significance level of 0.05.  

The non-stationary GEV model is a commonly accepted 
model to describe non-stationarity in flood data series due to 
the skewed character of annual maximum flows and the flexi-
bility of the distribution in terms of the inclusion of covariates 
in the parameters (Delgado et al., 2010; Gül et al., 2014; Katz et 
al., 2002; Prosdocimi et al., 2015; Salas and Obeysekera, 2014; 
Singh et al., 2013). The cumulative distribution function of the 
GEV distribution is defined as: 

;ݔ)ܨ  ,ߤ ∝, (ߢ = ݌ݔ݁ ቊ− ቂ1 − ߢ (௫ିఓ)ఈ ቃభഉቋ , ߢ ≠ 0 , (1) 

 
and GEV quantile function associated with a given return peri-
od as: 
(ܶ)ݔ  = ߤ + ఈ఑ ቂ1 − ቀ݈݊ ்்ିଵቁ఑ቃ, (2) 
 
where ߤ, ∝ and ߢ are location, scale and shape parameters, 
respectively. The three types of distribution in the extremal 
types theorem are determined by the sign of the shape parame-
ter, i.e. when ߢ → 0, the equation (1) approaches a Gumbel 
distribution and when ߢ < 0 or ߢ > 0, the model becomes a 
heavy tailed Fréchet or the upper bounded Weibull distribution, 
respectively (Gilleland and Katz, 2011).  

The methods for estimating the parameters of the distribu-
tion vary between studies. The parameter estimation is usually 
performed using the maximum likelihood method (MLE) (Katz 
et al., 2002; Obeysekera and Salas, 2014; Prosdocimi et al., 
2015) or the generalized maximum likelihood method (GMLE) 
(El Adlouni et al., 2007; Gül et al., 2014) and sometimes the 
Bayesian method through the Markov chain Monte Carlo 
(MCMC) approach (Cheng et al., 2014). However, the study of 

Cheng et al. (2014) was dedicated to the annual temperature 
frequencies rather than floods. The MLE and Bayesian 
(MCMC) methods were applied and compared in this study. A 
detailed description of both methods is provided in Coles 
(2001).  

Also, the non-stationarity models for the distribution param-
eters vary between studies as discussed above. Most of the 
studies considered non-stationarity for only one parameter 
(location parameter), whereas studies considering non-
stationarity for more parameters in different combinations are 
more limited. In this study, four cases were considered: 

 
1) A stationary case, where all model parameters were 

assumed to be constant. 
2) A non-stationary case where the location parameter (ߤ) 

was assumed to be a function of time: (ݐ)ߤ = ଴ߤ +  .ݐଵߤ
3) A non-stationary case where the location (ߤ) and scale (ߙ) parameters were assumed to be a function of time: (ݐ)ߤ = ଴ߤ + ln ,ݐଵߤ (ݐ)ߙ = ߶଴ + ߶ଵݐ. 
4) A non-stationary case where the location parameter (ߤ) 

was assumed to be a function of annual precipitation: ߤ(ܲ) = ଴ߤ +  .ଵܲߤ
 

Time (t) was counted from the beginning of the record for all 
models. To ensure the positive value of the scale parameter 
(∝), a log link function was used in the third model which is 
often applied (El Adlouni et al., 2007; Salas and Obeysekera, 
2014). The shape parameter (ߢ) is usually assumed to be con-
stant as its value is difficult to estimate reliably (Coles, 2001; 
Salas and Obeysekera, 2014), so we also made this assumption 
in the study.  

Various goodness–of–fit indicators (diagnostic plots) were 
inspected to check the overall performance of the fitted models, 
e.g. a quantile–quantile plot, a probability plot, etc. In order to 
determine the best fitting model, the Akaike Information Crite-
rion (AIC) (Akaike, 1974) was performed which is commonly 
used for model selection among various nested models in the 
case that model parameters are estimated using the MLE meth-
od (Gül et al., 2014; Salas and Obeysekera, 2014). The model 
associated with the smallest AIC value indicates the best model 
performance. Additionally, the likelihood-ratio test was per-
formed to test whether the inclusion of the covariates into the 
model is significant (Coles, 2001; Gilleland and Katz, 2011). 
The test is applicable only for comparing nested models and it 
becomes clumsy when more than two models are compared. In 
the case of the Bayesian parameter estimation method, the 
deviance information criterion (DIC), representing a Bayesian 
version of the AIC was calculated to compare the models  
(Gilleland and Katz, 2011). DIC is based on the deviance func-
tion (ߴ)ܦ which is defined as minus twice the log-likelihood 
evaluated at the parameter values given by ߴ, i.e.:  
ܥܫܦ  = (ߴ̅)ܦ + (ߴ)ഥܦ)2 −  (3)  ((ߴ̅)ܦ
 

The means are taken over the posterior MCMC sample. 
Again, the model associated with the smallest DIC value indi-
cates the best model performance.  

In order to calculate confidence intervals and quantifying the 
uncertainty of non-stationary models for parameters estimated 
by the MLE method, a normal approximation was used. For the 
flood quantiles the delta method introduced by Obeysekera and 
Salas (2014), based on the large sample properties of maximum 
likelihood estimators using the parameter covariance matrix 
was applied (Gilleland and Katz, 2011). For the Bayesian esti-
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mation credible intervals were estimated using the percentile 
method (∝/2 and 1–∝/2 percentiles) of the resulting MCMC 
sample (after removing the first burn-in values) (Gilleland and 
Katz, 2011; Viglione et al., 2013).  

Stationary and non-stationary flood frequency analyses 
based on the annual maximum (AM) flood series method in-
cluding statistical tests were performed using the freely availa-
ble R software (R Core Team, 2013) and R-package extRemes 
(Gilleland and Katz, 2011). 

 
RESULTS AND DISCUSSION 

 
The analyses were carried out for the two selected gauging 

stations in Slovenia. As a first step the results of the change 
detection of the annual maximum (AM) flood series are pre-
sented. Table 2 shows the test statistics of the MK test to evalu-
ate the presence of a trend, and the Ljung-Box test to evaluate 
the presence of serial correlations. Figure 1 plots the time 
trends of the AM flood series and regressions with annual pre-
cipitation. 

The MK test shows a statistically significant upward trend 
(p<<0.01) of the AM flood time series for both stations which 
indicates the presence of non-stationarity. The Ljung-Box test 
suggests that there is no evidence of serial autocorrelation in the 
AM samples (p > 0.05) (Table 2). As peak flows are normally  

 

closely connected to high precipitation we also investigated 
whether there is a statistically significant linear correlation 
between the AM flood series and annual precipitation (Figure 
1) using a t-test. A strongly significant positive correlation was 
found for both stations with p-values<<0.01. 

Detailed examination of the flood peaks and annual precipi-
tation relationship demonstrated an obvious connection of high 
annual precipitation and high flow peaks for Skocjan at the 
Radulja River (Figure 1). For example, the highest annual pre-
cipitation (1438 mm/yr) is associated with the second highest 
observed discharge (50.3 m3/s) occurring in 2005, which was 
estimated as a 100-year flood. In just two days there were 137 
mm of rain which corresponds to a 100-year return period 
(Kobold et al., 2005). Similarly, the highest observed discharge 
(59.1 m3/s) is associated with very high annual precipitation 
(1359 mm/yr) in 2010. The event was the consequence of 
heavy rainfall in September all over Slovenia. In fact, the 48-
hours precipitation in the catchment amounted to as much as 
163 mm, which corresponds to more than a 100-year return 
period (ARSO, 2015b). However, there is an anomalous event 
associated with high discharge (47.8 m3/s) and average annual 
precipitation (985 mm/yr) in May 2006 (Figure 1). The unusu-
ally high waters of the Radulja River during that time of the 
year were associated with relatively high 48-hours precipitation 
(120 mm) and high antecedent soil moisture (Polajnar, 2007). 

 

Table 2. Results of the MK test for trend and the Ljung-Box test for serial correlation for the considered gauging stations. 
  

No. of the 
station 

Gauging station - stream MK test Ljung-Box test 

  tau p-value test-statistic p-value 

7380 Skocjan - Radulja 0.353 2.04*10–4 23.18 0.208 

8080 Kobarid - Soca 0.259 2.32*10–3 19.03 0.520 

 

 
 
Fig. 1. AM flood series with corresponding time trends and linear regression plots between AM series and annual precipitation P for 
Skocjan and Kobarid. 
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Similarly, also in the case of Kobarid at the Soca River in-
creasing high precipitation is obviously associated with high 
flows, however, there are three anomalous events associated 
with the three highest observed discharges in years with more 
or less average precipitation (Figure 1). The highest observed 
discharge (778 m3/s) is associated with an average annual pre-
cipitation (2493 mm/yr) in 2012. That discharge was a result of 
a high precipitation on the 5th of November and very high ante-
cedent soil moisture at the same time as a consequence of heavy 
rainfall one week before which also caused floods with a return 
period of 50 years (ARSO, 2012). However, in the same year 
there was a severe drought lasting from the end of 2011 till 
autumn 2012 and the net result was an average annual precipi-
tation for that year. Likewise, also the extreme discharge  
(664 m3/s) in 1986 was associated with very high rainfall inten-
sities and antecedent soil moisture. In just 48 hours as much as 
300 mm of rain occurred (ARSO, 2015b) and the soil moisture 
was very high due to the 165 mm of rain one week before. The 
second highest discharge (759 m3/s) associated with the above 
average annual rainfall (2869 mm/yr) in 2010 was the result of 
prolonged 5-days rainfall of moderate intensity at the end of 
December and sudden warming that came with the rain, quickly 
melted the snow (15 cm in the lowlands) and significantly 
contributed to the increased flow of the Soca River and its 
tributaries (ARSO, 2010). As we already emphasized, discharg-
es are not only dependent on climatic conditions but also on 
other variables, such as antecedent soil moisture and snow 
melting. 

In the next step of the study, stationary and non-stationary 
flood frequency analyses using the GEV distribution were 
performed. Parameters were estimated by the MLE and Bayesi-
an (MCMC) approaches. Case (1) was stationary, cases (2) and 
(3) non-stationary with the location parameter (ߤ), and the 
location (ߤ)	and scale (∝) parameters incorporated as linear 
time trend, respectively. A statistically significant linear corre-
lation between AM flood series and annual precipitation was 
identified, so annual precipitation was incorporated as a covari-
ate in the location parameter (ߤ) in case (4). The results of the 
fitted model parameters estimated by the MLE method and the 
Bayesian method through the MCMC approach along with the 
confidence and credible limits are presented in Table 3 and 
Table 4, respectively. In order to assess the MCMC conver-
gence, trace plots were used which illustrate model iterations 
against the corresponding parameter values showing the mixing 
of the chain and allowing to estimate a reliable burn-in period, 
i.e. the time the model needs to converge to the optimum pa-
rameter values. Chains of the size 50000 and a burn-in period 
of 3000 runs, and chains of size 100000 with a burn-in period 
of 30000 runs were used for station Skocjan and station Koba-
rid, respectively. The estimated parameter values presented in 
Table 4 are the means of the posterior distributions. Compari-
son of the parameter values estimated by the two methods 
indicates consistency. However, both techniques have their 
advantages and disadvantages. The results in Tables 3 and 4 
indicate that the MCMC approach has significantly narrowed 
the credible intervals, i.e. reduces the potential range of esti-
mated parameter values. Also Finch and French (2012) showed 
that MCMC approach for smaller samples provides more accu-
rate parameter estimates, i.e. narrower confidence intervals than 
MLE approach. Furthermore, Katz et al. (2002) noted that the 
MLE method can be unstable and give unrealistic estimates of 
the shape parameter and therewith the extreme flood quantiles 
of the GEV distribution in the case of small samples (N<50). 
However, comparing the complexity of the methods, the MLE 
method is much simpler and easier to implement since the 

MCMC approach requires many decisions prior to the applica-
tion such us the prior distribution function and their parameters 
and is therefore much more time consuming. 

For each model, the significance of the inclusion of each co-
variate was evaluated by adding one covariate in a parameter at 
a time and using the AIC or DIC criterion to assess whether 
inclusion of a covariate into a specific parameter resulted in a 
better model fit. Additionally, in the case of the MLE parameter 
estimation method, also a likelihood-ratio test was performed to 
test whether the inclusion of the covariates into the model is 
significant. The models were ranked according to the tests and 
calculated criterion values (Tables 3 and 4). Furthermore, vari-
ous diagnostic plots were inspected to check the overall per-
formance of the fitted models by evidence of independence and 
normality of the residuals. Visual inspection did not highlight 
significant problems associated with the performance of the 
fitted models. The results presented in Tables 3 and 4 demon-
strate that each step of our procedure resulted in a better model 
fit. In fact, all non-stationary models exhibit better fitting than 
the stationary ones for both considered gauging stations. Inclu-
sion of the time trend into the location parameter results in a 
significant (at the 5% level) improvement over the stationary 
model. Furthermore, incorporation of the time trend into the 
scale parameter, in addition to the location parameter, yields a 
significant improvement over the non-stationary model with 
time trend only in the location parameter, which demonstrates 
that the variability of floods for both stations increased espe-
cially during the 21st century. These findings are in accordance 
with the results from previous studies since most of the studies 
reported significant improvement of time dependant non-
stationary models over stationary ones, however, not all of 
them recognized the further improvement of non-stationary 
models after the inclusion of the time trend also in the scale 
parameter (El Adlouni et al., 2007; Delgado et al., 2010; Gül et 
al., 2014; Salas and Obeysekera, 2014). Finally, inclusion of 
annual precipitation as a covariate into the location parameter 
demonstrates a significant improvement over the fit with the 
time covariate. Thus, it appears that the model with annual 
precipitation dependence of the location parameter most ade-
quately represents the AM flood series variability of both sta-
tions. 

Once the parameters of the models have been estimated, the 
flood quantiles for specific return periods (T) can be simulated. 
Estimated flood quantiles versus time are presented in Figures 2 
and 3 for gauging stations Skocjan and Kobarid, respectively. 
Note that flood quantiles associated with 2-year return period 
correspond to the median of the model. The results for both 
stations demonstrate that the stationary model in almost all 
cases underestimates flood quantiles of the non-stationary mod-
els in recent years (Table 5 and Figures 2 and 3). Traditionally 
estimated flood quantiles associated with a specific return peri-
od match the non-stationary flood quantiles from many years or 
even decades ago. The same finding was reported by Gül et al. 
(2014). Relative to the non-stationary model with time trend in 
both parameters (NSt2), the stationary model started to under-
estimate flood quantiles associated with a 2-year return period 
already after the first 23 years (in 1983) and with a 100-year 
return period after 48 years (in 2008) (Figure 2). Relative to the 
non-stationary model with annual precipitation as a covariate 
(NSP), the stationary model underestimates the flood quantiles 
in wet years. For example, for Skocjan the 100-year flood is 
underestimated by the stationary in years with annual precipita-
tion larger than 1150 mm/yr, which is very close to the average 
annual precipitation (1144 mm/yr). The non-stationarity is even 
more apparent for the station Kobarid (Figure 3). 
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Table 3. Parameters of the stationary (S) and non-stationary (NS) models estimated by the MLE method.  
 

Model Parameter estimates with 95% conf. intervals in brackets AIC rank 

   ߢ 1ߙ 0ߙ 1ߤ 0ߤ 
Station Skocjan  
(7380)  

   
 

 
 

S 
22.51 

[19.99; 25.02] 
– 

8.36 
[6.56; 10.15] 

– 
–0.049 

[–0.236; 0.138] 
395.3 4 

NS: µ(t) 
15.64 

[10.03; 21.26] 
0.293 

[0.084; 0.502] 
8.27 

[6.44; 10.11] 
– 

–0.192 
[–0.397; 0.012] 

386.7 3 

NS: µ(t), a(t) 
16.71 

[13.40; 20.01] 
0.287 

[0.139; 0.434] 
1.48 

[1.16; 1.81] 
0.022 

[0.012; 0.032] 
–0.390 

[–0.574; –0.206] 
374.6 2 

NS: µ(P) 
–15.36 

[–27.64; –3.07] 
0.034 

[0.023; 0.045] 
5.81 

[4.33; 7.30] 
– 

0.097 
[–0.184; 0.378] 

368.0 1 

Station Kobarid  
(8080)        

S 
389.99 

[359.54; 420.43] 
– 

115.01 
[94.43; 135.60] 

– 
–0.192 

[–0.318; –0.066] 
812.3 4 

NS: µ(t) 
309.76 

[247.09; 372.43] 
2.734 

[0.903; 4.564] 
114.64 

[93.252; 136.02] 
– 

–0.315 
[–0.486; –0.144] 

804.7 3 

NS: µ(t), a(t) 
335.81 

[288.66; 382.97] 
1.994 

[0.538; 3.451] 
4.36 

[4.06; 4.66] 
0.010 

[0.003; 0.017] 
–0.357 

[–0.529; –0.185] 
799.9 2 

NS: µ(P) 
90.95 

[–37.24; 219.15] 
0.124 

[0.074; 0.173] 
86.64 

[67.88; 105.40] 
– 

–0.023 
[–0.222; 0.177] 

789.3 1 

 
 
Table 4. Parameters of the stationary (S) and non-stationary (NS) models estimated by the Bayesian method (MCMC).  
 

Model Parameter estimates with 95% cred. intervals in brackets DIC rank 

   ߢ 1ߙ 0ߙ 1ߤ 0ߤ 
Station Skocjan 
(7380)  

   
 

 
 

S 
22.46 

[21.33; 23.61] 
– 

8.81 
[6.94; 11.38] 

– 
–0.018 

[–0.212; –0.231] 
1174.4 4 

NS: µ(t) 
15.63 

[14.94; 16.34] 
0.284 

[0.181; 0.388] 
8.59 

[6.65; 11.10] 
– 

–0.144 
[–0.345; 0.107] 

1145.1 3 

NS: µ(t), a(t) 
16.72 

[15.57; 17.76] 
0.280 

[0.172; 0.382] 
1.51 

[1.18; .85] 
0.022 [0.012; 0.032] 

–0.337 
[–0.534; –0.107] 

1104.6 2 

NS: µ(P) 
–15.35 

[–16.04; –14.67] 
0.033 

[0.031; 0.036] 
6.13 

[4.54; 8.19] 
– 

0.131 
[–0.124; 0.455] 

1088.6 1 

Station  
Kobarid (8080) 

       

S 
390.64 

[388.33; 393.20] 
– 

118.50 
[97.49; 45.27] 

– 
–0.180 

[–0.294; –0.057] 
2423.6 4 

NS: µ(t) 
305.68 

[304.94; 306.41] 
2.84 

[2.61; 3.07] 
119.57 

[96.14; 50.51] 
– 

–0.303 
[–0.456; –0.149] 

2396.6 3 

NS: µ(t), a(t) 
335.83 

[333.42; 338.34] 
1.95 

[1.11; 2.76] 
4.40 

[4.09; 4.73] 
0.010 

[0.002; 0.018] 
–0.320 

[–0.502; –0.132] 
2379.9 2 

NS: µ(P) 
90.81 

[88.95; 92.87] 
0.123 

[0.113; 0.133] 
87.71 

[71.95; 08.14] 
– 

–0.023 
[–0.044; –0.002] 

2348.5 1 

 
 
Table 5. Estimated flood quantiles for specific return periods (T) for the year 2013 along with confidence/credible intervals for the MLE 
and MCMC method. 
 

Model 
Quantile estimates with 95% confidence limits [m3/s]  

for MLE method  
Quantile estimates with 95% credible limits [m3/s]  

for MCMC method  
Station 7380 T = 10 T = 100 T = 10 T = 100 

S 40.3 [35.3; 45.3] 56.9 [43.4; 70.4] 42.2 [37.0; 51.3] 63.6 [49.0; 101.1] 

NS: µ(t) 46.3 [40.1; 52.5] 56.4 [50.0; 62.9] 47.3 [41.4; 54.1] 60.3 [52.1; 79.0] 

NS: µ(t), s(t) 53.3 [47.3; 59.4] 62.5 [54.5: 70.5] 54.9 [47.7; 64.3] 66.6 [57.7; 84.2] 

Station 8080     

S 600.1 [557.0; 643.2] 741.3 [661.9; 820.6] 610.2 [573.0; 662.3] 762.9 [691.4; 885.4] 

NS: µ(t) 672.2 [610.6; 733.8] 765.8 [713.4; 818.2] 682.5 [628.6; 742.4] 780.3 [728.0; 855.8] 

NS: µ(t), s(t) 701.1 [637.2; 765.0] 809.6 [718.9; 900.3] 718.6 [645.1; 819.5] 851.7 [751.5; 1043] 
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Fig. 2. Comparison of estimated flood quantiles for stationary (S) and non-stationary (NS) models for the gauging station Skocjan (7380) 
fitted with the MLE method. The non-stationary model with the time covariate incorporated only into the location parameter is denoted as 
NSt, the non-stationary model with time trend in both parameters as NSt2 and the non-stationary model with annual precipitation as a co-
variate as NSP. The NSP model estimates the flood quantile for each year depending on the corresponding annual precipitation. 

 

 
 
Fig. 3. Same as Figure 2 but for the station Kobarid (8080). 

 
Interestingly, the results of the non-stationary model with 

annual precipitation as a covariate show no trend in the quan-
tiles since there was no significant time trend identified in the 
annual precipitation data series. However, a statistically signifi-
cant linear correlation between the AM flood series and annual 
precipitation was identified. High floods in both catchments are 
mainly associated with high autumn precipitation which tends 
to have an increasing trend all over Slovenia (Kobold et al., 
2012). Furthermore, the results presented in Table 5 indicate 
that the Bayesian (MCMC) approach offers slightly higher 
flood estimates than the MLE approach for all considered mod-
els and return periods. The MCMC approach has significantly 
wider credible intervals. 

Consistent with the goodness-of-fit results, a visual inspec-
tion of Figures 4 and 5 show that the last two non-stationary 
models NSt2 and NSP exhibit a better fit than the stationary (S) 
and the non-stationary (NSt) models for both gauging stations. 
Both non-stationary models (NSt2 and NSP) demonstrate better 
fits to the flood peaks in recent years. For example, in the case 
of Skocjan models S and NSt significantly underestimate the 
highest flood that occurred in 2010 (Figure 4). The 2010 flood 
peak was even higher than the prediction of the 100-year flood 
for the NSt model for 2023. In the case of Kobarid, models S 

and NSt again underestimate the floods of 2009 and 2012  
(Figure 5). 

Figure 4 illustrates that, in the case of station Skocjan, a 100-
year flood under stationary conditions (S) (57 m³/s) corre-
sponds to a 20-year flood under non-stationary conditions 
(NSt2) in the year 2013. In other words, an exceedance proba-
bility of 0.01 increased to 0.05. Similarly, to ensure a return 
period of 100-years under non-stationary conditions in the year 
2013, a return period of more than 230 years should be used 
considering stationary conditions. Provided the model can be 
extrapolated into the future, a return period of 100-years in the 
year 2023 under non-stationary conditions would require a 
return period of more than 1200 years considering stationary 
conditions. These changes in the flood quantiles are similar to 
those found by Salas and Obeysekera (2014). 

With annual precipitation as a covariate (NSP), the 100-year 
flood under stationary conditions corresponds to a flood associ-
ated with an annual rainfall of 1143 mm/yr which is the average 
of the observation period (Figure 4). The same flood discharge 
will occur with an exceedance probability of 0.03 (T = 33 
years) if annual rainfall equals the maximum observed rainfall 
(1438 mm/yr). For each additional 100 mm/yr of precipitation, 
the 100-year flood increases by almost 3.5 m3/s. 
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Fig. 4. Estimated flood quantiles for all considered models for gauging station Skocjan (7380) fitted with the MLE method. 
 

 
 
Fig. 5. Estimated flood quantiles for all considered models for gauging station Kobarid (8080) fitted with the MLE method. 

 
Likewise, in the case of Kobarid (Figure 5) the return period 

associated with a given peak discharge decreases as one moves 
from the past into the future. With annual precipitation as a 

covariate (NSP) a 67-year flood associated with the average 
annual rainfall of 2452 mm/yr becomes a 9-year flood for the 
rainfall equal to the maximum observed one (3758 mm/yr). 
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This discharge corresponds to a 100-year flood if stationary 
conditions are assumed. For each additional 100 mm/yr of 
precipitation, the 100-year flood increases by more than  
12 m3/s. 

The main difference between the four models is the temporal 
variability (Figures 4 and 5). As the stationary model (S) re-
mains constant all the time, both time dependant non-stationary 
models (NSt, NSt2) reveal an increasing trend of estimated 
quantiles with time. The increasing trend of NSt2 is even more 
pronounced since it also accounts for the time variability of the 
scale parameter of the GEV distribution. On the other hand, the 
estimated quantiles of the NSP model increase with increasing 
annual precipitation. The skewness of the NSP model is higher 
than those of the other models which may be a consequence of 
the large range of flood peaks associated with the same annual 
precipitation.  

Predicting the design flood for the life span of structure in 
the future using time dependant non-stationary models needs to 
be considered with care. It is possible that changes in the future 
will not be exactly the same as those in the past, especially for 
periods longer than 10 years into the future. The advantage of 
the non-stationary model with annual precipitation as a covari-
ate is that it avoids this direct temporal extrapolation, as it 
builds on a relationship between the floods and annual precipi-
tation. To use this model for design purposes, reliable scenarios 
of future annual precipitation are needed. It is suggested that 
the usage of annual precipitation is of benefit here. As com-
pared to the alternative of estimating floods by the design storm 
method (see, e.g., Viglione and Blöschl, 2009; Viglione et al., 
2009) there is no need of obtaining projections of extreme event 
precipitation, which tend to be less reliable than projections of 

annual precipitation (Blöschl and Montanari, 2010). This makes 
the proposed model more practically useful than alternative 
methods. 

Figure 6 shows the parameter estimation uncertainty of the 
models associated with a 100-year flood obtained by the 
MCMC method for the Skocjan station. The uncertainty is the 
highest for the non-stationary model with the time covariate 
incorporated into the first two parameters (NSt2). This finding 
would be expected since five parameters had to be fitted for the 
NSt2 model, and the uncertainty tends to increase with the 
number of parameters. Also, the degree to which the uncertain-
ty changes in time is larger for the NSt2 model, as it changes 
from relatively modest uncertainty in 1970 to significantly 
larger uncertainty in 2013, which is the consequence of the time 
increasing variance of the NSt2 model. For the recent years the 
uncertainty is comparable with the uncertainty of the stationary 
model (S). Comparing all models, the smallest uncertainty is 
obtained for the model with the time covariate incorporated 
only into the location parameter (NSt). In non-stationary mod-
els, part of the variance of the data is explained by the trend; 
therefore the deviations around them are smaller than for the 
stationary model (Table 4). Finally, inclusion of annual precipi-
tation as a covariate into the location parameter (NSP) demon-
strates a constant uncertainty that is independent of the value of 
the covariate. It is larger than the uncertainty of the NSt model 
and smaller than that of the NSt2 model. Although the NSt and 
NSP models have the same number of parameters to be fitted, 
there is a difference between the uncertainties of the two mod-
els which may be attributed to the variability of the flood peaks 
associated with the same rainfall class.  

 

 
 
Fig. 6. Density plots for the 100-year flood for all considered models using the MCMC parameters estimation approach for gauging station 
Skocjan (7380). 
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CONCLUSIONS  
 
This paper analyses the influence of non-stationarity on 

flood frequency estimates. One stationary and three non-
stationary models are considered, with parameters dependent on 
time and on annual precipitation. All non-stationary models 
examined exhibit a better fit to the maximum annual flood data 
of two stations than the stationary model. Inclusion of a linear 
time trend into the location parameter results in a significant 
improvement over the stationary model. Additional incorpora-
tion of a time trend into the scale parameter yields further im-
provements. This may be attributed to the increasing variability 
of the flood discharges of the two stations in the last decade. 
Various goodness-of-fit tests demonstrate that the model with 
annual precipitation as a covariate provides the best fit to the 
flood data of both stations.  

Annual precipitation is not usually used as a covariate in the 
literature. Climate indices (e.g. Delgado et al., 2014; Salas and 
Obeysekera, 2014) and extreme precipitation (e.g. Prosdocimi 
et al., 2014; Villarini et al., 2009) are more common. We be-
lieve that annual precipitation is a better indicator of non-
stationary river floods than short-term extreme event precipita-
tion. First, event precipitation and annual precipitation are 
usually highly correlated, in particular for synoptic storms that 
may make up a considerable part of the annual precipitation. 
Second, annual precipitation will affect the antecedent catch-
ment soil moisture of individual events, which will directly 
affect the flood magnitudes (Gaál et al., 2012). Third, annual 
precipitation, typically, also has long-term effects on the evolu-
tion of catchment characteristics with high precipitation being 
associated with more efficient runoff generation and routing 
through soil erosion and land form evolution (Perdigão and 
Blöschl, 2014; Sivapalan and Blöschl, 2015). In a spatial con-
text, these processes usually lead to mean annual precipitation 
being a better predictor of flood frequencies in ungauged basins 
than shorter term extreme precipitation (Rosbjerg et al., 2013). 
Similarly, one would expect annual precipitation to be a better 
predictor of decadal flood frequency changes. Perdigão and 
Blöschl (2014) highlight the role of annual precipitation in the 
long-term flood peak evolution. 

Comparison of the parameters estimated by the maximum 
likelihood (MLE) and the Bayesian (MCMC) methods indicates 
consistency. However, even relatively small differences in the 
parameter estimates result in slightly higher estimates of the 
design discharges estimated by the Bayesian (MCMC) ap-
proach in the case of all considered models and return periods. 
As reported by Katz et al. (2002), in the case of small samples, 
the MLE method can give unrealistic estimates of extreme 
flood quantiles which could be a reason for preferring the 
Bayesian approach over MLE. 

The Bayesian (MCMC) approach demonstrates that the 
model with the highest number of parameters (i.e. the model 
with both location and scale parameters depending on time, 
NSt2, which has 5 parameters) gives the highest uncertainty. 
This model also exhibits the highest variation of uncertainty 
depending on the period of interest. On the other hand, the 
smallest uncertainty is found for the model with the location 
parameter depending on time (NSt). This is because the trend of 
non-stationary models already explains part of the variance of 
the data, so the deviations around them are smaller than those 
of the stationary model. The model with annual precipitation as 
a covariate (NSP) gives a higher uncertainty than the NSt  
model due to flood peak variability for the same rainfall class. 
It should be noted that all the uncertainties in the flood quan-
tiles evaluated by the MCMC method only relate to the uncer-

tainty associated with parameter estimation due to a limited 
record length, assuming that the model (GEV distribution and 
trend models) is perfect. This explains the largest uncertainty 
for the case with the largest number of parameters which makes 
the least assumptions about the model. From a practical design 
perspective one would additionally have to take the model 
uncertainty into account which, for this case, is smaller than in 
the other cases. 

The information criteria used in the paper (AIC and DIC) for 
the model choice account for record length and variance. They 
involve a penalty factor for more complex (non-stationary) 
models, which are chosen only if the data support the additional 
complication. Measurement uncertainty is not explicitly ac-
counted for. Random measurement uncertainty can be consid-
ered to be part of the sampling uncertainty as the latter is esti-
mated from the observed data. Systematic measurement errors 
due to changes in the rating curve would, however, affect the 
results (Kuczera, 1996). Based on the information available for 
the stream gauges used here, there is no indication of systemat-
ic changes, suggesting that the relative performance of the 
methods would probably not change if measurement uncertain-
ty is accounted for explicitly. 

The results also demonstrate that there are significant differ-
ences in the quantile estimates between stationary and non-
stationary models. The stationary model in almost all cases 
underestimates the flood quantiles in recent years relative to the 
non-stationary models. For example, the flood quantile associ-
ated with a 100-year return period under stationary conditions 
corresponds to a return period of about 20-years under non-
stationary conditions (NSt2) for both stations. If we want to 
ensure today’s level of protection associated with a return peri-
od of 10 years to be the same under non-stationary conditions 
(NSt2) after 10 years, the design discharge should be increased 
by 15 and 6 % for stations Skocjan and Kobarid, respectively. 
Relative to the estimation uncertainty due to sampling effects, 
the difference between stationary and non-stationary models is 
rather drastic for a return period of 10 years, as most non-
stationary quantile estimates lie outside the stationary confi-
dence or credibility limits. In contrast, for a return period of 
100 years the opposite is the case, and all non-stationary quan-
tile estimates lie outside the stationary confidence or credibility 
limits. This is a reflection of the increasing sampling uncertain-
ty with increasing return period. Variability associated with 
long time scales relative to the record length would be reflected 
as a trend in the estimation; while variability associated with 
short time scales (within the flood record) would be considered 
sampling variability. As such, the method separates the long-
time scales from the short-time scales.  

Using the model with annual precipitation as a covariate, a 
10% increase in annual precipitation translates into an 8% 
increase of the 10-year flood for the station Skocjan. One of the 
main advantages of this model is that it allows estimation of the 
design discharge for a specific value of annual precipitation that 
is likely to occur over the life span of the structure. However, 
reliable precipitation scenarios for the future are needed. 

Overall, the results of the study indicate that an unjustified 
assumption of stationarity could lead to an underestimation of 
extreme floods. Therefore, non-stationary models are certainly 
one of the options to explore when estimating design discharges. 
 
Acknowledgements. We wish to thank the Environmental 
Agency of the Republic of Slovenia (ARSO) for data provision. 
We would also like to thank the flood change project (ERC 
Advanced Grant, 291152), and the predictability of runoff 
project (ÖAW) for financial support. 



Mojca Šraj, Alberto Viglione, Juraj Parajka, Günter Blöschl  

436 

REFERENCES  
 
Akaike, H., 1974. A new look at the statistical model identifica-

tion. IEEE Transactions on Automatic Control, 19, 6, 716–
723. 

ARSO, 2010. Hydrological report on the floods in days, be-
tween 23rd and 27th of December 2010. MOP ARSO, 
Ljubljana, 1–14. (In Slovenian.)  

ARSO, 2012. Hydrological report on floods in days, between 
4th and 6th of November 2012. MOP ARSO, Ljubljana, 1–15. 
(In Slovenian.) 

ARSO, 2015a. http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php. 
Accessed: 9.9.2015. 

ARSO, 2015b. http://meteo.arso.gov.si/met/sl/app/webmet/. 
Accessed: 16.9.2015.  

Bates, B.C., Chandler, R.E., Charles, S.P., Campbell, E.P., 
2010. Assessment of apparent nonstationarity in time series 
of annual inflow, daily precipitation, and atmospheric circu-
lation indices: A case study from southwest Western Aus-
tralia. Water Resources Resource, 46, 1–15. 

Bezak, N., Brilly, M., Šraj, M., 2015a. Flood frequency anal-
yses, statistical trends and seasonality analyses of discharge 
data: a case study of the Litija station on the Sava River. 
Journal of Flood Risk Management. doi: 10.1111/jfr3.12118. 

Bezak, N., Horvat, A., Šraj, M., 2015b. Analysis of flood 
events in Slovenian streams. Journal of Hydrology and Hy-
dromechanics, 63, 134–144. 

Blöschl, G., Montanari, A., 2010. Climate change impacts—
throwing the dice? Hydrological Processes, 24, 374–381. 

Blöschl, G. et al., 2015. Increasing river floods: fiction or reali-
ty? WIREs Water. doi: 10.1002/wat2.1079.  

Bormann, H., Pinter, N., Elfert, S., 2011. Hydrological signa-
tures of flood trends on German rivers: flood frequencies, 
flood heights and specific stages. Journal of Hydrology, 404, 
1–2, 50–66. 

Cheng, L., AghaKouchak, A., Gilleland, E., Katz, R.W., 2014. 
Non-stationary extreme value analysis in a changing climate. 
Climatic Change, 127, 353–369. 

Coles, S., 2001. An Introduction to Statistical Modeling of 
Extreme Values. Springer, London. 

Cunderlik, J.M., Ouarda, T., 2009. Trends in the timing and 
magnitude of floods in Canada. Journal of Hydrology, 375, 
3–4, 471–480. 

Delgado, J.M., Apel, H., Merz, B., 2010. Flood trends and 
variability in the Mekong river. Hydrology and Earth System 
Sciences, 14, 3, 407–418. 

Delgado, J.M., Merz, B., Apel, H., 2014. Projecting flood haz-
ard under climate change: an alternative approach to model 
chains. Natural Hazards and Earth System Science, 14, 6, 
1579–1589. 

Douglas, E.M., Vogel, R.M., Kroll, C.N., 2000. Trends in 
floods and low flows in the United States: impact of spatial 
correlation. Journal of Hydrology, 240, 1–2, 90–105. 

El Adlouni, S., Ouarda, T.B.M.J., Zhang, X., Roy, R., Bobee, 
B., 2007. Generalized maximum likelihood estimators for 
the non stationary generalized extreme value model. Water 
Resources Research, 43, W03410. 

Finch, W.H., French, B.F., 2012. Parameter estimation with 
mixture item response theory models: A Monte Carlo com-
parison of maximum likelihood and Bayesian methods. 
Journal of Modern Applied Statistical Methods, 11, 1, 167–
178. 

Frantar, P., Hrvatin, M., 2005. Discharge regimes in Slovenia 
from 1971 to 2000. Geografski vestnik, 77, 115–127. (In 
Slovenian.) 

Frantar, P., Nadbath, M., Ulaga, F., 2008. Water balance impact 
factors. In: Frantar, P. (Ed.): Water Balance of Slovenia 
1971–2000. MOP ARSO, Ljubljana, pp. 15–27. 

Gaál, L., Szolgay, J., Kohnová, S., Parajka, J., Merz, R., 
Viglione, A., Blöschl, G., 2012. Flood timescales: Under-
standing the interplay of climate and catchment processes 
through comparative hydrology. Water Resources Research, 
48, W04511. 

Gilleland, E., Katz, R.W., 2011. New software to analyze how 
extremes change over time. Eos, 92, 2, 13–14. 

Gilroy, K.L., McCuen, R.H., 2012. A nonstationary flood fre-
quency analysis method to adjust for future climate change 
and urbanization. Journal of Hydrology, 414–415, 40–48. 

Groisman, P.Y., Knight, R.W., Easterling, D.R., Karl, T.R., 
Hegerl, G.C., Razuvaev, V.N., 2005. Trends in intense pre-
cipitation in the climate record. Journal of Climatology, 18, 
1326–1350. 

Gül, G., Aşıkoğlu, Ö., Gül, A., Gülçem Yaşoğlu, F., Benzeden, 
E., 2014. Nonstationarity in flood time series. Journal of 
Hydrologic Engineering, 19, 7, 1349–1360. 

Hall, J. et al., 2014. Understanding flood regime changes in 
Europe: a state-of-the-art assessment. Hydrology and Earth 
System Sciences, 18, 7, 2735–2772. 

Jones, P.D., New, M., Parker, D.E., Martin, S., Rigor, I.G., 
1999. Surface air temperature and its changes over the past 
150 years. Reviews of Geophysics, 37, 2, 173–199. 

Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of 
extremes in hydrology. Advances in Water Resources, 25, 
1287–1304. 

Kendall, M.G., 1975. Multivariate Analysis. London, Griffin. 
Khaliq, M.N., Ouarda, T.B.M.J., Ondo, J.C., Gachon, P.,  

Bobee, B., 2006. Frequency analysis of a sequence of de-
pendent and/or non-stationary hydro-meteorological obser-
vations: a review. Journal of Hydrology, 329, 3–4, 534–552. 

Kjeldsen et al., 2014. Documentary evidence of past floods in 
Europe and their utility in flood frequency estimation. Jour-
nal of Hydrology, 517, 963–973.  

Kobold, M., Ulaga, F., Trcek, R., Lalic, B., Sušnik, M., Pola-
jnar, J., Robic, M., 2005. High waters in August 2005. MOP 
ARSO, Ljubljana, pp. 1–21. (In Slovenian.) 

Kobold, M., Dolinar, M., Frantar, P., 2012. Changes of water 
regime due to the climate change and anthropogenic influ-
ences. In: Proc. The first conference on waters in Slovenia, 
22.3.2012, Ljubljana, pp. 7–22. (In Slovenian.) 

Kuczera, G., 1996. Correlated rating curve error in flood fre-
quency inference. Water Resources Research, 32, 7, 2119–
2127. 

Kundzewicz, Z.W., Graczyk, D., Maurer, T., Pinskwar, I., 
Radziejewski, M., Svensson, C., Szwed, M., 2005. Trend de-
tection in river flow series: 1. Annual maximum flow. Hy-
drological Sciences Journal, 50, 5, 797–810. 

Labat, D., Godderis, Y., Probst, J.L., Guyot, J.L., 2004. Evi-
dence for global runoff increase related to climate warming. 
Advances in Water Resources, 27, 6, 631–642. 

Ljung, G.M., Box, G.E.P., 1978. On a measure of a lack of fit 
in time series models. Biometrika, 65, 2, 297–303. 

Lopez, J., Frances, F., 2013. Non-stationary flood frequency 
analysis in continental Spanish rivers, using climate and res-
ervoir indices as external covariates. Hydrol. Earth Syst. 
Sci., 17, 3189–3203. 

McLeod, A.I., 2011. Kendall: Kendall rank correlation and 
Mann-Kendall trend test. R package version 2.2. 
http://CRAN.R-project.org/package=Kendall. 



The influence of non-stationarity in extreme hydrological events on flood frequency estimation 

437 

Mediero et al., 2015. Identification of coherent flood regions 
across Europe by using the longest streamflow records. 
Journal of Hydrology, 528, 341–360. 

Menih, M., Bezak, N., Šraj, M., 2015. The influence of the 
climate variability on the results of the flood frequency anal-
yses: a case study of the Litija station on the Sava River. 
SZGG, Ljubljana, 23–34. (In Slovenian.) 

Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., Hun-
decha, Y., 2012. HESS Opinions: “More efforts and scien-
tific rigour are needed to attribute trends in flood time se-
ries”. Hydrol. Earth Syst. Sci., 16, 1379–1387. 

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., 
Kundzewicz, Z.W., Lettenmaier, D.P., Stouffer, R.J., 2008. 
Stationarity is dead: Whither water management. Science, 
319, 573–574. 

Montanari, A., Koutsoyiannis, D., 2014. Modeling and mitigat-
ing natural hazards: Stationarity is immortal! Water Re-
sources Research, 50, 12, 9748–9756. 

Obeysekera, J., Salas, J.D., 2014. Quantifying the uncertanty of 
design floods under nonstationary conditions. Journal of 
Hydrologic Engineering, 19, 1438–1446. 

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, 
W., Christ, R., ... & van Vuuren, D., 2014. Climate Change 
2014: Synthesis Report. Contribution of Working Groups I, 
II and III to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change. IPCC, Geneva, Swit-
zerland. 

Perdigão, R.A.P., Blöschl, G., 2014. Spatiotemporal flood 
sensitivity to annual precipitation: Evidence for landscape-
climate coevolution, Water Resour. Res., 50, 5492–5509. 

Polajnar, J., 2007. High waters in Slovenia in 2006. Ujma, 21, 
42–44. (In Slovenian.) 

Prosdocimi, I., Kjeldsen, T.R., Svensson, C., 2014. Non-
stationarity in annual and seasonal series of peak flow and 
precipitation in the UK. Nat. Hazards Earth Syst. Sci., 14, 
1125–1144. 

Prosdocimi, I., Kjeldsen, T.R., Miller, J.D., 2015. Detection and 
attribution of urbanization effect on flood extremes using 
nonstationary flood-frequency models. Water Resources Re-
search, 51, 4244–4262. 

R Core Team, 2013. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL http://www.R-project.org/. 

Robson, A.J., Jones, T.K., Reed, D.W., Bayliss, A.C., 1998. A 
study of national trend and variation in UK floods. Interna-
tional Journal of Climatology, 18, 2, 165–182. 

Rosbjerg, D., Blöschl, G., Burn, D.H., Castellarin, A., Croke, 
B., DiBaldassarre, G., Iacobellis, V., Kjeldsen, T.R., 
Kuczera, G., Merz, R., Montanari, A., Morris, D., Ouarda, 
T.B.M.J., Ren, L., Rogger, M., Salinas, J.L, Toth, E., 
Viglione, A., 2013. Prediction of floods in ungauged basins. 
Chapter 9. In: Blöschl, G., Sivapalan, M., Wagener, T., 
Viglione, A., Savenije, H. (Eds.): Runoff Prediction in  
Ungauged Basins - Synthesis across Processes, Places and 
Scales. Cambridge University Press, Cambridge, UK, pp. 
135–162. 

 
 
 
 
 
 
 

Salas, J.D., Obeysekera, J., 2014. Revisiting the concepts of 
return period and risk for nonstationary hydrologic extreme 
events. Journal of Hydrologic Engineering, 19, 554–568. 

Singh, J., Singh, T., Vittal, H., Karmakar, S., 2013. Nonstation-
ary frequency estimation of flood extremes. In: Proc. of Hy-
dro 2013 International, 4–6.12.2013, IT Madras, India, pp. 
3–16. 

Sivapalan, M., Blöschl, G., 2015. Time scale interactions and 
the coevolution of humans and water. Water Resour. Res., 
51, 6988–7022. 

Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L.M., van 
Lanen, H.A.J., Sauquet, E., Demuth, S., Fendekova, M., Jo-
dar, J., 2010. Streamflow trends in Europe: evidence from a 
dataset of near-natural catchments. Hydrology and Earth 
System Sciences, 14, 12, 2367–2382. 

Strupczewski, W.G., Singh, V.P., Feluch, W., 2001. Nonsta-
tionary approach to at – site flood frequency modelling I. 
Maximum likelihood estimation. Journal of Hydrology, 248, 
123–142. 

Viglione, A., Blöschl, G., 2009. On the role of storm duration 
in the mapping of rainfall to flood return periods. Hydrology 
and Earth System Sciences, 13, 205–216. 

Viglione, A., Merz, R., Blöschl, G., 2009. On the role of the 
runoff coefficient in the mapping of rainfall to flood return 
periods. Hydrology and Earth System Sciences, 13, 5, 577–
593. 

Viglione, A., Merz, R., Salinas, J.L., Blöschl, G., 2013. Flood 
frequency hydrology: 3. A Bayesian analysis. Water Re-
sources Research, 49, 675–692. 

Villarini, G., Smith, J.A., Serinaldi, F., Bales, J., Bates, P.D., 
Krajewski, W.F., 2009. Flood frequency analysis for nonsta-
tionary annual peak records in an urban drainage basin. Ad-
vances in Water Resources, 32, 8, 1255–1266. 

Vogel, R.M., Yaindl, C., Walter, M., 2011. Nonstationarity: 
Flood magnification and recurrence reduction factors in the 
United States. Journal of American Water Resources Asso-
ciation, 47, 464–474. 

Wilby, R.L., Quinn, N.W., 2013. Reconstructing multi-decadal 
variations in fluvial flood risk using atmospheric circulation 
patterns. Journal of Hydrology, 487, 109–121. 

Wobus, C., Lawson, M., Jones, R., Smith, J., Martinich, J., 
2014. Estimating monetary damages from flooding in the 
United States under a changing climate. Journal of Flood 
Risk Management, 7, 217–229.  

Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann-
Kendall and Spearman’s rho test for detecting monotonic 
trends in hydrological series. Journal of Hydrology, 259, 
254–271. 

Zhang, X.B., Harvey, K.D., Hogg, W.D., Yuzyk, T.R., 2001. 
Trends in Canadian streamflow. Water Resources Research, 
37, 4, 987–998. 

 
Received 1 December 2015 

 Accepted 19 May 2016 


